JPS6137483A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137483A
JPS6137483A JP59159111A JP15911184A JPS6137483A JP S6137483 A JPS6137483 A JP S6137483A JP 59159111 A JP59159111 A JP 59159111A JP 15911184 A JP15911184 A JP 15911184A JP S6137483 A JPS6137483 A JP S6137483A
Authority
JP
Japan
Prior art keywords
layer
light
film
substrate
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159111A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159111A priority Critical patent/JPS6137483A/en
Publication of JPS6137483A publication Critical patent/JPS6137483A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Abstract

PURPOSE:To obtain optical recording elements having high reliability and high packing density by providing a layer A of leuco dye, a layer B of phenol compound which develops the color of the leuco body of the dye and a light-absorbing layer existing between the layers A and B, each layer being formed with either a monomolecular film or an accumulated film. CONSTITUTION:The titled optical recording element is composed of a layer-A 2 of a leuco body of dye, a layer-B 4 of phenol compound and a light-absorbing layer 3 of light-absorbing material which exists between the layer A and the layer B. These layers are laminates of either monomolecular film or its accumulated film. The layer-B 4 is supported on a substrate 1, and the substrate, layer B, light-absorbing layer and layer A are laminated in that order. For these reasons, compared to the conventional optical recording element, the titled element has higher packing density and higher signal/noise ratio, thus improving recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄膜を利用した高信頼・高密度
記録の可能な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording element using an organic material, and in particular to an optical recording device capable of highly reliable and high-density recording using a highly molecularly oriented organic thin film. It is related to the element.

[従来の技術] 最近、オフィス・オートメーション(OA)の中心的存
在として光ディスクが脚光を集めている。
[Background Art] Recently, optical disks have been attracting attention as a central player in office automation (OA).

その理由は光ディスク一枚で、大量の文書、文献などを
記録(又は記憶)できるからであり、したがって該光デ
ィスクを用いる情報記憶装置を導入するとオフィスにお
ける文書、文献の整理、管理に一大変革をもたらすもの
である。又、該光デイスク用記録素子としては安価性、
製作容易性、高密度記録性等の特徴を有する有機材料か
らなる素子が注目されている。
The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is something that brings. In addition, the recording element for the optical disk is inexpensive;
2. Description of the Related Art Elements made of organic materials that have features such as ease of manufacture and high-density recording are attracting attention.

この様な有機−記録材を用いる従来技術の中で、特に発
色剤と期化剤の接触による発色反応を利用する二成分系
の光記録素子が報告されている(日経産業新聞 昭和5
8年10月18日)。
Among the conventional techniques using such organic recording materials, a two-component optical recording element that utilizes a coloring reaction caused by contact between a coloring agent and a preservative has been reported (Nikkei Sangyo Shimbun, 1932).
(October 18, 2008).

従来の該光記録素子の1例を図面に基づいて説明すると
、fjr、 2図(a)に示す様に発色剤層7と助色剤
層5とが光吸収層6によって隔てられて基板1上に積層
された構成からなるものである。
An example of the conventional optical recording element will be explained based on the drawings. As shown in FIG. It consists of a layered structure.

発色剤(ロイコ体)及び期化剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco body) and the stabilizing agent are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(C)に示す様に光吸収層6によって
隔てられていた発色剤と期化剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(C), the coloring agent and the time-setting agent, which were separated by the light absorption layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図°るた
めには光吸収層6が極力薄く、平坦で、かつ膜厚のむら
のないものが望ましい、しかしながら、従来の光記録素
子において、光吸収層は例えば真空蒸着法又は回転塗布
法などによって基板上に被膜されているため、厚さを2
00〜500八以下に薄くしようとすればピンホールが
多発しやすく、このピンホールの箇所で発色剤と期化剤
の2成分が接触して発色するため、信頼性に欠ける欠点
があった。その上、前記の従来の被膜方法で形成される
各層の膜内の分子分布配向がランダムであるため、光照
射に伴って膜内で光散乱が生じ、微視的にみた場合、各
光照射の度に生ずる化学反応の度合が異なってくる。さ
らに、上述の被膜方法では光ディスクの基板を大面積化
すると、膜厚のむもが生じ、記録品質のむらが発生する
等の欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, the light absorption layer 6 must be as thin as possible, flat, and without uneven thickness. However, in conventional optical recording elements, the light absorbing layer is coated on the substrate by, for example, vacuum evaporation or spin coating, so the thickness is reduced to 2.
If an attempt is made to reduce the thickness to less than 0.00 to 500.08, pinholes tend to occur frequently, and the two components, the coloring agent and the time-setting agent, come into contact with each other at these pinholes and develop color, resulting in a drawback of lack of reliability. Furthermore, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film with light irradiation, and when viewed microscopically, each light irradiation The degree of chemical reaction that occurs differs each time. Furthermore, the above-mentioned coating method has drawbacks such as increasing the thickness of the film and causing unevenness in recording quality when the substrate of the optical disc has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録の高密度
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので1本発明の目的は高信頼・高密
度記録が可能な光記録素子を提供することにある0本発
明の別の目的は製作容易で安価な光記録素子を提供する
ことにある。未発り1のさらに5Mの目的は大面積の光
記録素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that the film thickness is uniform, and that the film thickness be as thin as possible to achieve high recording density and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. The purpose is to provide an optical recording element that is easy to manufacture and inexpensive. The purpose of 5M of unreleased 1 is to provide a large area optical recording element.

[問題点を解決するだめの手段]及び[作用]即ち、本
発明は通常無色ないし淡色の染料のロイコ体からなるA
層と、前記染料のロイコ体と接触して発色せしめるフェ
ノール性化合物からなるB層と、A層とB層との間に介
在する光吸収層とからなり、かつ (イ)前記A層は染料のロイコ体の単分子膜又はその累
積膜からなる層、 (ロ)前記B層はフェノール性化合物の単分子膜又はそ
の累積膜からなる層、 (ハ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子である。
[Means for solving the problem] and [Operation] That is, the present invention is directed to A, which is a leuco form of a normally colorless or light-colored dye.
a layer B consisting of a phenolic compound that develops color when in contact with the leuco form of the dye; and a light absorption layer interposed between the layer A and the layer B, and (a) the layer A is made of a dye. (b) The B layer is a monomolecular film of a phenolic compound or a cumulative film thereof; (c) The light-absorbing layer is a layer of a light-absorbing substance. This is an optical recording element characterized in that it is composed of a layer consisting of a monomolecular film or a cumulative film thereof.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は2成分系の発色反応を利用
するものであり、詳しくは染料のロイコ体と該染料のロ
イコ体と接触して発色せしめるフェノール性化合物との
発色反応を利用するものである。
The optical recording element according to the present invention utilizes a two-component coloring reaction, and more specifically, it utilizes a coloring reaction between a leuco dye and a phenolic compound that develops a color when it comes into contact with the leuco dye. It is.

したがって、本発明に係わる光記録素子は通常無色ない
し淡色の染料のロイコ体からなるAQと、前記染料のロ
イコ体と接触して発色せしめるフェノール性化合物から
なるB層と、A層とB層との間に介在し、光を吸収して
発熱し自身が溶融ないし昇華する光吸収層とから基本的
に構成されるものである。
Therefore, the optical recording element according to the present invention has an AQ made of a leuco form of a normally colorless or light-colored dye, a B layer made of a phenolic compound that develops color when it comes into contact with the leuco form of the dye, and a layer A and a layer B. It basically consists of a light absorbing layer that is interposed between the layers and absorbs light, generates heat, and melts or sublimates itself.

本発明に用いられるA層の通常無色ないし淡色の染料の
ロイコ体としては例えばトリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピーロピ
ラン系等があり、それ等に含まれる其体的な化合物の詳
細を掲示すると第1表の通りである。
Examples of the leuco type of the normally colorless to light-colored dye of the A layer used in the present invention include triphenylmethane type, fluoran type, phenothiazine type, auramine type, spiropyran type, etc., and the corresponding compounds contained therein. The details are listed in Table 1.

次に、前記染料のロイコ体と接触して発色せしめるB層
のフェノール性化合物としては、例えばp−t−ブチル
フェノール、α−ナフトール、β−ナフト−ル、フェノ
ールフタレイン、ビスフェノールA、4−ヒドロキシジ
フェノキシド、4−ヒドロキシアセトフェノン、3.5
−キシレノール、チモール、ヒドロキノン、4−ターシ
ャリ−ブチルフェノール、α−ナフトール、4−ヒドロ
オキシフェノキシド、β−ナフトール、メチル−4−ヒ
ドロオキシベンゾエート、カテコール、4−ヒドロオキ
シアセトフェノン、レゾルシン、4−ターシャリ−オク
チルカテコール、4.4′−セカンダリ−ブチリデンジ
フェノール、2.2′−ジヒドロキシジフェニル、2.
2′−メチレンビス(4−メチル−6−ターシャリ−ブ
チルフェノール)、2.2’−ビス(4’−オキジフェ
ニル)プロパノ、4.4’−イソプロピリデンビス(2
−ターシャリ−ブチルフェノール)、4.4’−セカン
グリーブチリデンジフェノール、ピロガロール、フロロ
グルシン、フロログルシンカルボン酸等が挙げられる。
Next, examples of the phenolic compounds in the B layer that develop color upon contact with the leuco form of the dye include pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxy Diphenoxide, 4-hydroxyacetophenone, 3.5
-xylenol, thymol, hydroquinone, 4-tert-butylphenol, α-naphthol, 4-hydroxyphenoxide, β-naphthol, methyl-4-hydroxybenzoate, catechol, 4-hydroxyacetophenone, resorcinol, 4-tert-octyl Catechol, 4.4'-Secondary-butylidenediphenol, 2.2'-Dihydroxydiphenyl, 2.
2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-bis(4'-oxydiphenyl)propano, 4,4'-isopropylidenebis(2
-tertiary-butylphenol), 4,4'-secanglebutylidene diphenol, pyrogallol, phloroglucin, phloroglucin carboxylic acid, and the like.

本発明においてA層及びB層はいずれもjlj、分子膜
又はその累!/i膜からなる層から形成されるために、
前記の染料のロイコ体及びフェノール性化合物はいずれ
も分子内の通出な部位に親水ノ、(、疎水基又はその両
方の基を導入した11N導体を用いる必要がある。
In the present invention, both the A layer and the B layer are jlj, a molecular film, or a layer thereof! Since it is formed from a layer consisting of /i film,
For both the leuco dye and phenolic compound mentioned above, it is necessary to use a 11N conductor in which a hydrophilic group, a hydrophobic group, or both groups are introduced into an open site in the molecule.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることかできるが、特に好ましくは
疎水)ふとじては炭素原子数5〜30の長鎖アルキル基
、親水基としてはカルボキシル基及びその金属塩(例え
ばカドミウム塩)が望ましい。
As the hydrophobic group and the parent group, any commonly used group can be used, but particularly preferably a long-chain alkyl group with 5 to 30 carbon atoms as the hydrophobic group, and as the hydrophilic group, Carboxyl groups and their metal salts (eg cadmium salts) are preferred.

なお、A層及びB層の11ジJ!yは200Aから1O
JLの範囲が望ましく−、好適には1.00OAから1
ルの範囲である。
In addition, 11ji J! of A layer and B layer! y is 200A to 1O
A range of JL is desirable - preferably from 1.00OA to 1
This is within the range of

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、銅フロシアニン、
バナジウムフタロシアニン等の金属フタロシアニン、合
金層アゾ染料、酸性アゾ染料、フルオレスセイン等のキ
サンチン系色素等がある。
Examples of such light-absorbing dyes include copper phlocyanine,
Examples include metal phthalocyanines such as vanadium phthalocyanine, alloy layer azo dyes, acidic azo dyes, and xanthine dyes such as fluorescein.

該光吸収層は単分子膜又はその累積膜からなる層から形
成されるために、前記の光吸収性物質は分子内の適当な
部位に親木基、疎水基又はその両方の基を導入した誘導
体を用いる必要がある。
Since the light-absorbing layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the light-absorbing substance has a parent group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use derivatives.

疎水基及び親水基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and hydrophilic group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお光吸収層の膜厚は30Aから1.00OAの範囲が
望ましく、好適には50Aから20OAの範囲である。
The thickness of the light absorption layer is preferably in the range of 30A to 1.00OA, preferably in the range of 50A to 20OA.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、及びアクリル(PMMA) 、ポリカー
ボネート(pc)、ポリプロピレン、ポリ塩化ビニール
(pvc ) 、ポリスチレン等のプラスチック材ネ:
1、セラミック材料等が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably reinforced glass, and plastic materials such as acrylic (PMMA), polycarbonate (PC), polypropylene, polyvinyl chloride (PVC), and polystyrene:
1. Ceramic materials are preferred.

本発明に係わる光記録集子はA層は染料のロイコ体の単
分子膜又はその累積膜からなる層、B層はフェノール性
化合物の単分子11シ又はその累積膜からなる層及び光
吸収層は光吸収性物質の単分子膜又はその累積膜からな
る層から構成されることを1つの特徴とするものである
In the optical recording collector according to the present invention, layer A is a layer consisting of a monomolecular film of a leuco dye or a cumulative film thereof, and layer B is a layer consisting of a monomolecular film of a phenolic compound or a cumulative film thereof, and a light absorption layer. One of the characteristics is that it is composed of a monomolecular film of a light-absorbing substance or a layer consisting of a cumulative film thereof.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積11墓を作成する方法としては、例えば1.
Lang+++uirらの開発したラングミュア・プロ
ジェット法(La法)を用いる。ラングミュア・プロジ
ェット法は、例えば分子内に親木基と疎水基を有する横
道の分子において1両者のバランス(両親媒性のバラン
ス)が適度に保たれているとき、分子は水面上で親木2
ti t−下に向けて単分子の層になることを利用して
単分子膜または単分子の累積膜を作成する方法である。
As a method for creating a monomolecular film having such high orderliness and high orientation of molecules or a cumulative layer thereof, for example, 1.
The Langmuir-Prodgett method (La method) developed by Lang+++uir et al. is used. The Langmuir-Prodgett method is based on the Langmuir-Prodgett method, for example, when a lateral molecule that has a parent group and a hydrophobic group in the molecule maintains an appropriate balance between the two (amphiphilic balance), the molecule will react to the parent group on the water surface. 2
tit - This is a method of creating a monomolecular film or a monomolecular cumulative film by utilizing the fact that the monomolecular layer forms downward.

水面上の単分子層は二次元系の特徴をもつ。分子がまば
らに散開しているときは、一分子当り面積Aと表面圧n
との間に二次元理想気体の式、 nA= kT が成り立ち、°゛気体nc ”となる、ここに、kはポ
ルツマン定数、Tは絶対温度である。Aを十分小さくす
れば分子間相互作用が強まり二次元固体の°゛凝縮膜(
または固体膜)′°になる。凝縮膜はプラスチックノ、
(板、ガラス基板などの種々の材質や形状を有する担体
の表面へ一層ずつ移すことができる。
A monolayer on the water surface has the characteristics of a two-dimensional system. When the molecules are sparsely dispersed, the area per molecule A and the surface pressure n
The two-dimensional ideal gas equation, nA = kT, holds true between the two, and the result is ``Gas nc'', where k is Portzmann's constant and T is the absolute temperature.If A is made small enough, intermolecular interaction becomes stronger and becomes a two-dimensional solid °゛condensed film (
or solid film)′°. The condensation film is plastic,
(It can be transferred layer by layer to the surface of carriers having various materials and shapes, such as plates and glass substrates.

次に本発明に使用する染料のロイコ体、フェノール性化
合物又は光吸収性物質である親水基、疎水基を併有する
有機分子の単分子11り又はその累JJIL膜を形成す
る方法についてさらに詳述する。
Next, the method for forming a JJIL film of a single molecule or a combination thereof of a leuco compound of a dye used in the present invention, a phenolic compound, or an organic molecule having both a hydrophilic group and a hydrophobic group that is a light-absorbing substance will be described in further detail. do.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれをi3図に概略した単分
子累積膜形成装置の水槽10内の水相11上に展開させ
る。
First, the organic molecule is dissolved in a volatile solvent such as benzene or chloroform, and is spread using a cylinder or the like on the aqueous phase 11 in the water tank 10 of the monomolecular cumulative film forming apparatus schematically shown in Figure i3.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、疎水基13を気相に向けた状fniで水相11
上に展開する。
As the solvent evaporates, the organic molecule is transferred to the aqueous phase 11 with the parent wood group 12 facing the water phase and the hydrophobic group 13 facing the gas phase.
Expand on top.

次にこの析出物(有機分子)が水相11上を自由に拡散
し、て広がりすぎないように仕切板(または浮子)14
を設けて展開面積を制限して膜物質の集合状態を制御し
、その集合状態に比例した表面圧■を得る。この仕切板
14を動かし、展開面積を縮少して膜物質の集合状態を
制御し、表面圧を徐々に上昇させ、累積膜の製造に適す
る表面圧nを設定することができる。この表面圧を維持
しながら静かに清浄な基板14を垂直に上下させること
により単分子膜16が基板上に移しとられる。単分子膜
16は以上で製造されるが、+’lj、分子層累積膜1
7は前記の操作を繰り−返すことにより所望の2積数の
Cli分子層累積膜が形成される。
Next, a partition plate (or float) 14 is used to prevent this precipitate (organic molecules) from freely diffusing on the aqueous phase 11 and spreading too much.
is provided to limit the developed area and control the state of aggregation of the membrane material, thereby obtaining a surface pressure (2) proportional to the state of aggregation. By moving the partition plate 14, the developed area can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set a surface pressure n suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 16 is transferred onto the substrate. The monomolecular film 16 is manufactured as above, but +'lj, the molecular layer cumulative film 1
In step 7, by repeating the above-mentioned operations, a desired two-layer stack of Cl molecule layers is formed.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親水基が基板15
側に向いた単分子層16が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつI′li分子層1Gが積み重なっていく。成膜分子
の向きが引上げ工程と浸せき工程で逆になるので、この
方法によると各層間は有機分子の親木基と親水基、有機
分子の疎水基と疎水基が向かい合ういわゆるY型膜が形
成される(第4図(a) ) 。
For example, when a substrate 15 with a hydrophilic surface is lifted out of water in a direction across the water surface, the hydrophilic groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 16 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, the I'li molecular layers 1G are stacked one by one in each step. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a so-called Y-shaped film in which the parent wood groups and hydrophilic groups of organic molecules, and the hydrophobic groups of organic molecules face each other, between each layer. (Figure 4(a)).

Y型膜は有機分子の親水基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、ノ、(板15を水中に引き下げるときにの
み、基板面に該有機分子を移し取る方法もある。
On the other hand, there is also a method in which the organic molecules are transferred to the substrate surface only when the plate 15 is lowered into water.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたX型
膜が形成される(第4図(b) ) 、反対に全ての層
において親水基が基板15側に向いた累JA B2はZ
型11りと呼ばれる(f54図(C) ) 。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-shaped film is formed in which the hydrophobic groups face the substrate 15 in all layers (Fig. 4(b)). The cumulative JA B2 in which the hydrophilic groups in all layers face the substrate 15 side is Z.
It is called Type 11 (Figure f54 (C)).

X型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The X-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

斜上の方法によって基板上に形成される単分子nり及び
単分子層累積膜は高密度でしかも高度の秩序性・配向性
を有しており、これらの膜で記録層を構成することによ
って、光熱的記録の可能な高密度で高解像度の記録機能
を有する記録素子を得ることができる。また、これら成
11り方法はその原理からも分る通り、非常に簡単な方
法であり、上記のような優れた記録機能を有する記録素
子を低コストで提供することができる。
Monomolecular and monomolecular layer stacked films formed on a substrate by the diagonal deposition method have high density and a high degree of order and orientation. , a recording element capable of photothermal recording and having a high-density, high-resolution recording function can be obtained. Furthermore, as can be seen from the principle, these methods are very simple, and a recording element having the excellent recording function as described above can be provided at low cost.

以上述べた。本発明におけるrlを分子1r2または単
分子累積膜を形成する基板は特に限定されないが、基板
表面に界面活性物質が付着していると。
As stated above. In the present invention, the substrate on which the rl molecules 1r2 or monomolecular cumulative film is formed is not particularly limited, but as long as a surfactant is attached to the surface of the substrate.

単分子層を水面から移しとる時に、単分子11りが乱れ
良好な単分子11りまたは単分子層累積膜ができないの
で基板表面が清filなものを使用する必要がある。
When the monomolecular layer is transferred from the water surface, the monomolecular layer is disturbed and a good monomolecular layer or monomolecular layer accumulation film cannot be formed, so it is necessary to use a substrate with a clean surface.

基板上の単分子11りまたはr11分子層累積膜は、十
分に強く固定されており基板からの剥離、剥落を生じる
ことはほとんどないが、イリ看力を強化する目的で基板
と単分子IIりまたは単分子層形成条件の間に接着層を
設けることもできる。さらに単分子層形成条件例えば水
相の水素イオン濃度、イオン種、水温、担体上げ下げ速
度あるいは表面圧の選択等によって付着力を強化するこ
ともできる。
The monomolecular 11 or r11 molecular layer cumulative film on the substrate is sufficiently strongly fixed and hardly peels off or peels off from the substrate. Alternatively, an adhesive layer may be provided between the monomolecular layer forming conditions. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

以上に説明した方法で製造される本発明に係わる光記録
素子の構成の1例を示すと、第1図に示す通り、染料の
ロイコ体からなるA層2.フェノール性化合物からなる
3層4及びA層とB5の間に介在する光吸収性物質から
なる光吸収層3からなり、それ等の全ての層が単分子1
1り又はその累積膜からなる積層体で、3層4を基板1
上に支持し、基板/B層/光吸収層/A層の順に積層し
てなるものである。
An example of the structure of an optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. It consists of three layers 4 made of a phenolic compound and a light absorption layer 3 made of a light absorption substance interposed between layer A and B5, and all of these layers are composed of monomolecular 1.
A laminate consisting of one film or a cumulative film thereof, with three layers 4 on the substrate 1.
It is supported on top and is formed by laminating the substrate/B layer/light absorption layer/A layer in this order.

さらに、他の例として前記積層体のA層を基板上に支持
し、基板/A層/光吸収層/B層の順に4111層して
もよく、又前記積層体を2設置上積重ねて最下層のA層
又はB層を基板上に支持してもよい。
Furthermore, as another example, the A layer of the laminate may be supported on a substrate, and 4111 layers may be formed in the order of substrate/A layer/light absorption layer/B layer, or the laminate may be stacked two times to form a final layer. The underlying A layer or B layer may be supported on the substrate.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とBiの期化性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound of layer A and the Bi time-forming compound come into contact and a coloring reaction proceeds, forming a coloring point at the position and recording information.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするための光ピツク
アップの光学系を有する情報記憶装だの1例を第5図に
示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information storage device having an optical pickup optical system for writing or reading information from the optical disc.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次−のようにして行う、制御回路27は半導
体レーザ26の発振を制御する。従って、入力情報は制
御回路27及び半導体レーザ2Gによって光信号に変換
される。光信号28は第5図に示す光ピツクアップ光学
系を通って同期回転している光ディスクX8の記録層上
に結像され、上述の発色メ   ゛カニズムにより発色
記録される。
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 26. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 2G. The optical signal 28 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disc X8 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う。半導体レーザ26から発
する低出力の連続発振光を読取り光として使う。低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is performed as follows. Low-power continuous wave light emitted from the semiconductor laser 26 is used as reading light. This is because, since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1,000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1,000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、Be、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい6そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性L B IIQ等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, Be, light absorption layer, etc. 6 Materials for such a protective layer include dielectrics such as 5i02, plastic resins, and other polymers. LB IIQ and the like are preferred.

[実施例] 以下、実施例を示し、本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り「部」は「重量
部」を、「%」は「重量%」を表わすものとする。
[Example] Hereinafter, the present invention will be explained in more detail by showing examples. In the following, unless otherwise specified, "part" means "part by weight" and "%" means "% by weight."

合成例1(光吸収性物質の合成例) バナジウムフタロシアニン誘導体の合成側尿素lO部と
10〜15%りん酸水溶液1部を混合溶解した後、さら
に無水フタル酸2部、VOCfL2(バナジル塩)10
部及び 式(1) %式% で表わされる無水フタルシアニンの誘導体8部を加え、
100°Cにて5時間加熱した。冷却した後、2%希N
aOH水溶液100部を加え、加水分解した後、クロマ
トグラフィにより分離し、 式(n) を表わす]で示される目的物質(/<ナジウムフタロシ
アニン誘導体)0.1部を得た。
Synthesis Example 1 (Synthesis example of light-absorbing substance) After mixing and dissolving 10 parts of urea on the synthesis side of vanadium phthalocyanine derivative and 1 part of a 10-15% phosphoric acid aqueous solution, further 2 parts of phthalic anhydride and 10 parts of VOCfL2 (vanadyl salt) were added.
% and 8 parts of anhydrous phthalcyanine derivative represented by formula (1) % formula %,
Heated at 100°C for 5 hours. After cooling, 2% dilute N
100 parts of aOH aqueous solution was added, hydrolyzed, and separated by chromatography to obtain 0.1 part of the target substance (/<nadium phthalocyanine derivative) represented by formula (n)].

合成例2(染料のロイコ体の合成例) リス ルバイオレ、・トラフトン4−9  合゛91式
(lI[) で示されるm−7ミノ安息香酸誘導体1部と。
Synthesis Example 2 (Synthesis Example of Leuco Formation of Dye) Lys Lebiole, Trafton 4-9 Combined with 1 part of m-7 minobenzoic acid derivative represented by the formula (lI[).

式(IV) で示されるミヒラーズヒドロール1部を酸)1部を加え
て、8時間還流し、 式(V) (C:)12)、70H。
1 part of Michler's hydrol represented by formula (IV) was added with 1 part of acid) and refluxed for 8 hours to obtain formula (V) (C:) 12), 70H.

で示されるトリフェニルメタン誘導体を生成した。A triphenylmethane derivative represented by was produced.

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫酸中で3時間加熱した後、 式(Vl) (CH2)、7cHヨ で示されるクリスタルバイオレットラクトン11^導体
を得た。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
After heating in sulfuric acid for 3 hours in the presence of 1 part), a crystal violet lactone 11^ conductor represented by the formula (Vl) (CH2), 7cH was obtained.

次いで、これにjl、?性ソータ水溶1余を加え、環化
することにより、 式(■) (C)I2)、7CJ で示されるクリスタルバイオレントラクトン話導体0.
2部を得た。
Next, add jl to this? By adding a little more than one aqueous sorter and cyclizing, a crystal violent lactone conductor represented by the formula (■) (C)I2), 7CJ,
Got 2 copies.

合成例3(フェノール性化合物の合成例)フ ノールフ
 レイン゛−9−′ 式(■) (C:J)+7 CH3 て示されるオルトキシレン誘導体1部を、v205(7
1酸化バナジウム)を触媒として、熱空気(400°C
−500’0)を導入することにより式(IX) ○ て示される無水フタル酩誘導体を得た。
Synthesis Example 3 (Synthesis example of phenolic compound) One part of the ortho-xylene derivative represented by the formula (■) (C:J)+7 CH3 was converted into v205 (7
hot air (400°C) using vanadium monoxide as a catalyst.
-500'0), an anhydrophthalic acid derivative represented by the formula (IX) ○ was obtained.

次に、これにフェノール2部、H2soa適当量を加え
、130℃で加熱し。
Next, 2 parts of phenol and an appropriate amount of H2soa were added to this and heated at 130°C.

式(X) で示されるフェノ−フタレイン誘導体o、1部を得た。Formula (X) One part of the phenophthalein derivative o represented by the following formula was obtained.

実施例1 (1) B層の形成方法 厚さ10m+a、直径180mm (1)円板−Lのカ
ラス(ディスク)基板を充分に清浄にした。次にr11
ノ述の単分子累積装置を用いてフェノール性化合物であ
るフェノールフタレイン誘導体の単分子累積膜を形成し
た。
Example 1 (1) Method for forming layer B Thickness: 10 m+a, diameter: 180 mm (1) The glass (disk) substrate of disk-L was sufficiently cleaned. Next r11
A monomolecular cumulative film of a phenolphthalein derivative, which is a phenolic compound, was formed using the single-molecule cumulative device described above.

該フェノールフタレイン、:^導体の単分子累積膜の形
成方法は、下記のように行った。
The monomolecular cumulative film of the phenolphthalein:^ conductor was formed as follows.

ノ、(板が水面と垂1μになるようにして、基板を水中
に沈めた後、フェノールフタレイン誘導体を、濃度2×
10“3mol/uのクロロホルム溶液にして水面上に
滴下し単分子膜を水面上に展開する。
(After submerging the board in water so that the board is 1μ perpendicular to the water surface, add a phenolphthalein derivative to a concentration of 2×
A chloroform solution of 10"3 mol/u is dropped onto the water surface to spread a monomolecular film on the water surface.

表面圧を30dyne/cmに設定し、速度2 cm/
minで基板を上下して27層に累Jj’< した単分
子累積11!J(Y型11:i )を作成した・ 同様の方法により、1層、50層、200層、400A
’/・の01分子累積膜を各々作成した各試料を得た。
The surface pressure was set to 30 dyne/cm, and the speed was 2 cm/
Single molecule accumulation of Jj'< 11 by moving the substrate up and down at min to 27 layers! J (Y type 11:i) was created. 1 layer, 50 layers, 200 layers, 400A were created using the same method.
'/・01 molecule cumulative films were prepared for each sample.

(2)光吸収層の形成方法 次に、前記(1)で(11・た各試料のガラス基板上に
形成したB層の上に、前述の単分子累積装置を用いて光
吸収性物質であるバナジウムフタロシアニン誘導体の単
分子累積1112を形成した。
(2) Method for forming a light-absorbing layer Next, layer B formed on the glass substrate of each sample in (1) above was coated with a light-absorbing substance using the monomolecule accumulator described above. A single molecule accumulation 1112 of a certain vanadium phthalocyanine derivative was formed.

該バナジウムフタロシアニン誘導体の単分子累積11ジ
の形成方法は、下記のように行った。
The monomolecular cumulative 11 di of the vanadium phthalocyanine derivative was formed as follows.

B層を形成した基板が水面と垂直になるようにして、基
板を水中に沈めた後、バナジウムフタロシアニン誘導体
を濃度2 X 10’ mol/文のクロロホルム溶!
夜にして水面上に滴下し単分子膜を水面上に展開する0
表面圧を30dyne/amに設定し、速度2 cm/
minで基板を上下して第2表に示す各層に累積した単
分子累積膜(Y型膜)を各試料に作成した。
After submerging the substrate in water so that the substrate on which layer B was formed is perpendicular to the water surface, dissolve the vanadium phthalocyanine derivative in chloroform at a concentration of 2 x 10' mol/liter.
Drop onto the water surface at night and spread a monomolecular film on the water surface0
The surface pressure was set to 30 dyne/am, and the speed was 2 cm/
A monomolecular cumulative film (Y-type film) was prepared for each sample by moving the substrate up and down at min.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて染料のロイ
コ体であるクリスタルバイオレットラクトン誘導体の単
分子累積11gを形成した。
(3) Method for Forming Layer A Next, crystal violet lactone derivative, which is a leuco form of dye, was deposited on the light absorption layer formed on the glass substrate of each sample in (2) above using the single molecule accumulator described above. A total of 11 g of single molecules were formed.

該クリスタルバイオレットラクトン誘導体の単分子膜f
fl膜の形成方法は、下記のように行った。
Monomolecular film f of the crystal violet lactone derivative
The fl film was formed as follows.

B層及び光吸収層を形成した基板が水面と垂直になるよ
うにして、基板をp)14の酸性液中に沈めた後、クリ
スタルバイオレットラクトン誘導体を濃度2×lO°3
mol/Uのクロロホルム溶液にして水面上に滴下し単
分子11りを水面上に展開する0表面圧を30dyne
/cmに設定し、速度2 cm/winで基板を上下し
て第2表に示す各層に累積した単分子累積膜(Y型膜)
を各試料に作成した。
After submerging the substrate in the acidic solution of p) 14 so that the substrate on which the B layer and the light absorption layer were formed is perpendicular to the water surface, the crystal violet lactone derivative was added at a concentration of 2×1O°3.
Make a chloroform solution of mol/U and drop it onto the water surface to spread monomolecules on the water surface at a surface pressure of 30 dyne.
/cm, the substrate was moved up and down at a speed of 2 cm/win, and the monomolecular cumulative film (Y-type film) was deposited on each layer shown in Table 2.
was prepared for each sample.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
、比較例として従来の同様の構成(全てが単分子膜又は
その累積膜を使用しないで構成)に係る光ディスクを第
5図に示す情報記憶装置を用いて以下の記録条件下で記
録した後、読取り再生を行うことにより両名の性能比較
を行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and the conventional optical disc having the same structure (all constructed without using a monomolecular film or a cumulative film thereof) were used as a comparative example. After recording under the following recording conditions using the information storage device shown in FIG. 5, the performance of the two was compared by reading and reproducing.

〈記録条件〉 半導体レーザ波長 830層m レーザ出力  6〜9mW 記録周波数  5 MHz 光ディスクの回転数 t、soorpm以上の条件下で
読み出しをレーザ出力1mWで行い、信号/雑音比を求
めた結果を第2表に示す。
<Recording conditions> Semiconductor laser wavelength: 830 layers m Laser output: 6 to 9 mW Recording frequency: 5 MHz Optical disk rotation speed: Reading was performed with a laser output of 1 mW under conditions of t, soorpm or more, and the signal/noise ratio was determined as the second result. Shown in the table.

第2表 註・・・町よ比較例を示し、各層の形成は回転炉′71
j法により行った。
Notes to Table 2: A comparative example is shown, and each layer was formed using a rotary furnace '71.
This was done using the j method.

第2表の結果よりNo、+ (各層が単分子1模からな
る場合)とNo、61を比較すると、 No、Iの方が
信号/′雑音比において顕著に優れることが、;2めら
れる。No、1とNo、6はほぼ同じ11り厚であるが
、性能にこのような差異が生ずるのはNo、lの方がピ
ンホール等の欠陥が少ないためと思われる。
From the results in Table 2, when comparing No. + (when each layer consists of one single molecule) and No. 61, it can be seen that No. . Although No. 1 and No. 6 have almost the same thickness, the reason for this difference in performance is thought to be that No. 1 has fewer defects such as pinholes than No. 1.

同様に、N002〜No、5 (各層が中分子の累積膜
からなる場合)とNo、7との比較では、N002〜N
o、5の方が信号/雑音比において1Ωれることが認め
られる。
Similarly, when comparing No. 5 (when each layer consists of a cumulative film of medium molecules) and No. 7, N002-No.
It is recognized that the signal/noise ratio of 0.5 is higher by 1Ω.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はA層、8
層及び光吸収層の全てが単分子膜又はその累積膜からな
る層で構成されているので、以下に示すような優れた効
果がある。
[Effect of the invention] As explained above, the optical recording element according to the present invention has the A layer, 8
Since all of the layers and the light-absorbing layer are composed of a monomolecular film or a layer consisting of a cumulative film thereof, there are excellent effects as shown below.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比「咬して信号/H音比が高く、記録の信
頼性を向上させることができる。
(1) Compared to optical recording elements that do not use conventional monomolecular films or their cumulative films, the signal/H sound ratio is higher, and recording reliability can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光記録素子の1例を示す41!
I略構成断面図、第2図(a)〜第2図(c)は従来の
光記録素子の記録プロセスを示す説明図、第3図は単分
子累積n!2形成装品の概略構成断面図、第4図(a)
〜第4図(c)は単分子累積j模の作製工程図及び第5
図は情報記憶装置のブロック図である。
FIG. 1 shows an example of an optical recording element according to the present invention 41!
2(a) to 2(c) are explanatory diagrams showing the recording process of a conventional optical recording element, and FIG. 3 is a schematic cross-sectional view of the single molecule cumulative n! Schematic cross-sectional view of the 2-formed equipment, Fig. 4(a)
~Figure 4(c) is a diagram of the production process of the single-molecule cumulative j model and the fifth
The figure is a block diagram of an information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の染料のロイコ体からなるA
層と、前記染料のロイコ体と接触して発色せしめるフェ
ノール性化合物からなるB層と、A層とB層との間に介
在する光吸収層とからなり、かつ (イ)前記A層は染料のロイコ体の単分子膜又はその累
積膜からなる層、 (ロ)前記B層はフェノール性化合物の単分子膜又はそ
の累積膜からなる層、 (ハ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子。
(1) A usually consists of a leuco form of a colorless or light-colored dye
a layer B consisting of a phenolic compound that develops color when in contact with the leuco form of the dye; and a light absorption layer interposed between the layer A and the layer B, and (a) the layer A is made of a dye. (b) The B layer is a monomolecular film of a phenolic compound or a cumulative film thereof; (c) The light-absorbing layer is a layer of a light-absorbing substance. An optical recording element comprising a layer consisting of a monomolecular film or a cumulative film thereof.
JP59159111A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137483A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159111A JPS6137483A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159111A JPS6137483A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137483A true JPS6137483A (en) 1986-02-22

Family

ID=15686480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159111A Pending JPS6137483A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137483A (en)

Similar Documents

Publication Publication Date Title
EP0514211A1 (en) Optical recording medium, recording system and reproducing system
US4933221A (en) Optical recording device
JPS60228194A (en) Optical recording element
JP3451715B2 (en) Optical recording medium and optical recording / reproducing device
CA1183037A (en) Recording and information record elements comprising oxoindolizine and oxoindolizinium dyes
JPS6137483A (en) Optical recording element
JPS6163489A (en) Photo-recording element
JPS6163491A (en) Photo-recording element
JPS6163482A (en) Optical recording element
JPS6137473A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6137478A (en) Optical recording element
JPS6163484A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6137479A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137484A (en) Optical recording element
JPS6137474A (en) Optical recording element
JPH0477969B2 (en)
JPS6137482A (en) Optical recording element
JPS6137485A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6137487A (en) Optical recording element