JPS6135887B2 - - Google Patents

Info

Publication number
JPS6135887B2
JPS6135887B2 JP53146002A JP14600278A JPS6135887B2 JP S6135887 B2 JPS6135887 B2 JP S6135887B2 JP 53146002 A JP53146002 A JP 53146002A JP 14600278 A JP14600278 A JP 14600278A JP S6135887 B2 JPS6135887 B2 JP S6135887B2
Authority
JP
Japan
Prior art keywords
raw water
water tank
filter
amount
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146002A
Other languages
Japanese (ja)
Other versions
JPS5573308A (en
Inventor
Shinichi Horinaka
Motohiko Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP14600278A priority Critical patent/JPS5573308A/en
Publication of JPS5573308A publication Critical patent/JPS5573308A/en
Publication of JPS6135887B2 publication Critical patent/JPS6135887B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、充填層濾過器における濾過方法に関
するものである。充填層濾過器においては、濾過
塔内の濾層支持板上に単一濾材の濾層または濾材
構成の異なる濾層を積層し、上方から下方に加圧
下で原水を流下濾過せしめるものであり、凝集濾
過法にあつては、濾過器への原水供給管に凝集剤
を添加して、原水中の微細浮遊物を凝集し、フロ
ツクを形成せしめて濾過するものであるが、本発
明は、これら充填層濾過器における濾過方法の改
良に関するものである。 濾過装置においては、濾過器に供給する原水を
貯留する原水槽は、設置面積の制約や、経済的な
設計の見地から、一般に濾過器処理能力の数時間
程度に容積とすることが行なわれている。従つて
被処理廃水の原水槽への流入量があまり変動がな
いときは問題ないが、流入の減少、または中断が
続くときは、原水槽の水位は大きく低下する。こ
のような場合、従来の方法としては、濾過器の運
転を止め、原水槽の貯水量の増大を待つて再び運
転を行なうON−OFF方式が採られている。 しかしながら、通常の清澄濾過法、凝集剤を添
加する凝集濾過法の何れにあつても、濾過器の断
続運転は、好ましくない影響を与える。即ち、濾
過再開後濾液は、濁度が増加し、定常の濁度とな
るまで一定時間を要し、再運転後の濾過水は、さ
らに再処理を必要とする場合が多い。この現象は
次のように説明される。即ち、濾過の中断により
濾層に加えられていた圧力が失なわれる結果、濾
材間にブリツジを形成し、濾層の一部を構成して
いた濁質の結合がゆるみ、濾材中の濁質が通り抜
けるものであつて、いわゆる濁質の「ブレークス
ルー」を生ずるものである。濾過再開後の濾過器
の損失水頭は中断時より小さく、中断時の損失水
頭に等しくなるのに、ある一定の時間、通例約1
時間程度を要し、この間に濾材間に濁質が充填さ
れブリツジを形成し濾層が再構成され定常状態に
達するのである。 本願の発明者らは、充填層濾過器の運転におい
て、原水槽の水位低下時においても、濾過水の一
部または全部を原水槽に戻し循環せしめることに
より、濾過器の連続運転をすることができ、濾過
中断による悪影響を避けることができる点に着目
し本発明をするに至つた。即ち、本発明において
は、原水槽の水位が低下しても、原水槽から濾過
器への被処理水の供給量は一定即ち定量供給とし
て、濾過器の濾層への水圧変動による悪影響を避
けるために、原水槽の水位が指定低水位となつた
とき、原水槽に設置した液面調節計の作動を介し
て、濾液排出管から分岐して設けた原水槽への戻
り配管より、予め設定した流量で濾液を戻し、原
水槽水位の低下を防止し、原水の流入が増加し指
定高水位に回復したとき、戻り配管に流れる濾過
水の供給を断つようにしたものである。具体的な
装置としては、第1図の装置系統図に示すように
濾過器6から処理水槽10への濾過水排出管7か
ら分岐して原水槽1への戻り配管8を設け、この
戻り配管に自動弁9を取付け、液面調節計11と
連動せしめて、原水槽1の液面が警報水位HH位
置に来たとき警報を発し、指定低水位Lに降下し
たとき自動弁9の開度を予め設定した開度開くよ
うにし、液面が上昇し指定高水位Hに達したとき
自動弁9を閉じるようにする。処理水槽10への
配管に適宜の例えば、配管に立上り部分を設ける
等で流れ抵抗を持たせることにより、自動弁を原
水槽への戻り配管にのみ取付けて、設定流量を原
水槽に戻すことができるが、勿論処理水槽10へ
の濾過水排水管7に自動弁12を設け、原水槽指
定低水位Lに達したときも自動弁12を閉じる
か、または設定開度に絞るようにしても良い。以
上は二点制御方式であるが、さらに精密に行なう
方式としては、指定高水位Hと指定低水位L間に
おいて、Hで自動弁9が閉、自動弁12が全開、
Lで自動弁9が全開、自動弁12が閉となり、そ
の間で深さに応じて、自動弁9と自動弁12が比
例して開度が定められるように比例制御方式とす
ることも可能である。以上のようにして原水流入
不足時でも、濾過器の運転を止めることなく濾過
器への原水の供給量を一定として、濾層に変動を
生ぜしめずに濾層を行なうことができ一定の水質
の処理水を連続して得ることできる。 凝集剤の濾過器への原水供給管に添加し、微細
濁質のフロツクを生ぜしめて濾過を行なう凝集濾
過の場合であつては、凝集剤の添加量は、濁質の
含有量に応じて適切な量を添加することが必要で
ある。即ち、添加量が少なすぎると処理水のSS
は所期値に達せず、多すぎると、生成フロツクが
軟かくなり、つぶれ易く、短時間の運転で、処理
水へのブレークスルーが始まる。凝集剤添加量の
増減の影響を次の実験例に示す。 実験例 表−1は重質油を多く含む排水の凝集濾過テス
ト運転の結果ある。原水にSSは平均75ppm濾過
速度は15m/hである。
The present invention relates to a filtration method in a packed bed filter. In a packed bed filter, filter layers with a single filter medium or filter layers with different filter medium configurations are stacked on a filter support plate in a filtration tower, and raw water is filtered under pressure from above to below. In the coagulation filtration method, a coagulant is added to the raw water supply pipe to the filter to coagulate fine suspended matter in the raw water to form flocs, which are then filtered. This invention relates to improvements in filtration methods in packed bed filters. In a filtration device, the raw water tank that stores the raw water to be supplied to the filtration device is generally designed to have a volume that is approximately several hours of the filtration capacity due to installation area constraints and from the standpoint of economical design. There is. Therefore, there is no problem when the amount of wastewater to be treated flowing into the raw water tank does not change much, but if the inflow continues to decrease or is interrupted, the water level in the raw water tank will drop significantly. In such a case, the conventional method is to stop the operation of the filter, wait for the amount of water stored in the raw water tank to increase, and then start the operation again. However, in both the normal clarifying filtration method and the coagulation filtration method in which a flocculant is added, intermittent operation of the filter has an undesirable effect. That is, the turbidity of the filtrate increases after filtration is restarted, and it takes a certain amount of time to reach a steady turbidity, and the filtrate after restarting often requires further reprocessing. This phenomenon is explained as follows. In other words, as a result of the interruption of filtration, the pressure applied to the filter layer is lost, resulting in the formation of bridges between the filter media, loosening the bonds of the suspended solids that formed part of the filter layer, and causing the suspended solids in the filter media to loosen. This is what is called a "breakthrough" of turbidity. The head loss of the filter after filtration is resumed is smaller than that at the time of interruption, and it takes a certain period of time, typically about 1, to equal the head loss at the time of interruption.
It takes about a period of time, during which time suspended solids are filled between the filter media to form bridges and the filter layer is reconstituted to reach a steady state. The inventors of the present application have discovered that in operating a packed bed filter, even when the water level in the raw water tank is low, the filter can be operated continuously by circulating some or all of the filtrated water back to the raw water tank. The present invention was developed based on the fact that it is possible to avoid the negative effects caused by interruption of filtration. That is, in the present invention, even if the water level in the raw water tank decreases, the amount of water to be treated from the raw water tank to the filter is kept constant, i.e., supplied at a constant rate, thereby avoiding the adverse effects of water pressure fluctuations on the filter layer of the filter. Therefore, when the water level in the raw water tank reaches the specified low water level, a liquid level controller installed in the raw water tank is activated, and a return pipe to the raw water tank that is branched from the filtrate discharge pipe is set in advance. The filtrate is returned at the same flow rate to prevent the water level of the raw water tank from dropping, and when the flow of raw water increases and the water level returns to the specified high level, the supply of filtrate to the return pipe is cut off. As a specific device, as shown in the device system diagram in FIG. An automatic valve 9 is attached to the tank and linked with a liquid level controller 11 to issue an alarm when the liquid level in the raw water tank 1 reaches the alarm level HH position, and to adjust the opening of the automatic valve 9 when the liquid level in the raw water tank 1 reaches the alarm level HH position. is opened to a preset opening degree, and when the liquid level rises and reaches the designated high water level H, the automatic valve 9 is closed. By providing appropriate flow resistance to the piping to the treated water tank 10, for example by providing a rising portion of the piping, it is possible to install an automatic valve only on the return piping to the raw water tank and return the set flow rate to the raw water tank. Of course, it is also possible to provide an automatic valve 12 in the filtrate drain pipe 7 to the treated water tank 10, and close the automatic valve 12 even when the specified low water level L of the raw water tank is reached, or limit the opening to the set opening. . The above is a two-point control method, but as a more precise method, between the specified high water level H and the specified low water level L, the automatic valve 9 is closed at H, the automatic valve 12 is fully opened,
At L, the automatic valve 9 is fully open and the automatic valve 12 is closed, and it is also possible to use a proportional control system so that the opening degrees of the automatic valve 9 and automatic valve 12 are determined proportionally depending on the depth between them. be. As described above, even when there is insufficient inflow of raw water, the amount of raw water supplied to the filter can be kept constant without stopping the operation of the filter, and filtration can be performed without causing fluctuations in the filter layer, resulting in a constant water quality. of treated water can be obtained continuously. In the case of coagulation filtration, in which a flocculant is added to the raw water supply pipe to the filter to create fine turbid flocs for filtration, the amount of flocculant added should be appropriate depending on the turbidity content. It is necessary to add a suitable amount. In other words, if the amount added is too small, SS of the treated water
does not reach the desired value, and if the amount is too high, the flocs produced become soft and easily crushed, and breakthrough into the treated water begins after a short period of operation. The effects of increasing or decreasing the amount of flocculant added are shown in the following experimental example. Experimental Example Table 1 shows the results of a coagulation filtration test run for wastewater containing a large amount of heavy oil. The average SS in raw water is 75 ppm, and the filtration speed is 15 m/h.

【表】 処理水を、SS1ppm以下とするためにはポリ塩
化アルミニウム(PAC)添加量は100ppmが必要
となるが、フロツクが軟かくなり短時間の運転で
処理水へのブレークスルーが始まり、その後運転
を継続しても漏出は止まらない。過剰の薬注によ
りブレークスルーを起す典型例である。 本発明方法においては、濾過水を原水槽に一部
または全武戻すことにより濾過器への原水供給量
を一定に保つと共に、原水槽のSS濃度の減少に
対応して凝集剤の添加量を減少せしめて前述の凝
集剤過剰供給によるブレークスルーを回避してい
る。即ち、原水槽に取付けた液面調節計を介して
原水槽液面が指定低水位に降下したとき、原水槽
への戻り配管に濾過水が予め設定した流量流れる
ようにすると共に、濾過器の原水供給管に添加す
る凝集剤量を所定量から予め設定した量に減少さ
すようにし、原水槽液面が指定高水位に回復した
とき前記戻り配管への濾過水の流出を断つと共に
前記凝集剤量を所定量に戻すようにするものであ
る。具体的方法としては、例えば第1図に示すよ
うに凝集剤溶液は、プランジヤポンプで注入され
るので、前述の原水槽低水位Lで、定常供給量の
1/Nとなるようにプランジヤポンプのストロー
クを変えることにより行なわれる。この場合Nの
値は、高水位Hと低水位L間の容積を勘案して定
められる。なお、前述の清澄濾過におけると同様
に高水位Hと低水位Lの間において、Hでは定常
供給量とし、Lでは最低供給量即ち定常供給量の
1/NになるようにHとLの間の水位に応じて、
プランジヤストロークを変える比例制御方式を用
いることができる。このように原水のSS濃度に
ほぼ追随して凝集剤の添加量が変更されるので、
濾過器への原水供給量を一定として濾層を安定さ
せ、凝集剤過剰添加によるブレークスルーを避け
ると共に、併せて凝集剤の浪費を避けることがで
き、所期の水質の処理水を連続して得ることがで
きる。 以下本発明をさらに実施例により説明する。 実施例 1 充填層濾過器として、上段:プラスチツク濾材
径4mm×長さ4mm、比重1.2、中段:プラスチツ
ク濾材、径2mm×長さ2mm、比重1.4、下段:人
工砂、重1.7で有効径0.6mm及び2mmからなる複合
濾層構成弐濾過器を用いて、数ミクロンの微粒子
を多く含む(カーボン+砂塵+金属)の排水を凝
集剤を添加せず、濾過速度(LV):40m/hで
濾過を行なつた。装置系統図は第1図に示す如く
である。原水槽の低水位Lに液面が低下したと
き、濾過水の1/3が原水槽に戻るよう自動弁の開
度をセツトした。原水槽へ流入した原水のSSは
25ppm(平均)で、原水の流入が少なく、、自動
弁が開いて処理水が流入したのは運転後3時間で
約2時間経て自動弁は閉じた。次いで10時間後再
び自動弁が開き、処理水の流入がはじまり1時間
で閉じた。この時、懸濁質のリークは見られず処
理水質は安定していた。 損失水頭(Kg/cm3)、処理水SS(ppm)の濾過
時間との関係を第2図に示す。 比較例 1 実施例1と同じ原廃水を用いて、同じ装置で濾
過を行なつた。5時間経過後、濾過を止め、2時
間中断後、濾過を再開した。損失水頭(Kg/
cm3)、処理水S(ppm)の濾過時間の関係を第3
図に示す。比較例では再運転後約0.1Kg/cm2の損
失水頭の低下と共に、SSのリークが見られ、定
常状態の1ppm程度になのに約1時間を要した。 実施例 2 実施例1を同質の排水について、凝集濾過を行
なつた。濾過速度(LV):20m/h、原水SS:
25ppm(平均)の薬注条件は次の如くである。
[Table] In order to reduce the SS of treated water to 1 ppm or less, the amount of polyaluminum chloride (PAC) added must be 100 ppm, but the floc becomes soft and a breakthrough begins in the treated water after a short period of operation. Even if the operation continues, the leakage will not stop. This is a typical example of a breakthrough caused by excessive drug injection. In the method of the present invention, the amount of raw water supplied to the filter is kept constant by returning part or all of the filtered water to the raw water tank, and the amount of flocculant added is adjusted in response to the decrease in the SS concentration in the raw water tank. The above-mentioned breakthrough due to excessive supply of flocculant is avoided. In other words, when the liquid level in the raw water tank drops to a specified low water level via the liquid level controller installed in the raw water tank, filtered water is allowed to flow at a preset rate through the return pipe to the raw water tank, and the filter is The amount of flocculant added to the raw water supply pipe is reduced from a predetermined amount to a preset amount, and when the raw water tank liquid level recovers to a specified high water level, the flow of filtered water to the return pipe is cut off, and the flocculant is added to the raw water supply pipe. This is to return the amount to a predetermined amount. As a concrete method, for example, as shown in Fig. 1, the flocculant solution is injected with a plunger pump, so at the low water level L of the raw water tank mentioned above, the plunger pump is injected so that the amount is 1/N of the steady supply amount. This is done by changing the stroke. In this case, the value of N is determined by taking into account the volume between the high water level H and the low water level L. In addition, as in the above-mentioned clarifying filtration, between the high water level H and the low water level L, the constant supply amount is set for H, and the minimum supply amount, that is, 1/N of the steady supply amount for L, is set between H and L. Depending on the water level of
A proportional control scheme that varies the plunger stroke can be used. In this way, since the amount of coagulant added is changed almost according to the SS concentration of raw water,
By keeping the amount of raw water supplied to the filter constant and stabilizing the filter layer, it is possible to avoid breakthroughs due to excessive addition of flocculant, and at the same time avoid wasting flocculant, allowing continuous flow of treated water of the desired quality. Obtainable. The present invention will be further explained below with reference to Examples. Example 1 As a packed bed filter, upper stage: plastic filter media, diameter 4 mm x length 4 mm, specific gravity 1.2, middle stage: plastic filter media, diameter 2 mm x length 2 mm, specific gravity 1.4, lower stage: artificial sand, weight 1.7, effective diameter 0.6 mm. Using a second filter with a composite filter layer of 2 mm and 2 mm, wastewater containing many microparticles (carbon + dust + metal) is filtered at a filtration speed (LV) of 40 m/h without adding a flocculant. I did this. The system diagram of the device is shown in FIG. The opening degree of the automatic valve was set so that when the liquid level in the raw water tank dropped to the low water level L, 1/3 of the filtrate water returned to the raw water tank. The SS of raw water flowing into the raw water tank is
At 25ppm (average), the inflow of raw water was low, and the automatic valve opened and treated water flowed in for 3 hours after operation, and the automatic valve closed after about 2 hours. Then, 10 hours later, the automatic valve opened again, treated water started flowing in, and closed after 1 hour. At this time, no leakage of suspended solids was observed and the quality of the treated water was stable. Figure 2 shows the relationship between head loss (Kg/cm 3 ) and filtration time of treated water SS (ppm). Comparative Example 1 Using the same raw wastewater as in Example 1, filtration was performed using the same device. After 5 hours, filtration was stopped, and after a 2-hour interruption, filtration was restarted. Head loss (Kg/
cm 3 ) and the filtration time of treated water S (ppm).
As shown in the figure. In the comparative example, the head loss decreased by about 0.1 Kg/cm 2 after restarting, and SS leakage was observed, and it took about an hour to reach the steady state of about 1 ppm. Example 2 A coagulation filtration was performed on wastewater of the same quality as in Example 1. Filtration speed (LV): 20m/h, raw water SS:
The conditions for drug injection at 25 ppm (average) are as follows.

【表】 処理水の戻り時間は、濾過運転開始5時間後の
約2時間および12時間運転後の約1時間であり、
この間の凝集剤注入量は、上記の如く平常運転時
の60%に低減させた。この操作により、従来法に
見られた凝集剤の過剰注入による懸濁質のリーク
はなく、処理水の水質は安定していた。この結果
を第4図に示す。 比較例 2 実施例1と同質の排水を処理水水質を向上させ
る目的で、濾過器への原水供給管に凝集剤を注入
し、凝集濾過を行なつた。濾過速度〔LV):
20m/h原水SS:25ppm(平均)で、薬注条件
は硫酸アルミニウム(Al2O3として)10ppm、ポ
リアクリルアミド0.3ppmであた。この結果を第
5図に示す。 無薬注の場合に比べて、2時間休止後の再運転
において停止期間の損失水頭の低下は少ないが、
処理水SSの増大が見られる。 比較例 3 実施例2と同一条件で凝集濾過運転を行なつ
た。但し、原廃水の減少により濾過処理水が原水
槽へ還元された際も薬注量は減少させず一定に保
つた。この結果を第6図に示す。濾過運転の比較
的初期に処理水の戻り運転が起きると要注量の過
剰による懸濁質のブレークスルーが明確に表われ
る。しかし、この現象は原廃水流入量が増加し、
正常な薬注量となるに従い回復し、安定な処理水
に戻る。また、濾過運転の後期(例えば10時間
後))においては、薬注過剰が短時間の場合に
は、前述の場合と異なりブレークスルーの現象は
起り難くなる。これは、濾層に捕捉された懸濁質
による抑留効果が強くなるためである。
[Table] The return time of treated water is approximately 2 hours after 5 hours of filtration operation and approximately 1 hour after 12 hours of operation.
During this period, the amount of coagulant injected was reduced to 60% of normal operation as described above. With this operation, there was no leakage of suspended matter due to excessive injection of flocculant, which was seen in the conventional method, and the quality of the treated water was stable. The results are shown in FIG. Comparative Example 2 For the purpose of improving the quality of treated wastewater of the same quality as in Example 1, a flocculant was injected into the raw water supply pipe to the filter to perform coagulation filtration. Filtration rate [LV]:
20m/h raw water SS: 25ppm (average), chemical injection conditions were aluminum sulfate (as Al 2 O 3 ) 10ppm and polyacrylamide 0.3ppm. The results are shown in FIG. Compared to the case of non-chemical injection, when restarting operation after a 2-hour stoppage, the head loss during the stoppage period decreases less;
An increase in treated water SS is observed. Comparative Example 3 A coagulation filtration operation was performed under the same conditions as in Example 2. However, even when filtered water was returned to the raw water tank due to a decrease in raw wastewater, the amount of chemical injection was kept constant without decreasing. The results are shown in FIG. If the return operation of the treated water occurs relatively early in the filtration operation, a breakthrough of suspended solids due to an excessive amount of injection will clearly appear. However, this phenomenon is caused by an increase in the amount of raw wastewater inflow,
As the amount of chemical injection reaches normal levels, the treated water will recover and return to stable treated water. Further, in the latter stage of the filtration operation (for example, after 10 hours), if the excessive chemical injection is for a short period of time, the breakthrough phenomenon is less likely to occur, unlike in the case described above. This is because the retention effect of suspended solids trapped in the filter layer becomes stronger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施する装置系統図の
例を示し、第2図、第4図はそれぞれ本発明方法
実施例における、および第3図、第5図、第6図
はそれぞれ比較例における損失水頭−運転時間
(実線)、処理水SS−運転時間(破線)の関係を
示す。 1……原水槽、2……凝集剤溶液槽、3……プ
ランジヤポンプ、4……原水供給ポンプ、6……
充填層濾過器、7……濾過水排出管、8……戻り
配管、9,12……自動弁、10……処理水槽、
11……液面調節計、HH……警報水位、H……
指定高水位、L……指定低水位、t……処理水戻
り時間。
FIG. 1 shows an example of a system diagram of an apparatus for implementing the method of the present invention, FIGS. 2 and 4 show examples of the method of the present invention, and FIGS. 3, 5, and 6 show comparisons, respectively. The relationship between head loss and operating time (solid line) and treated water SS and operating time (broken line) in the example is shown. 1... Raw water tank, 2... Coagulant solution tank, 3... Plunger pump, 4... Raw water supply pump, 6...
Packed bed filter, 7...Filtered water discharge pipe, 8...Return piping, 9, 12...Automatic valve, 10...Treatment water tank,
11...Liquid level controller, HH...Alarm water level, H...
Designated high water level, L... Designated low water level, t... Treated water return time.

Claims (1)

【特許請求の範囲】 1 充填層濾過器による濾過方法において、濾過
器の濾過水排出管から分岐して原水槽へ戻り配管
を設け、前記原水槽に取付けた液面調節計の作動
を介して、原水槽液面が指定低水位に低下したと
き前記戻り配管に濾過水が予め設定した流量流れ
るようにし、原水槽液面が指定高水位に上昇した
とき前記戻り配管への濾過水の流出を断つように
したことを特徴とする充填層濾過器による濾過方
法。 2 充填層濾過器による濾過方法において、濾過
器の濾過水排出管から分岐して原水槽へ戻り配管
を設け、前記原水槽に取付けた液面調節計の作動
を介して、原水槽液面が指定低水位に低下したと
き前記戻り配管に濾過水が予め設定した流量流れ
るようにすると共に、前記濾過器の原水供給管中
に添加する凝集剤量を所定量から予め設定した添
加量にまで変えるようにし、原水槽液面が指定高
水位に上昇したとき前記戻り配管への濾過水の流
出を断つようにすると共に前記凝集剤添加量を前
記所定量にまで戻すようにしたことを特徴とする
充填層濾過器による濾過方法。
[Claims] 1. In a filtration method using a packed bed filter, a pipe is provided that branches off from the filtrate discharge pipe of the filter and returns to the raw water tank, and a liquid level controller attached to the raw water tank is operated. , when the raw water tank liquid level drops to a specified low water level, filtered water is allowed to flow through the return pipe at a preset flow rate, and when the raw water tank liquid level rises to a specified high water level, the filtered water is prevented from flowing into the return pipe. A filtration method using a packed bed filter, characterized in that the filter is cut off. 2. In a filtration method using a packed bed filter, a pipe is provided that branches from the filtrate discharge pipe of the filter and returns to the raw water tank, and the liquid level of the raw water tank is adjusted through the operation of a liquid level controller attached to the raw water tank. When the water level drops to a specified low level, filtered water is allowed to flow through the return pipe at a preset flow rate, and the amount of flocculant added to the raw water supply pipe of the filter is changed from a predetermined amount to a preset amount. The method is characterized in that when the liquid level of the raw water tank rises to a specified high water level, the outflow of the filtrate to the return pipe is cut off, and the amount of coagulant added is returned to the predetermined amount. Filtration method using a packed bed filter.
JP14600278A 1978-11-28 1978-11-28 Filterring method Granted JPS5573308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14600278A JPS5573308A (en) 1978-11-28 1978-11-28 Filterring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14600278A JPS5573308A (en) 1978-11-28 1978-11-28 Filterring method

Publications (2)

Publication Number Publication Date
JPS5573308A JPS5573308A (en) 1980-06-03
JPS6135887B2 true JPS6135887B2 (en) 1986-08-15

Family

ID=15397871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14600278A Granted JPS5573308A (en) 1978-11-28 1978-11-28 Filterring method

Country Status (1)

Country Link
JP (1) JPS5573308A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165205U (en) * 1981-04-09 1982-10-18
JPS62140612A (en) * 1985-12-17 1987-06-24 Ebara Corp Method for operating filter device

Also Published As

Publication number Publication date
JPS5573308A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
JPS59209613A (en) Method and apparatus for enhancing flow flux ratio of cross-flow filter system
JPS6135887B2 (en)
JP2006075750A (en) Flocculation separation treatment device and flocculation separation treatment method
JP5868153B2 (en) Coagulation sedimentation equipment
JP5763400B2 (en) Water purification method and water purification device
US4032439A (en) Effluent treatment process
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
JP4800462B2 (en) Filtration method
JP3314575B2 (en) Sedimentation equipment
JP4800463B2 (en) Filtration device
JP4763670B2 (en) Filtration device
JP4551124B2 (en) Filtration pond system
JP7291453B1 (en) Sludge-blanket-type high-speed coagulating-sedimentation basin, water treatment system, operating method of sludge-blanket-type high-speed coagulating-sedimentation basin, and operating method of water treatment system
US5019276A (en) Method of and plant for purifying water
JP4800461B2 (en) Backwashing method in filtration equipment
WO2015052906A1 (en) Filtration device
JP2004025109A (en) Water treatment method and water treatment apparatus
JP5145384B2 (en) Operation method of filtration facility
GB2064350A (en) Regenerating sand filters
JP2009090227A (en) Flocculation filtering treatment method/device
JP2022094827A (en) Water treatment system and water treatment method
JPS637809A (en) Separator for coarse particle contained in slurry
JPS6150674B2 (en)
JP2021037464A (en) Water purification method and water purification apparatus
JPH08252583A (en) Phosphorus removing method by flocculation and filtration