JPS6135713B2 - - Google Patents

Info

Publication number
JPS6135713B2
JPS6135713B2 JP53059227A JP5922778A JPS6135713B2 JP S6135713 B2 JPS6135713 B2 JP S6135713B2 JP 53059227 A JP53059227 A JP 53059227A JP 5922778 A JP5922778 A JP 5922778A JP S6135713 B2 JPS6135713 B2 JP S6135713B2
Authority
JP
Japan
Prior art keywords
region
source
drain
type
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53059227A
Other languages
Japanese (ja)
Other versions
JPS54150091A (en
Inventor
Toyoki Takemoto
Haruyasu Yamada
Michihiro Inoe
Hideaki Sadamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5922778A priority Critical patent/JPS54150091A/en
Publication of JPS54150091A publication Critical patent/JPS54150091A/en
Publication of JPS6135713B2 publication Critical patent/JPS6135713B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は接合形電界効果トランジスタを備えた
半導体装置に関し、低雑音の接合形電界効果トラ
ンジスタの高密度化設計を可能とし、加えるにバ
イポーラ半導体素子と一体形成された半導体集積
回路(IC)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device equipped with a junction field effect transistor, which enables a high-density design of a low-noise junction field effect transistor, and also enables a semiconductor device integrated with a bipolar semiconductor element. It concerns integrated circuits (ICs).

接合形電界効果トランジスタ(接合形―
FET)は2乗特性などバイポーラ素子にない特
徴を有し、音響分野を始めとして各分野で使用さ
れるに至つており、最近このFETとバイポーラ
素子を一体に組込んだ集積回路(IC)が必要と
され、これらを一体化する試みが行われている。
Junction field effect transistor (junction type)
FETs) have characteristics that bipolar elements do not have, such as square-law characteristics, and have come to be used in various fields including audio, and recently integrated circuits (ICs) that incorporate FETs and bipolar elements have been developed. Attempts are being made to integrate these as needed.

この目的の一つはFETを導入することによ
り、入力インピーダンスの増加による混変調の減
少や、低雑音性Oバイヤス動作による部品点数の
削減を可能にするなどの回路的な自由度の増加を
可能とすることで、FETを一体化構成してIC化
することにより、単体のFETを用いる場合に比
べ占有面積の低減とコストダウン、相互結線部等
に誘起される雑音が減少する利益を得ることがで
きる。
One of the objectives is to increase circuit flexibility by introducing FETs, such as reducing cross-modulation due to increased input impedance and reducing the number of components due to low-noise O-bias operation. By integrating the FET into an IC, it is possible to obtain the benefits of reducing the occupied area and cost, as well as reducing noise induced in interconnection parts, etc., compared to using a single FET. I can do it.

従来FETとバイポーラ素子を一体化構成した
ICはpch形FETを用いたものにかぎり市場に存在
しており、主にオペアンプ用として開発されてい
た。この理由はnch形は制作が困難な上、後述す
るごとく雑音特性が良好でないことによつてお
り、さらに,の電源を使用することが許容さ
れるオペアンプではFETのソースをに引き下
げることによりpchFETの使用が可能なためであ
る。
Integrated configuration of conventional FET and bipolar element
Only ICs using PCH type FETs existed on the market, and were mainly developed for operational amplifiers. The reason for this is that the nch type is difficult to manufacture and, as will be explained later, has poor noise characteristics.Furthermore, in operational amplifiers that are allowed to use a power supply of This is because it can be used.

ところで、エピタキシヤル成長層内にゲート拡
散領域を作り込む通常の上部ゲート構造のFET
はチヤンネル厚みがエピタキシヤル層の厚みとゲ
ート拡散領域の拡散深さの差によつて決定され、
それらの厳密な制御が必要とされる。一方、集積
回路におけるバイポーラトランジスタのベース巾
決定は微妙な熱処理時間の配分によつて行われ、
それによつて望ましいhfe(電流増幅率)を得て
いる。したがつて、チヤンネル厚みとベース巾の
微妙な制御とは熱処理条件内に共存出来ず上記通
常のFETとバイポーラ素子とのIC化は極めて困
難である。
By the way, FETs with a normal upper gate structure in which a gate diffusion region is created in the epitaxial growth layer
The channel thickness is determined by the difference between the thickness of the epitaxial layer and the diffusion depth of the gate diffusion region,
Their strict control is required. On the other hand, determining the base width of bipolar transistors in integrated circuits is done by delicately distributing heat treatment time.
Thereby, a desired h fe (current amplification factor) is obtained. Therefore, delicate control of channel thickness and base width cannot coexist within the heat treatment conditions, and it is extremely difficult to integrate the above-mentioned ordinary FET and bipolar element into an IC.

そこで、バイポーラ素子と一体的にIC化され
るFETとしてはバツクゲート構造が採用され
る。第1図に示すバイポーラ素子と集積回路内で
一体化される従来のpchFETを示している。すな
わち、ICでは、チヤンネル領域の形成が、バイ
ポーラトランジスタのベース巾が変化するほどの
熱処理を行うことなく可能となりかつDC的に安
定な特性を得ることができる表面チヤンネル、バ
ツクゲート構造のFETが採用される。
Therefore, a back gate structure is adopted as an FET integrated into an IC with a bipolar element. 2 shows a conventional pchFET integrated within an integrated circuit with the bipolar device shown in FIG. 1; In other words, in ICs, FETs with a surface channel or back gate structure are used, which enable the formation of a channel region without performing heat treatment that would change the base width of the bipolar transistor, and which provide stable DC characteristics. Ru.

第1図はこのバツクゲート構造の一般的構造を
示し、1はp形基体で、2はp形基体1上に形成
されたn形1〜3Ω−cmのエピタキシヤル層より
なるバツクゲート領域であり、3,4はp拡散層
よりなるソース・ドレイン領域でn型エピタキシ
ヤル層2内に形成されるバイポーラトランジスタ
のベース領域(図示せず)と同時に形成される。
5はn+拡散ゲートコンタクト領域である。6は
低濃度のp形チヤンネル領域でエピタキシヤル層
2上面からイオン注入法により制御性よく形成さ
れる。7は熱酸化膜で、8S,8D,8Gはそれぞ
れソース3、ドレイン4、ゲート5の金属電極で
ある。このFETの動作は、チヤンネル領域6の
コンダクタンス制御をゲート領域2で行うことに
よりなされる。つまりゲート電極8Gにバイアス
電圧を加えることにより、チヤンネル領域6の裏
面よりバイアス電圧が加えられコンダクタンス制
御が行なわれる。この様な接合形FETはチヤン
ネル領域6が上面に形成されているので、チヤン
ネルの深さ及び濃度はエピタキシヤル層2の厚さ
及び濃度に強く依存せず、上面からドーブする不
純物量にほぼ一義的に決定される利点があり、イ
オン注入法等を用いて形成すれば非常に高精度な
低抵抗チヤンネルを形成出来る。
FIG. 1 shows the general structure of this backgate structure, where 1 is a p-type substrate, 2 is a backgate region made of an n-type epitaxial layer of 1 to 3 Ω-cm formed on the p-type substrate 1, Reference numerals 3 and 4 denote source/drain regions made of p-diffusion layers, which are formed simultaneously with the base region (not shown) of the bipolar transistor formed in the n-type epitaxial layer 2.
5 is an n + diffusion gate contact region. Reference numeral 6 denotes a lightly doped p-type channel region which is formed from the upper surface of the epitaxial layer 2 by ion implantation with good controllability. 7 is a thermal oxide film, and 8 S , 8 D , and 8 G are metal electrodes for the source 3 , drain 4 , and gate 5 , respectively. The operation of this FET is achieved by controlling the conductance of the channel region 6 using the gate region 2. That is, by applying a bias voltage to the gate electrode 8G , the bias voltage is applied from the back surface of the channel region 6, and conductance control is performed. In such a junction FET, the channel region 6 is formed on the top surface, so the depth and concentration of the channel do not strongly depend on the thickness and concentration of the epitaxial layer 2, but are almost exclusively determined by the amount of impurities doped from the top surface. It has the advantage of being determined by the method, and if formed using an ion implantation method or the like, it is possible to form a low resistance channel with very high precision.

しかしながらこの素子にも重大なる欠点が存在
している。つまりチヤンネル領域6中の走行キヤ
リヤが、チヤンネル領域6下方からのゲートバイ
アス電圧により制御されるので、チヤンネル領域
6表面近傍をキヤリヤが走り雑音の原因となる。
これは酸化膜7とチヤンネル領域6との界面近傍
では表面準位との電荷の受授、加工歪等の表面で
の欠陥等多くの雑音原因が存在する為である。こ
の欠点を除去すべくチヤンネル領域6表面にキヤ
リヤを流さない様にする方法が考えられている。
すなわち第1の例として第2図に示すFETは、
チヤンネル領域6表面の熱酸化膜7上に電圧印加
電極8chを設けることによつて、チヤンネル領域
6表面に電気的に反転領域9を出現させチヤンネ
ル領域6と熱酸化膜7の境界面での1/雑音の
原因となる部分にキヤリヤを流さないようにした
ものである。しかしながらこのFETにおいてチ
ヤンネル領域6中に反転領域9を形成する為に
は、熱酸化膜7厚にもよるが一般に10Vをはるか
に越える大きな電圧が必要となり、通常のICに
は不向きである。
However, this device also has significant drawbacks. That is, since the carrier running in the channel region 6 is controlled by the gate bias voltage applied from below the channel region 6, the carrier runs near the surface of the channel region 6 and causes noise.
This is because there are many sources of noise near the interface between the oxide film 7 and the channel region 6, such as charge exchange with the surface level and defects on the surface such as processing strain. In order to eliminate this drawback, methods have been devised to prevent the carrier from flowing onto the surface of the channel region 6.
In other words, the FET shown in Figure 2 as a first example is
By providing 8 voltage application electrodes on the thermal oxide film 7 on the surface of the channel region 6, an electrically inverted region 9 appears on the surface of the channel region 6. / This prevents the carrier from flowing into areas that cause noise. However, in order to form the inversion region 9 in the channel region 6 in this FET, a voltage far exceeding 10 V is generally required, although it depends on the thickness of the thermal oxide film 7, and this is not suitable for ordinary ICs.

また第2の例としてチヤンネル領域6の表面に
真性半導体(i層)の如き高抵抗層を設け、チヤ
ンネル領域6の表面キヤリヤを流さない方法も考
えられる。この方法においてはi層自身の不純物
濃度が低いことからチヤンネル領域6からi層へ
のキヤリヤの移動が起りやすく、i層中での再結
合はこの移動キヤリヤにより行われ表面での雑音
成分はいぜんとして存在し、大幅な低減は望めな
い。
As a second example, a method may be considered in which a high resistance layer such as an intrinsic semiconductor (i-layer) is provided on the surface of the channel region 6 so that the surface carrier of the channel region 6 does not flow. In this method, since the impurity concentration of the i-layer itself is low, carriers are likely to move from the channel region 6 to the i-layer, and recombination in the i-layer is performed by these moving carriers, so that noise components on the surface are no longer generated. exist, and no significant reduction can be expected.

本発明者らはこのような問題に鑑み、p形チヤ
ンネル領域6の導電形と反対導電形のn層をチヤ
ンネル領域6表面全域に形成することを考察し
た。しかるにこの構造においては表面n層はソー
ス、ドレイン間の耐圧低下を防ぐため低濃度とす
る必要がある。この低濃度のn層では前述のi層
と同様な表面再結合ノイズの影響を受けるととも
に、チヤンネル領域6との境面でのPN接合にお
ける空乏層の広がりが表面n層、チヤンネル領域
6の両方に及ぶ為、チヤンネルの深さの制御が行
ない難く、飽和ドレイン電流IDSSのバラツキが
非常に大きくなり好ましくない。一方表面チヤン
ネル領域6表面に高濃度n+層を形成すれば、表
面再結合ノイズの影響がなくなり、しかも空乏層
がチヤンネル領域6方向にしか伸びないためチヤ
ンネル深さの制御が行いやすい利点はあるもの
の、ソース3、ドレイン4間の耐圧が低くなり実
用に供しないものとなる。
In view of such problems, the present inventors considered forming an n layer of a conductivity type opposite to that of the p-type channel region 6 over the entire surface of the channel region 6. However, in this structure, the surface n-layer must have a low concentration in order to prevent a drop in breakdown voltage between the source and drain. This low concentration n-layer is affected by surface recombination noise similar to the above-mentioned i-layer, and the depletion layer at the PN junction at the interface with the channel region 6 spreads between the surface n-layer and the channel region 6. As a result, it is difficult to control the depth of the channel, and the variation in the saturated drain current I DSS becomes extremely large, which is undesirable. On the other hand, if a high concentration n + layer is formed on the surface of the surface channel region 6, the influence of surface recombination noise is eliminated, and the depletion layer only extends in the direction of the channel region 6, which has the advantage of making it easier to control the channel depth. However, the withstand voltage between the source 3 and drain 4 becomes low, making it impractical.

そこで、本発明者らはさらにこのような問題点
を検討した結果、特願昭52―102426号にてDC特
性、雑音特性のすぐれた接合形FETを提案し
た。ここで提案した接合形FETの要部の構造を
第3図に示す。すなわち、第4図のFETは、ソ
ース・ドレイン間の表面チヤンネル領域内にこの
領域と反対導電形の高濃度の表面不純物導入領域
をドレインと分離して形成したものである。
The inventors of the present invention further studied these problems and proposed a junction FET with excellent DC characteristics and noise characteristics in Japanese Patent Application No. 102426/1983. Figure 3 shows the structure of the main parts of the junction FET proposed here. That is, in the FET shown in FIG. 4, a high concentration surface impurity doped region of the opposite conductivity type to this region is formed in the surface channel region between the source and drain, separated from the drain.

第3図において、12はp形のバツクゲート領
域で、この領域12内にn形チヤンネル領域13
が形成されており、14,15はn形高濃度のソ
ース、ドレイン領域である。16はp形高濃度の
表面不純物導入領域で、表面のキヤリヤの流れを
阻止し、雑音を防止する機能を有し、通常ゲート
領域12と接続されてゲート領域としても働く。
17は表面酸化膜である。
In FIG. 3, 12 is a p-type back gate region, and within this region 12 is an n-type channel region 13.
are formed, and 14 and 15 are n-type heavily doped source and drain regions. Reference numeral 16 denotes a p-type high-concentration surface impurity doped region, which has the function of blocking the flow of carriers on the surface and preventing noise, and is normally connected to the gate region 12 and also functions as a gate region.
17 is a surface oxide film.

この第3図の構造によつて第4図に見られるよ
うに、極端に雑音特性が改善されることがわか
る。第4図において、曲線は高濃度のp形領域
16を設置していない接合形FET、は高濃度
のp形領域16を選択的に設置した接合形FET
の入力換算雑音電圧を示す。の特性からもわか
るように第3図の構造は雑音特性的にはほとんど
問題がなくなつてはいるが、この素子の構造上に
若干の問題がある。すなわち第3図に見られるご
とくチヤンネルとは反対導電形の高濃度領域16
を設置した場合前述のごとく、ソース14及びド
レイン15との十分なる耐圧を得るためには、マ
スク合わせ精度あるいは拡散での入り込みの距離
を考慮した場合、第3図に示した領域16とソー
ス、ドレイン間の距離aあるいはbは現状の技術
水準においては、約4μm前後は最低必要であ
る。また領域16は同様に4μm前後必要とな
る。したがつて、ソース及びドレイン間距離は12
μmを必要としこのために2つの欠点が存在す
る。
As seen in FIG. 4, it can be seen that the structure shown in FIG. 3 significantly improves the noise characteristics. In FIG. 4, the curve represents a junction FET without a high concentration p-type region 16, and the curve represents a junction FET with a high concentration p-type region 16 selectively installed.
shows the input equivalent noise voltage of As can be seen from the characteristics of FIG. 3, the structure shown in FIG. 3 has almost no problems in terms of noise characteristics, but there are some problems with the structure of this element. In other words, as shown in FIG. 3, a high concentration region 16 of the conductivity type opposite to that of the channel
As mentioned above, in order to obtain a sufficient breakdown voltage between the source 14 and the drain 15, considering the mask alignment accuracy or the distance of penetration by diffusion, the region 16 and the source shown in FIG. At the current state of the art, the minimum distance a or b between the drains is about 4 μm. Similarly, the area 16 needs to be about 4 μm. Therefore, the distance between source and drain is 12
μm, which has two drawbacks.

第1の欠点は、高密度化が達成出来ないことで
ある。これはgmの小さな単体デバイスにおいて
はさほど問題とならないが、gmの大きなたとえ
ばくし形等の接合形FETのデバイスを製作した
場合、このゲートの長さが長いのは大きな問題と
なる。第2の欠点は、10なる領域下を通つたキ
ヤリヤが、ソースとの距離が長いために再び表面
を流れ、表面準位、欠陥等のアクチイブ層との反
応により雑音電流が発生するおそれである。
The first drawback is that high density cannot be achieved. This is not much of a problem in a single device with a small gm, but when a junction FET device with a large gm, such as a comb-shaped junction FET, is manufactured, the long gate length becomes a big problem. The second drawback is that the carrier that has passed under the region 10 may flow again on the surface due to the long distance from the source, and noise current may be generated due to reactions with active layers such as surface states and defects. .

本発明は特願昭52―102426号にて提案した接合
形FETにおける以上の欠点を少なくし、より高
密度化を可能とし、雑音性能の向上もはかるもの
である。すなわち、本発明は特願昭52―102426号
の接合形FETにおいて、表面のキヤリヤの流れ
を阻止する高波度表面領域とソース、ドレイン間
に絶縁物領域を形成したことを特徴とするもので
ある。なお、本発明における絶縁物領域の形成は
ソース、ドレイン間の両方であつても、一方であ
つてもよい。
The present invention aims to reduce the above-mentioned drawbacks of the junction FET proposed in Japanese Patent Application No. 102426/1985, enable higher density, and improve noise performance. That is, the present invention is a junction FET disclosed in Japanese Patent Application No. 52-102426, which is characterized in that an insulator region is formed between the high-wavelength surface region that blocks the flow of carriers on the surface, the source, and the drain. . Note that the insulator region in the present invention may be formed between both the source and the drain, or may be formed between one of them.

第5図は本発明にもとづき、nチヤンネル
FETとバイポーラ素子とを一体化形成した本発
明の一実施例にかかるICの製造方法を示し、そ
れに従つて本発明を説明する。
FIG. 5 shows an n-channel system based on the present invention.
A method of manufacturing an IC according to an embodiment of the present invention in which an FET and a bipolar element are integrally formed will be shown, and the present invention will be explained accordingly.

第5図aはp形、111面指数、1〜10Ω−cm
のシリコンウエハー基板1表面に、As又はSbに
より形成されたn+埋込拡散層31a,31b,
31cが形成された状況を示している。
Figure 5 a is p-type, 111 plane index, 1 to 10 Ω-cm
n + buried diffusion layers 31a, 31b, formed of As or Sb on the surface of the silicon wafer substrate 1.
31c is shown.

しかるのち、基板1上にSicl4を用いたエピタ
キシヤル成長を行わせ、比抵抗0.5〜3Ω−cmの
n形エピタキシヤル層32を生成し、BBr3ある
いはBcl3よりなるソースから拡散を行い、p+形ア
イソレーシヨン拡散層33を形成して層32を島
領域に分離する。この層33の形成に際してはあ
らかじめ層33の形成部に高濃度の不純物を拡散
し、、しかるのちさらに不純物を深く熱処理拡散
する。このさらに深く拡散すると同じ工程で
FETのバツクゲート領域、抵抗形成用の領域と
なる島状の領域pウエル34a,34cを形成す
る。すなわち、pウエル34a,34cは通常の
熱拡散法あるいはイオン注入法の選択的ドーピン
グの後それに続く上記熱処理により形成され比抵
抗は0.5〜数Ω−cm、巾約5μmであるb。
Thereafter, epitaxial growth using SiCl 4 is performed on the substrate 1 to form an n-type epitaxial layer 32 with a specific resistance of 0.5 to 3 Ω-cm, and diffusion is performed from a source made of BBr 3 or Bcl 3 . A p + type isolation diffusion layer 33 is formed to separate layer 32 into island regions. When forming this layer 33, a high concentration impurity is first diffused into the formation portion of the layer 33, and then the impurity is further deeply diffused by heat treatment. This deeper diffusion will result in the same process.
Island-shaped p-well regions 34a and 34c are formed to serve as a back gate region of the FET and a region for forming a resistor. That is, the p-wells 34a and 34c are formed by selective doping by conventional thermal diffusion or ion implantation followed by the above-mentioned heat treatment, and have a specific resistance of 0.5 to several Ω-cm and a width of about 5 μm.

次にpウエル34aとエピタキシヤル層32上
に選択的にBBr3、Bcl3,B2O3などのボロンソー
スからの拡散を施し、npnトランジスターのp+
ベース領域35とnchFETの低抵抗性のp+形ゲー
トコンタクト部36を同時に形成するc。
Next, a boron source such as BBr3, Bcl3 , B2O3 is selectively diffused onto the p-well 34a and the epitaxial layer 32 to form a p + type base region 35 of the npn transistor and a low-resistance layer of the nchFET. Forming the p + type gate contact portion 36 at the same timec.

しかるのち、POcl3,P2O5等のリンpソースか
らベース領域35内にn+形のエミツタ領域3
7、FETのpウエル34a内にn+形のソース、
ドレイン領域38,39、pウエル34c内に抵
抗領域のn+形コンタクト部40,41を1.3〜2.0
μmの深さに選択形成する。この拡散に際して、
あらかじめ高濃度のリンpを浅く拡散し、しかる
のち所定の温度で熱処理する方法を用いる。この
ときの浅い拡散が終了したのちFETのチヤンネ
ル形成部ならびに抵抗領域形成部にリンpを拡散
法あるいは100〜150KeV程度のエネルギーのイオ
ン注入法により低濃度にドーピングし、上記熱処
理と同時にリンを拡散して約0.4〜1.0μmの深さ
の低比抵抗のn形チヤンネル領域42a、これと
同一濃度、同一深さのn形抵抗領域42cをそれ
ぞれソース、ドレイン間38,39ならびにコン
タクト部40,41間に形成するd。
After that, an n + type emitter region 3 is formed in the base region 35 from a phosphorus p source such as POcl 3 or P 2 O 5 .
7. N + type source in the p-well 34a of the FET,
N + type contact portions 40 and 41 of the resistance region are provided in the drain regions 38 and 39 and the p-well 34c with a thickness of 1.3 to 2.0.
Selectively formed to a depth of μm. During this spread,
A method is used in which high-concentration phosphorus (P) is diffused shallowly in advance and then heat-treated at a predetermined temperature. After this shallow diffusion is completed, the FET channel forming part and resistance region forming part are doped with phosphorus at a low concentration by diffusion method or ion implantation method with an energy of about 100 to 150 KeV, and phosphorus is diffused at the same time as the above heat treatment. A low resistivity n-type channel region 42a with a depth of approximately 0.4 to 1.0 μm, and an n-type resistance region 42c with the same concentration and depth as the source and drain regions 38 and 39 and contact portions 40 and 41, respectively. d formed between.

次に本発明の特徴とする絶縁物領域となる酸化
膜形成工程に入る。チヤンネル42及びソース、
ドレイン38,39上の一部を残して、、酸化膜
43及び耐酸化性のSi3N4膜44で覆い、熱酸化
を高圧酸化法あるいはスチーム酸化法等の比較的
低温によつて行い酸化膜45を選択的に形成する
e。
Next, a step of forming an oxide film, which will become an insulator region, which is a feature of the present invention, begins. channel 42 and source,
Leaving a part on the drains 38 and 39, it is covered with an oxide film 43 and an oxidation-resistant Si 3 N 4 film 44, and thermal oxidation is performed at a relatively low temperature such as a high pressure oxidation method or a steam oxidation method. selectively forming the film 45 e.

その後Si3N4膜44を除去し、CVD膜等で酸化
膜を形成し開孔拡散工程を経て表面阻止領域とな
るp形高濃度表面不純物領域46を形成するf。
Thereafter, the Si 3 N 4 film 44 is removed, an oxide film is formed using a CVD film, etc., and a p-type high concentration surface impurity region 46 which becomes a surface blocking region is formed through an open hole diffusion process f.

その後通常の工程を経て、コンタクト、配線4
7〜55を実施する。チヤンネル上の金属ゲート
48は、表面雑音のより一層の低減等接合形
FETの安定化のため設置されているg。
After that, through the normal process, contact and wiring 4
Perform steps 7 to 55. The metal gate 48 on the channel is a junction type which further reduces surface noise.
g installed to stabilize the FET.

前記工程の内、本発明の特徴である領域45及
び46について第6図でなおくわしく説明する。
なお領域45は酸化膜に限らず他の絶縁膜を用い
てもよいことはいうまでもない。
Of the above steps, regions 45 and 46, which are the characteristics of the present invention, will be explained in more detail with reference to FIG.
Note that it goes without saying that the region 45 is not limited to the oxide film, and other insulating films may be used.

第6図において45を形成するためのたとえば
シリコンナイトライド(Si3N4)44等の開孔面積
は前述したごとく、基準として4μmをとり、そ
のセンターをチヤンネル42a及びソース領域3
8の境界位置におくと、cなる距離は約2μmに
設定出来る。またドレイン側の距離eも約2μm
となる。この際距離c及びeはそれぞれ補完の関
係にあり、マスクずれが生じた時、cが増加した
場合はeが減少することになり、cとeの加算値
は常に一定なる。cとeにより残されたdは、高
濃度不純物領域46の長さを示しているが、この
場所への拡散は、45なる酸化膜があるため、e
とcとチヤンネル長の関係により一義的に定めら
れ、この領域46への開孔長によらない。を
4μmと基準寸法に取つても、dは2μm程度に
設定出来、いわゆる自己整合(セルフ・アライメ
ント)的に設定出来る。
In FIG. 6, the opening area of, for example, silicon nitride (Si 3 N 4 ) 44 for forming 45 is set to 4 μm as a standard, as described above, and the center is set as the channel 42a and the source region 3.
8, the distance c can be set to about 2 μm. Also, the distance e on the drain side is approximately 2 μm.
becomes. At this time, the distances c and e are in a complementary relationship, and when a mask shift occurs, if c increases, e decreases, and the added value of c and e is always constant. d left by c and e indicates the length of the high concentration impurity region 46, but diffusion to this location is difficult due to the presence of the oxide film 45.
It is uniquely determined by the relationship between c and channel length, and is not dependent on the opening length to this region 46. Even if 4 μm is taken as the reference dimension, d can be set to about 2 μm, and can be set in a so-called self-alignment manner.

以上のことから、c,d,eは基準マスク寸法
を4μmとしても、それぞれ2μmになり、c,
d,eの加算が6μmとなり、第3図の場合の12
μmと比して約半分となる。また、基準寸法を2
μmにすれば、それぞれ半分にすることができ
る。さらに、第6図から明らかなように、45な
る酸化膜は、反転領域すなわち領域46より深く
形成されているが、これは38,39なるソー
ス、ドレインと十分なる耐圧を持つために必要で
ある。また領域46をゲートとして用いると、領
域46により形成された空乏層は領域46の濃度
が高いため、ほぼチヤンネル領域42aのみに広
がり、ほぼ酸化膜45と領域46の深さの差をう
めるようになる。
From the above, c, d, and e are each 2 μm even if the standard mask dimension is 4 μm, and c,
The addition of d and e is 6 μm, which is 12 in the case of Figure 3.
It is about half compared to μm. Also, change the standard dimension to 2
If it is made into μm, each can be halved. Furthermore, as is clear from FIG. 6, the oxide film 45 is formed deeper than the inversion region, that is, the region 46, which is necessary in order to have a sufficient breakdown voltage with the source and drain regions 38 and 39. . Furthermore, when the region 46 is used as a gate, since the concentration of the region 46 is high, the depletion layer formed by the region 46 spreads almost only to the channel region 42a, and almost fills the difference in depth between the oxide film 45 and the region 46. Become.

以上述べて来たように本発明は、低雑音接合形
FETを実現し、かつその欠点である低密度化を
大巾に減少させることができ、高密度接合形
FETの実現に大きく寄与し、集積化に極めて好
都合であるとともに高周波用としても好適であ
る。
As described above, the present invention is a low-noise junction type
A high-density junction type that realizes FET and greatly reduces its disadvantage of low density.
It greatly contributed to the realization of FETs, is extremely convenient for integration, and is also suitable for high frequency applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はバツクゲート構造のFETの構造
断面図、第3図は本発明者らが特願昭52―102426
号にて提案した低雑音FETの要部構造断面図、
第4図は本発明者が試作したn―chFETの雑音
特性図、第5図a〜gは本発明の一実施例にかか
るn―chFHTの組込まれたICの製造工程図、第
6図は本発明の高密度化されたFETの要部構造
断面図である。 1……p形シリコン基板、32……n形エピタ
キシヤル層、34a,34c……pウエル、35
……ベース領域、38,39……n形ソース、ド
レイン領域、42a……n形チヤンネル領域、4
5……酸化膜、46……p形高濃度表面不純物領
域。
Figures 1 and 2 are cross-sectional views of the FET with a back gate structure, and Figure 3 is a cross-sectional view of the FET with a back gate structure.
A cross-sectional diagram of the main structure of the low-noise FET proposed in the issue,
Figure 4 is a noise characteristic diagram of an n-ch FET prototyped by the present inventor, Figures 5 a to g are manufacturing process diagrams of an IC incorporating an n-ch FHT according to an embodiment of the present invention, and Figure 6 is FIG. 2 is a cross-sectional view of a main part structure of a high-density FET according to the present invention. 1...p-type silicon substrate, 32...n-type epitaxial layer, 34a, 34c...p-well, 35
... Base region, 38, 39 ... N-type source, drain region, 42a ... N-type channel region, 4
5...Oxide film, 46...P-type high concentration surface impurity region.

Claims (1)

【特許請求の範囲】 1 半導体基板上に形成された接合形電界効果ト
ランジスタの一方の導電形のゲート領域となる半
導体層内に選択的に形成された他方の導電形の上
記トランジスタのソース、ドレイン領域と少くと
も上記ソース・ドレイン領域を接続するごとく上
記半導体層内にその表面からソース、ドレイン領
域よりも浅く形成された他方の導電形の上記トラ
ンジスタの低抵抗性表面チヤンネル領域と、この
チヤンネル領域内に選択的に上記ドレイン領域と
分離形成された一方の導電形の高濃度の表面不純
物導入領域と、この表面不純物導入領域と上記ソ
ース又はドレイン領域間に選択的に上記導入領域
よりも深く上記ソース又はドレイン領域と導入領
域に接して形成された絶縁物領域と、上記チヤン
ネル領域表面に絶縁膜を介して形成されたゲート
電極を備えたことを特徴とする半導体装置。 2 半導体基板上に選択的にバイポーラ半導体素
子が一体に作成されてなることを特徴とする特許
請求の範囲第1項に記載の半導体装置。 3 高濃度の表面不純物領域がゲート領域と接続
されてなることを特徴とする特許請求の範囲第1
項に記載の半導体装置。 4 半導体層がPウエルよりなることを特徴とす
る特許請求の範囲第1項に記載の半導体装置。
[Claims] 1. Source and drain of the transistor of the other conductivity type selectively formed in a semiconductor layer serving as a gate region of one conductivity type of a junction field effect transistor formed on a semiconductor substrate. a low-resistance surface channel region of the transistor of the other conductivity type formed in the semiconductor layer from the surface thereof to a depth shallower than the source and drain regions so as to connect the region and at least the source/drain region; a high-concentration surface impurity doped region of one conductivity type selectively formed separately from the drain region; and a surface impurity doped region selectively deeper than the doped region between the surface impurity doped region and the source or drain region. 1. A semiconductor device comprising: an insulating region formed in contact with a source or drain region and an introduction region; and a gate electrode formed on a surface of the channel region with an insulating film interposed therebetween. 2. The semiconductor device according to claim 1, wherein a bipolar semiconductor element is selectively integrally formed on a semiconductor substrate. 3. Claim 1, characterized in that the high concentration surface impurity region is connected to the gate region.
The semiconductor device described in . 4. The semiconductor device according to claim 1, wherein the semiconductor layer is made of a P-well.
JP5922778A 1978-05-17 1978-05-17 Semiconductor device Granted JPS54150091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5922778A JPS54150091A (en) 1978-05-17 1978-05-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5922778A JPS54150091A (en) 1978-05-17 1978-05-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS54150091A JPS54150091A (en) 1979-11-24
JPS6135713B2 true JPS6135713B2 (en) 1986-08-14

Family

ID=13107270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5922778A Granted JPS54150091A (en) 1978-05-17 1978-05-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS54150091A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637269A (en) * 1992-07-17 1994-02-10 Mitsubishi Electric Corp Junction-type field effect transistor, memory device equipped therewith, and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061984A (en) * 1973-10-01 1975-05-27
JPS5124874A (en) * 1974-08-23 1976-02-28 Nippon Telegraph & Telephone SETSUGOGATADENKAIKOKATORANJISUTA

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061984A (en) * 1973-10-01 1975-05-27
JPS5124874A (en) * 1974-08-23 1976-02-28 Nippon Telegraph & Telephone SETSUGOGATADENKAIKOKATORANJISUTA

Also Published As

Publication number Publication date
JPS54150091A (en) 1979-11-24

Similar Documents

Publication Publication Date Title
US4965220A (en) Method of manufacturing a semiconductor integrated circuit device comprising an MOS transistor and a bipolar transistor
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US8247300B2 (en) Control of dopant diffusion from buried layers in bipolar integrated circuits
US4826780A (en) Method of making bipolar transistors
US4379726A (en) Method of manufacturing semiconductor device utilizing outdiffusion and epitaxial deposition
US4047217A (en) High-gain, high-voltage transistor for linear integrated circuits
JPS5846863B2 (en) Semiconductor integrated circuit device
US3414782A (en) Semiconductor structure particularly for performing unipolar transistor functions in integrated circuits
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPS60194558A (en) Manufacture of semiconductor device
US4535529A (en) Method of making semiconductor devices by forming an impurity adjusted epitaxial layer over out diffused buried layers having different lateral conductivity types
US4724221A (en) High-speed, low-power-dissipation integrated circuits
US3582725A (en) Semiconductor integrated circuit device and the method of manufacturing the same
JPS6135713B2 (en)
JPS5830742B2 (en) Junction field effect semiconductor device
JP2507632B2 (en) Semiconductor device
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPS5944784B2 (en) Complementary MOS semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPS6241427B2 (en)
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JP2507055B2 (en) Method for manufacturing semiconductor integrated circuit
JPH02170571A (en) Semiconductor device and manufacture thereof
JPS6222464B2 (en)
JPH05864B2 (en)