JPS6135710B2 - - Google Patents

Info

Publication number
JPS6135710B2
JPS6135710B2 JP53017155A JP1715578A JPS6135710B2 JP S6135710 B2 JPS6135710 B2 JP S6135710B2 JP 53017155 A JP53017155 A JP 53017155A JP 1715578 A JP1715578 A JP 1715578A JP S6135710 B2 JPS6135710 B2 JP S6135710B2
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
forming
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53017155A
Other languages
Japanese (ja)
Other versions
JPS54109785A (en
Inventor
Masanori Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1715578A priority Critical patent/JPS54109785A/en
Priority to DE19782847305 priority patent/DE2847305C2/en
Publication of JPS54109785A publication Critical patent/JPS54109785A/en
Publication of JPS6135710B2 publication Critical patent/JPS6135710B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 この発明は改良された構造を有する半導体装置
の製造方法にかかり、特に改良された半導体メモ
リ装置を含む半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having an improved structure, and more particularly to a method of manufacturing a semiconductor device including an improved semiconductor memory device.

本出願人は先に昭和52年特許願第84833号(出
願日昭和52年7月14日)の明細書に於いて新しい
半導体メモリの製造方法を提案した。この提案の
製造法による装置では、所定の半導体基体の主平
面上の第1ゲート絶縁膜と、この上に導体又は半
導体からなる浮遊ゲート電極と、この上に第2の
ゲート絶縁膜と、この上に導体又は半導体からな
る外部ゲート電極とを有し、浮遊ゲート電極は外
部ゲート電極に対し自己整合的に形状決定されて
いると共に、外部ゲート電極および浮遊ゲート電
極のいづれに対しても自己整合的に基体と同型か
つより高濃度の不純物が添加された基体表面近傍
の領域と、この基体と同型高濃度領域に対しても
自己整合的位置を有する基体と逆導電型を有する
一対のソース、ドレイン領域を具備している。上
記の如き構造となすことにより、それ以前の類似
のメモリ装置に比べ、メモリトランジスタの高い
コンダクタンスと小さい装置寸法という一見相互
に矛盾する要求が首尾よく達成されるので種々の
好ましい結果が得られる。しかしこの様に種々の
秀れた性質を有する前記出願による発明にも末だ
改良の余地が残されているものである。
The present applicant previously proposed a new method for manufacturing a semiconductor memory in the specification of Patent Application No. 84833 (filing date: July 14, 1972). The device according to the proposed manufacturing method includes a first gate insulating film on the main plane of a predetermined semiconductor substrate, a floating gate electrode made of a conductor or a semiconductor on top of this, a second gate insulating film on top of this, and a floating gate electrode made of a conductor or semiconductor on top of this. It has an external gate electrode made of a conductor or a semiconductor on top, and the floating gate electrode is shaped in a self-aligned manner with respect to the external gate electrode, and is self-aligned with both the external gate electrode and the floating gate electrode. a region near the surface of the substrate doped with an impurity of the same type as the substrate and at a higher concentration; a pair of sources having opposite conductivity types; It has a drain region. With a structure such as that described above, various favorable results are obtained since the seemingly mutually contradictory requirements of high conductance and small device size of the memory transistor are successfully achieved compared to previous similar memory devices. However, even though the invention of the above-mentioned application has various excellent properties, there is still room for improvement.

この発明の目的は、前記出願による半導体メモ
リの有する種々の利点を何ら損うことなく、装置
寸法を大巾に縮少し集積度、製造歩留り、信頼性
等の諸面に於いて特に好ましい性質を備えた半導
体装置の製造方法を提供することにある。
An object of the present invention is to significantly reduce the device size and to obtain particularly favorable properties in terms of integration, manufacturing yield, reliability, etc., without impairing the various advantages of the semiconductor memory according to the above-mentioned application. An object of the present invention is to provide a method for manufacturing a semiconductor device equipped with the above.

本発明の特徴は、半導体基体の表面近傍に互に
間隔を置いて設けられた少くとも1対の基体と反
対導電型を有するソース、ドレイン領域と、該両
域の少くとも一方に接する基体と同型かつ基体よ
り高濃度の不純物添加領域と、該ソース、ドレイ
ン領域間の基体表面上の第1のゲート絶縁膜と、
該第1のゲート絶縁膜上の導体又は半導体からな
る浮遊ゲート電極と、該浮遊ゲート電極上の第2
のゲート絶縁膜と、該第2のゲート絶縁膜上の導
体又は半導体からなる制御ゲート電極とを具備し
てなる半導体メモリを活性領域の少くとも1部に
設け、かつ非活性領域には前記第1のゲート絶縁
膜よりも厚いフイールド絶縁膜を有してなる半導
体装置の製造方法において、前記半導体基体の前
記活性領域上に前記第1のゲート絶縁膜を形成す
る材料、前記浮遊ゲート電極を形成する材料およ
びシリコン窒化膜を積層し、該シリコン窒化膜を
マスクとして熱酸化を行うことにより前記厚いフ
イールド絶縁膜を形成する工程と、該厚いフイー
ルド絶縁膜上より前記第2のゲート絶縁膜を形成
する材料を介して該活性領域上の該浮遊ゲート電
極を形成する材料上にかけて前記制御ゲート電極
を形状形成する工程と、該制御ゲート電極および
該厚いフイールド絶縁膜をマスクとして該第2の
ゲート絶縁膜を形成する材料、該浮遊ゲート電極
を形成する材料を順次選択的に除去することによ
り、該制御ゲート電極に対して自己整合的に該浮
遊ゲート電極を形状形成する工程と、該制御ゲー
ト電極および該浮遊ゲート電極を有する構造体を
マスクの一部として基体と同型の不純物を該半導
体基体の活性領域内に導入することにより前記高
濃度の不純物添加領域を形成する工程と、該ゲー
ト構造体および該厚いフイールド絶縁膜をマスク
として基体と反対導電型の不純物を該半導体基体
の活性領域に導入することにより前記ソース、ド
レイン領域を形成する工程とを有し、これにより
該浮遊ゲート電極の巾、チヤンネル領域の巾、該
ソース、ドレイン領域のチヤンネル領域に接する
部分の巾は平面形状においてほぼ一致し、かつ、
これらの巾方向の端部は該フイールド絶縁膜の端
部の一部と平面形状においてほぼ一致し、該制御
ゲート電極は該フイールド絶縁膜上より該第2の
ゲート絶縁膜上に延在し、かつ該浮遊ゲート電極
のチヤンネル領域の長さ方向の端部および該ソー
ス、ドレイン領域のチヤンネル領域に接する端部
は該制御ゲート電極の縁辺と平面形状においてほ
ぼ一致しており、該基体と同型でかつ基体より高
濃度の不純物添加領域は島状であつてそのほぼ全
体が素子領域内部に形成されている半導体メモリ
装置を形成する半導体装置の製造方法である。
A feature of the present invention is that at least one pair of source and drain regions having conductivity types opposite to the substrate are provided near the surface of the semiconductor substrate at a distance from each other, and the substrate is in contact with at least one of the two regions. a region doped with impurities of the same type and higher concentration than the substrate; a first gate insulating film on the surface of the substrate between the source and drain regions;
a floating gate electrode made of a conductor or semiconductor on the first gate insulating film; and a second floating gate electrode on the floating gate electrode.
A semiconductor memory comprising a gate insulating film and a control gate electrode made of a conductor or semiconductor on the second gate insulating film is provided in at least a part of the active region, and In a method of manufacturing a semiconductor device having a field insulating film thicker than a first gate insulating film, a material for forming the first gate insulating film and the floating gate electrode are formed on the active region of the semiconductor substrate. forming the thick field insulating film by laminating a material and a silicon nitride film and performing thermal oxidation using the silicon nitride film as a mask, and forming the second gate insulating film on the thick field insulating film. forming the control gate electrode over the material forming the floating gate electrode on the active region through a material that forms the floating gate electrode; and forming the second gate insulator using the control gate electrode and the thick field insulating film as a mask. forming the shape of the floating gate electrode in a self-aligned manner with respect to the control gate electrode by sequentially selectively removing a material forming the film and a material forming the floating gate electrode; and forming the highly-concentrated impurity doped region by introducing impurities of the same type as the substrate into the active region of the semiconductor substrate using the structure having the floating gate electrode as part of a mask; and forming the source and drain regions by introducing impurities of a conductivity type opposite to that of the substrate into the active region of the semiconductor substrate using the thick field insulating film as a mask, thereby increasing the width of the floating gate electrode. , the width of the channel region and the width of the portion of the source and drain regions in contact with the channel region are substantially the same in planar shape, and
These end portions in the width direction substantially coincide with a part of the end portion of the field insulating film in plan view, and the control gate electrode extends from above the field insulating film onto the second gate insulating film, and the ends of the channel region of the floating gate electrode in the length direction and the ends of the source and drain regions in contact with the channel region substantially match the edge of the control gate electrode in plan shape, and have the same shape as the substrate. The present invention is also a method of manufacturing a semiconductor device for forming a semiconductor memory device in which a region doped with impurities at a higher concentration than a substrate is island-shaped and is formed almost entirely inside an element region.

このような本発明の新規な半導体装置の製造方
法により、装置寸法の大巾な縮少が可能となり、
特にこの装置を応用した集積回路が、小さなチツ
プ面積で、高製造歩留り、高信頼性を確保しつつ
安定かつ容易に実現できるという好都合をもたら
す。これは、本発明装置では浮遊ゲート電極の寸
法が新しい装置構造の導入により必要最小限に抑
えられている為で、この点に特別の注意を払う必
要がある。
The novel method for manufacturing a semiconductor device of the present invention enables a significant reduction in device dimensions;
In particular, an integrated circuit to which this device is applied can be stably and easily realized with a small chip area, high manufacturing yield, and high reliability. This is because in the device of the present invention, the dimensions of the floating gate electrode are minimized by introducing a new device structure, and special attention must be paid to this point.

次にこの発明の特徴をより解り易くするため
に、いくつかの実施例につき図面を参照しながら
詳しく説明する。
Next, in order to make the features of the present invention easier to understand, several embodiments will be described in detail with reference to the drawings.

(実施例 1): 第1図は本発明の一実施例の製造方法によつて
得られた半導体記憶装置の平図模型図、第2図A
〜Nは第1図のa―a′断面に於ける製造諸工程で
の断面模型図、第3図A〜Iは第1図のb―b′断
面に於ける製造諸工程での断面模型図、第4図
A,B,C,Dは第1図の製造諸工程での平面模
型図である。これらの諸図に於いて、同一の装置
部分は同一の番号で示してある。第2図Aでは比
抵抗約100Ω―cmのP型Si半導体1の主表面2上
に熱酸化法により厚さ約1000ÅのSiO2膜3を成
長させた後、この上にSiH4のN2中での熱分解に
よる厚さ約2000ÅのPolySi膜4、さらにこの上に
SiH4+NH3系の気相成長法による厚さ約1000Åの
Si3N4膜5を順次形成した。次に第2図B、第3
図A、第4図Aでは標準の写真蝕刻(PR)技術
により膜3,4,5の一部を選択除去し、第2図
C、第3図Bでは高温での熱酸化法により耐酸化
性のSi3N4膜5をマスクにして約1μの厚いフイ
ールドSiO26を選択成長した。次に第2図D、
第3図CではSi3N4膜5を除去後、熱酸化法によ
り厚さ約1000ÅのSiO2膜7をPolySi膜4上に成長
し、第2図E、第3図DではSiH4のN2中での熱
分解により厚さ約0.5μのPolySi膜8を形成し
た。次に第2図F、第3図E、第4図Bでは標準
のPR技術を利用してPoly.Si膜8にパターニング
を施し、第2図Gでは形状決定したpoly.Si膜8
に被われていない部分のSiO2膜7、Poly.Si膜
4、SiO2膜3を順次選択的に除去して、基体表
面の一部を露出させた。次に第2図Hでは標準の
PR技術により露出基体表面の一部を除いてレジ
スト膜9で被い、選択的に穴明した後、第2図
I、第4図Cでは露出基体表面からエネルギーE
=50Kevドーズ量φ=4×1013でボロンをイオン
注入した後、レジスト膜9を除去し1100℃,N2
中で3時間押し込み行つてPoly.Si膜4,8の両
方に自己整合的にP+型領域10を形成した。次
に第2図Jでは露出基体表面からリンを拡散し、
N+型領域11,12を形成した。このN+型領域
11,12は共にPoly.Si膜4,8に対して自己
整合的であるばかりでなく、領域12はP+型領
域10に対しても自己整合的に位置決定されてい
る。次に第2図K、第3図Fで全面に厚さ約1μ
のリンを含んだSiO2膜13を形成し、第2図
L、第3図G、第4図Dで標準のPR技術を用い
てSiO2膜13中にコンタクト孔14,15,1
6を設け、第2図M、第3図Hでは全面に厚さ約
1μのAI膜17を真空蒸着法により被着した。
そして第2図N、第3図Iでは標準のPR技術に
よりAI膜17にパターニングを施して引き出し
電極18,19,20を形成し装着を完成した。
これらの図面においてであり、N+型領域11,
12がそれぞれソース領域SiO2膜3が第1ゲー
ト絶縁膜、poly.Si膜4が浮遊ゲート電極、SiO2
膜7が第2ゲート絶縁膜、Poly.Si膜8が制御ゲ
ート電極、Al膜18,19,20がそれぞれソ
ース、ドレイン、制御ゲートの引き出し電極とし
て働く。このメモリ装置では、製造した段階での
制御ゲート引き出し電極20から見た初期のスレ
ツシヨルド電圧は約2Vである。例えば制御ゲー
ト引き出し電極20に25V印加し、ソース引き出
し電極18を接地した状態でドレイン引き出し電
極19に10V印加すると、チヤンネル中の電界に
より加速されてホツトになつたエレクトロンがい
わゆるチヤンネル注入モードで、浮遊ケート電極
4に注入されスレツシヨルド電圧は約10Vにシフ
トし、従つて書込が行われる。このメモリ装置で
消去は、光学的あるいは電気的いづれの方法も可
能である。光学的消去は、例えば波長λ=2500Å
程度の紫外線を照射することにより浮遊ゲート電
極内の注入エレクトロンをエネルギー励起し基体
へ放出させてスレツシヨルド電圧を初期値に戻す
ことで行われる。又電気的消去は、例えば制御ゲ
ート引き出し電極20を接地あるいは負電位に
し、ソース引き出し電極18に正の高電圧を印加
してソース領域11と基体1とのP―N接合をブ
レークダウンさせ、この時発生するホツトなエレ
クトロン―ホール対の内第1ゲートSiO2膜3中
に存在する電界の向きによりホールのみを選択的
に浮遊ゲート電極4に注入し、既に注入されてい
るエレクトロンの負電荷を相殺し、スレツシヨル
ド電圧を初期値に戻すことで行われる。この例の
半導体装置では、第1図に明示されている如く、
浮遊ゲート電極4はa―a′方向に沿つては制御ゲ
ート電極8に、又b―b′方向に沿つては厚いフイ
ールド絶縁膜部分にそれぞれ自己整合的に形状決
定され、ておりその寸法が必要最小限になつてい
ることが解る。従つて例えばこの半導体装置を応
用して、大記憶容量のPROM(Programable
Read Only Memory)等のICを実現する際、浮
遊ゲート電極は装置の大きさを制限する要因とは
全くならず、最大限の集積度が達成される。
(Example 1): FIG. 1 is a plan view model diagram of a semiconductor memory device obtained by a manufacturing method according to an embodiment of the present invention, and FIG.
~N is a cross-sectional model diagram at various manufacturing steps along the a-a' cross section in Figure 1, and Figures 3 A-I are cross-sectional models at various manufacturing steps at the b-b' cross section in Figure 1. 4A, B, C, and D are plan view diagrams showing various manufacturing steps in FIG. 1. In these figures, identical parts of the device are designated with identical numbers. In FIG. 2A, a SiO 2 film 3 with a thickness of about 1000 Å is grown on the main surface 2 of a P-type Si semiconductor 1 with a specific resistance of about 100 Ω-cm by thermal oxidation, and then N 2 of SiH 4 is grown on this film. PolySi film 4 with a thickness of about 2000 Å is formed by thermal decomposition inside
approximately 1000 Å thick by SiH 4 + NH 3 based vapor phase growth method.
Si 3 N 4 films 5 were sequentially formed. Next, Figure 2 B, 3
In Figures A and 4A, parts of the films 3, 4, and 5 are selectively removed using standard photolithography (PR) technology, and in Figures 2C and 3B, a thermal oxidation method at high temperature is used to prevent oxidation. Using the Si 3 N 4 film 5 as a mask, a thick field SiO 2 6 of about 1 μm was selectively grown. Next, Figure 2D,
In FIG. 3C, after removing the Si 3 N 4 film 5, a SiO 2 film 7 with a thickness of about 1000 Å is grown on the PolySi film 4 by thermal oxidation, and in FIGS. 2E and 3D, SiH 4 is grown. A PolySi film 8 having a thickness of about 0.5 μm was formed by thermal decomposition in N 2 . Next, in FIG. 2F, FIG. 3E, and FIG. 4B, the poly.Si film 8 is patterned using standard PR technology, and in FIG. 2G, the poly.Si film 8 whose shape has been determined is
The portions of the SiO 2 film 7, the Poly.Si film 4, and the SiO 2 film 3 that were not covered were sequentially and selectively removed to expose a part of the substrate surface. Next, in Figure 2 H, the standard
After covering a part of the exposed substrate surface with a resist film 9 using the PR technique and selectively drilling holes, energy E is emitted from the exposed substrate surface in FIGS.
After boron ion implantation at a dose of =50Kev φ=4×10 13 , the resist film 9 was removed and the temperature was 1100°C and N 2
The P.sup .+ type region 10 was formed in a self-aligned manner on both the Poly.Si films 4 and 8 by pressing for 3 hours. Next, in Figure 2 J, phosphorus is diffused from the exposed substrate surface,
N + type regions 11 and 12 were formed. Not only are the N + type regions 11 and 12 self-aligned with the Poly.Si films 4 and 8, but the region 12 is also positioned self-aligned with the P + type region 10. . Next, in Figure 2 K and Figure 3 F, the thickness is approximately 1μ on the entire surface.
Contact holes 14 , 15, 1 are formed in the SiO 2 film 13 using standard PR technology as shown in FIG. 2L, FIG. 3G, and FIG. 4D.
6, and in FIGS. 2M and 3H, an AI film 17 having a thickness of about 1 μm was deposited on the entire surface by vacuum evaporation.
In FIGS. 2N and 3I, the AI film 17 was patterned using standard PR technology to form extraction electrodes 18, 19, and 20, and the installation was completed.
In these drawings, the N + type region 11,
12 is the source region, SiO 2 film 3 is the first gate insulating film, poly.Si film 4 is the floating gate electrode, SiO 2
The film 7 serves as a second gate insulating film, the Poly.Si film 8 serves as a control gate electrode, and the Al films 18, 19, and 20 serve as source, drain, and control gate extraction electrodes, respectively. In this memory device, the initial threshold voltage seen from the control gate lead-out electrode 20 at the manufacturing stage is about 2V. For example, if 25V is applied to the control gate extraction electrode 20 and 10V is applied to the drain extraction electrode 19 with the source extraction electrode 18 grounded, electrons accelerated by the electric field in the channel and become hot will float in the so-called channel injection mode. The threshold voltage injected into the gate electrode 4 is shifted to about 10V, thus writing takes place. Erasing in this memory device can be done either optically or electrically. Optical erasure is performed at wavelength λ = 2500 Å, for example.
This is done by irradiating a certain amount of ultraviolet rays to excite the energy of the injected electrons in the floating gate electrode and emit them to the substrate, thereby returning the threshold voltage to its initial value. Electrical erasing can be achieved by, for example, grounding the control gate lead-out electrode 20 or setting it to a negative potential, and applying a positive high voltage to the source lead-out electrode 18 to break down the PN junction between the source region 11 and the substrate 1. Of the hot electron-hole pairs generated at the time, only the holes are selectively injected into the floating gate electrode 4 depending on the direction of the electric field existing in the first gate SiO 2 film 3, and the negative charge of the already injected electrons is removed. This is done by canceling and returning the threshold voltage to its initial value. In the semiconductor device of this example, as clearly shown in FIG.
The shape of the floating gate electrode 4 is determined in a self-aligned manner with the control gate electrode 8 along the a-a' direction, and with the thick field insulating film part along the b-b' direction, and its dimensions are determined. I understand that it is the minimum necessary. Therefore, for example, this semiconductor device can be applied to create a PROM (programmable memory) with a large storage capacity.
When realizing ICs such as Read Only Memory (Read Only Memory), the floating gate electrode is not a limiting factor in device size at all, and the maximum degree of integration is achieved.

(実施例 2): 第5図は本発明の半導体装置の他の1例を示す
平面模型図で、第1図と対比させ同一の装置部分
に対しては同一の番号を付してある。この第5図
の装置では基体と同型高濃度領域10はドレイン
領域12に対してのみならず、ソース領域11に
対しても自己整合的に形成されている。
(Embodiment 2): FIG. 5 is a plan view showing another example of the semiconductor device of the present invention. In comparison with FIG. 1, the same device parts are given the same numbers. In the device shown in FIG. 5, the high concentration region 10 of the same type as the substrate is formed not only with respect to the drain region 12 but also with the source region 11 in a self-aligned manner.

(実施例 3): 第6図は本発明の半導体装置のさらに他の一例
を示す平面模型図である。この装置では浮遊ゲー
ト電極4は厚いフイールド絶縁膜部分に対しては
自己整合的に形成されているが、制御ゲート電極
8に対してはドレイン側のみ自己整合的に形成さ
れている。
(Embodiment 3): FIG. 6 is a plan view showing still another example of the semiconductor device of the present invention. In this device, the floating gate electrode 4 is formed in self-alignment with respect to the thick field insulating film portion, but is formed in self-alignment with respect to the control gate electrode 8 only on the drain side.

上述のいくつかの実施例は単に例示のためのも
のであり、本発明がこれに限定されるものでない
ことは上述の説明からも明らかである。例えば装
置各部の材質や寸法、又製法を変えることもでき
るし、導電型や不純物の種類の変更も可能であ
る。
It is clear from the above description that the several embodiments described above are merely for illustrative purposes and the present invention is not limited thereto. For example, it is possible to change the material, dimensions, and manufacturing method of each part of the device, and it is also possible to change the conductivity type and type of impurity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の第1の実施例を
示す平面模型図である。第2図A乃至第2図Nは
第1図を切断線a―a′に沿つて切断し矢印の方向
を視た断面模型図であつて、第1の実施例の製造
を工程順に示したものである。第3図A乃至第3
図Iは第1図を切断線b―b′に沿つて切断した矢
印の方向を視た断面模型図であつて、それぞれ第
2図B,C,D,E,F,K,L,MおよびNの
製造工程に対応して示したものである。第4図
A,B,CおよびDはそれぞれ第2図B,F,I
およびLの製造工程に対応して示した平面模型図
である。第5図および第6図はそれぞれ本発明の
第2の実施例および第3の実施例を示す平面模型
図である。 尚、図において、1……P型Si半導体、2……
1の主表面、3,7……ゲートSiO2膜、4……
浮遊ゲート電極、5……Si3N4膜、6……フイー
ルドSiO2膜、8……制御ゲート電極、9……フ
オトレジスト膜、10……P+型領域、11,1
2……ソース、ドレインN+型領域、13……リ
ンを含んだSiO2膜、14,15,16……コン
タクト孔、17……Al蒸着膜、18,19,2
0……ソース、ドレイン、制御ゲート引き出し電
極である。
FIG. 1 is a plan view showing a first embodiment of the semiconductor device of the present invention. Figures 2A to 2N are cross-sectional model views taken along cutting line a-a' in Figure 1 and viewed in the direction of the arrow, showing the manufacturing process of the first embodiment in the order of steps. It is something. Figure 3 A to 3
Figure I is a cross-sectional model diagram of Figure 1 taken along cutting line b-b' and viewed in the direction of the arrow, and Figure 2 is a cross-sectional model diagram of B, C, D, E, F, K, L, M, respectively. and N are shown corresponding to the manufacturing process. Figure 4 A, B, C and D are respectively Figure 2 B, F, I
and FIG. 4 is a plan view showing the manufacturing process of L. FIG. 5 and FIG. 6 are plan model views showing a second embodiment and a third embodiment of the present invention, respectively. In the figure, 1...P-type Si semiconductor, 2...
Main surface of 1, 3, 7... gate SiO 2 film, 4...
Floating gate electrode, 5... Si 3 N 4 film, 6... Field SiO 2 film, 8... Control gate electrode, 9... Photoresist film, 10... P + type region, 11, 1
2... Source, drain N + type region, 13... SiO 2 film containing phosphorus, 14, 15, 16... Contact hole, 17... Al vapor deposited film, 18, 19, 2
0... Source, drain, control gate extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体の表面近傍に互に間隔を置いて設
けられた少くとも1対の基体と反対導電型を有す
るソース、ドレイン領域と、該両域の少くとも一
方に接する基体と同型かつ基体より高濃度の不純
物添加領域と、該ソース、ドレイン領域間の基体
表面上の第1のゲート絶縁膜と、該第1のゲート
絶縁膜上の導体又は半導体からなる浮遊ゲート電
極と、該浮遊ゲート電極上の第2のゲート絶縁膜
と、該第2のゲート絶縁膜上の導体又は半導体か
らなる制御ゲート電極とを具備してなる半導体メ
モリを活性領域の少くとも1部に設け、かつ非活
性領域には前記第1のゲート絶縁膜よりも厚いフ
イールド絶縁膜を有してなる半導体装置の製造方
法において、前記半導体基体の前記活性領域上に
前記第1のゲート絶縁膜を形成する材料、前記浮
遊ゲート電極を形成する材料およびシリコン窒化
膜を積層し、該シリコン窒化膜をマスクとして熱
酸化を行うことにより前記厚いフイールド絶縁膜
を形成する工程と、該厚いフイールド絶縁膜上よ
り前記第2のゲート絶縁膜を形成する材料を介し
て該活性領域上の該浮遊ゲート電極を形成する材
料上にかけて前記制御ゲート電極を形状形成する
工程と、該制御ゲート電極および該厚いフイール
ド絶縁膜をマスクとして該第2のゲート絶縁膜を
形成する材料、該浮遊ゲート電極を形成する材料
を順次選択的に除去することにより、該制御ゲー
ト電極に対して自己整合的に該浮遊ゲート電極を
形状形成する工程と、該制御ゲート電極および該
浮遊ゲート電極を有するゲート構造体をマスクの
一部として基体と同型の不純物を該半導体基体の
活性領域内に導入することにより前記高濃度の不
純物添加領域を形成する工程と、該ゲート構造体
および該厚いフイールド絶縁膜をマスクとして基
体と反対導電型の不純物を該半導体基体の活性領
域に導入することにより前記ソース、ドレイン領
域を形成する工程とを有し、これにより該浮遊ゲ
ート電極の巾、チヤンネル領域の巾、該ソース、
ドレイン領域のチヤンネル領域に接する部分の巾
は平面形状においてほぼ一致し、かつ、これらの
巾方向の端部は該フイールド絶縁膜の端部の一部
と平面形状においてほぼ一致し、該制御ゲート電
極は該フイールド絶縁膜上より該第2のゲート絶
縁膜上に延在し、かつ該浮遊ゲート電極のチヤネ
ル領域の長さ方向の端部および該ソース、ドレイ
ン領域のチヤンネル領域に接する端部は該制御ゲ
ート電極の縁辺と平面形状においてほぼ一致して
おり、該基体と同型でかつ基体より高濃度の不純
物添加領域は島状であつてそのほぼ全体が素子領
域内部に形成されている半導体メモリ装置を形成
することを特徴とする半導体装置の製造方法。
1 At least one pair of source and drain regions having conductivity types opposite to that of the substrate, provided near the surface of the semiconductor substrate at a distance from each other; a first gate insulating film on the substrate surface between the source and drain regions; a floating gate electrode made of a conductor or a semiconductor on the first gate insulating film; and a floating gate electrode on the floating gate electrode. A semiconductor memory comprising a second gate insulating film and a control gate electrode made of a conductor or semiconductor on the second gate insulating film is provided in at least a part of the active region, and In the method of manufacturing a semiconductor device having a field insulating film thicker than the first gate insulating film, a material for forming the first gate insulating film on the active region of the semiconductor substrate, a material for forming the first gate insulating film on the active region of the semiconductor substrate, and the floating gate. forming the thick field insulating film by laminating a material for forming an electrode and a silicon nitride film and performing thermal oxidation using the silicon nitride film as a mask; and depositing the second gate insulating film on the thick field insulating film. shaping the control gate electrode over the material forming the floating gate electrode on the active region through a material forming the film; and using the control gate electrode and the thick field insulating film as a mask. forming the shape of the floating gate electrode in a self-aligned manner with respect to the control gate electrode by sequentially selectively removing the material forming the gate insulating film and the material forming the floating gate electrode; forming the highly doped region by introducing impurities of the same type as the substrate into the active region of the semiconductor substrate using the control gate electrode and the gate structure having the floating gate electrode as part of a mask; forming the source and drain regions by introducing impurities of a conductivity type opposite to that of the substrate into the active region of the semiconductor substrate using the gate structure and the thick field insulating film as a mask; The width of the gate electrode, the width of the channel region, the source,
The widths of the portions of the drain region in contact with the channel region are substantially the same in plan view, and the ends of these widths are substantially the same as part of the end portions of the field insulating film in plan view, and extends from above the field insulating film onto the second gate insulating film, and the lengthwise ends of the channel region of the floating gate electrode and the ends of the source and drain regions in contact with the channel region are connected to the second gate insulating film. A semiconductor memory device in which the planar shape of the control gate electrode substantially coincides with the edge of the control gate electrode, the region having the same shape as the substrate and doped with impurities at a higher concentration than the substrate is island-shaped and is formed almost entirely inside the element region. 1. A method of manufacturing a semiconductor device, comprising: forming a semiconductor device.
JP1715578A 1977-10-31 1978-02-16 Semiconductor device Granted JPS54109785A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1715578A JPS54109785A (en) 1978-02-16 1978-02-16 Semiconductor device
DE19782847305 DE2847305C2 (en) 1977-10-31 1978-10-31 A method of manufacturing a floating gate semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1715578A JPS54109785A (en) 1978-02-16 1978-02-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS54109785A JPS54109785A (en) 1979-08-28
JPS6135710B2 true JPS6135710B2 (en) 1986-08-14

Family

ID=11936081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1715578A Granted JPS54109785A (en) 1977-10-31 1978-02-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS54109785A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171712A (en) * 1987-12-26 1989-07-06 Osaka Diamond Ind Co Ltd Machine method and machining drill for fine hole
EP3534158A1 (en) 2018-03-01 2019-09-04 Shimadzu Corporation Method for preparing sample and analysis method
EP3614150A1 (en) 2018-08-24 2020-02-26 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
EP3628690A1 (en) 2018-08-24 2020-04-01 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
EP3632936A1 (en) 2018-10-03 2020-04-08 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
WO2021010221A1 (en) 2019-07-12 2021-01-21 株式会社島津製作所 Preparation method for sample to be analyzed, analysis method, and kit for preparation of sample to be analyzed
WO2021014958A1 (en) * 2019-07-23 2021-01-28 株式会社島津製作所 Mass spectrometry method, mass spectrometer, and program
EP3812767A1 (en) 2019-10-21 2021-04-28 Shimadzu Corporation Method for preparing analysis sample, analysis method, and kit for preparing analysis sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075775A (en) * 1973-11-06 1975-06-21
JPS5259585A (en) * 1975-10-29 1977-05-17 Intel Corp Method of producing mos polycrystalline ic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075775A (en) * 1973-11-06 1975-06-21
JPS5259585A (en) * 1975-10-29 1977-05-17 Intel Corp Method of producing mos polycrystalline ic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171712A (en) * 1987-12-26 1989-07-06 Osaka Diamond Ind Co Ltd Machine method and machining drill for fine hole
EP3534158A1 (en) 2018-03-01 2019-09-04 Shimadzu Corporation Method for preparing sample and analysis method
EP3614150A1 (en) 2018-08-24 2020-02-26 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
EP3628690A1 (en) 2018-08-24 2020-04-01 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
EP3632936A1 (en) 2018-10-03 2020-04-08 Shimadzu Corporation Method for preparing analytical sample, analysis method, and kit for preparing analytical sample
WO2021010221A1 (en) 2019-07-12 2021-01-21 株式会社島津製作所 Preparation method for sample to be analyzed, analysis method, and kit for preparation of sample to be analyzed
WO2021014958A1 (en) * 2019-07-23 2021-01-28 株式会社島津製作所 Mass spectrometry method, mass spectrometer, and program
EP3812767A1 (en) 2019-10-21 2021-04-28 Shimadzu Corporation Method for preparing analysis sample, analysis method, and kit for preparing analysis sample

Also Published As

Publication number Publication date
JPS54109785A (en) 1979-08-28

Similar Documents

Publication Publication Date Title
US4947232A (en) High voltage MOS transistor
JP2577330B2 (en) Method of manufacturing double-sided gate static induction thyristor
US5656522A (en) Method of manufacturing a semiconductor integrated circuit device having single-element type non-volatile memory elements
JP3788552B2 (en) Split gate flash memory cell structure
JPS59124158A (en) Method of forming fet memory cell
US5569945A (en) Stepped floating gate EPROM device
JPS5897877A (en) Thin film mos phototransistor, method of producing same and driving method
JPH05218451A (en) Non-volatile semiconductor memory device and manufacture thereof
US4656729A (en) Dual electron injection structure and process with self-limiting oxidation barrier
JPS6135710B2 (en)
GB2027993A (en) Method of fabricating an integrated circuit
US3923553A (en) Method of manufacturing lateral or field-effect transistors
JPS6255710B2 (en)
JPS6110996B2 (en)
JP2956143B2 (en) Method of manufacturing insulated gate field effect transistor
JPS61119078A (en) Mos semiconductor device
JPS6243550B2 (en)
JP3636475B2 (en) Read-only memory cell device
JP3476522B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPS62122170A (en) Mis transistor and manufacture thereof
KR970000715B1 (en) Non-volatile semiconductor memory device
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JP3338128B2 (en) Semiconductor device
JP2994130B2 (en) Element for evaluating characteristics of nonvolatile memory
KR100255006B1 (en) Method of manufacturing semiconductor device