JPH01171712A - Machine method and machining drill for fine hole - Google Patents

Machine method and machining drill for fine hole

Info

Publication number
JPH01171712A
JPH01171712A JP62331761A JP33176187A JPH01171712A JP H01171712 A JPH01171712 A JP H01171712A JP 62331761 A JP62331761 A JP 62331761A JP 33176187 A JP33176187 A JP 33176187A JP H01171712 A JPH01171712 A JP H01171712A
Authority
JP
Japan
Prior art keywords
drill
cutting
diameter
powder
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62331761A
Other languages
Japanese (ja)
Inventor
Hideo Matsushita
松下 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Diamond Industrial Co Ltd
Original Assignee
Osaka Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Diamond Industrial Co Ltd filed Critical Osaka Diamond Industrial Co Ltd
Priority to JP62331761A priority Critical patent/JPH01171712A/en
Publication of JPH01171712A publication Critical patent/JPH01171712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PURPOSE:To enable cutting at the maximum cutting speed even with a fine diameter or with a hard cutting material by pushing a twist drill which has the specific ratio of cutting-edge diameter to length and in which a super adrasive grain powder with a specific mesh is fixed to the peripheral face of a cutting edge with a specific diameter, against a workpiece and rotating it for specific number of times. CONSTITUTION:A twist drill having the ratio of cutting-edge diameter to length at 1:1.6-1:13 and in which a super abrasive grain of 20-1000mesh is fixed to the peripheral face of a cutting edge 2 with a diameter below 3.0mm, is pressed against a workpiece and rotated at above 12000R/M. Since the twist drill 3 is thus formed by fixing the powder of a super adrasive grain 8 on the peripheral face of the cutting edge 2, at the time of carrying out the machining of a fine hole by pressingly rotating the drill 3 against a workpiece of a ceramic, etc., the discharge of chips and the circulation of a coolant are favorably carried out while chemically fixing the abrasive grains and a plated layer onto the uneven face of the drill. Hence, the abrasive grains can be fixed more firmly as compared to the conventional case in which merely a diamond powder is chemically bonded to a cylindrical base metal, thereby, enabling the abrasive grains to stand a higher cutting resistance, to enable the drill to carry out highly efficient machining.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はセラミックス、プラスチックス、金属等に微
細孔を加工する方法並びに微細孔を加工するために使用
するドリルを提供しようとするものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention aims to provide a method for forming microholes in ceramics, plastics, metals, etc., and a drill used for forming microholes. .

〈従来の技術とその問題点〉 従来、セラミックスやプラスチック、金属などの難削材
に0.3〜3.0mmφの微細孔を加工するには、遊離
砥粒を用いる超音波加工、放電加工、レーザ加工法など
の特殊加工法や電着インターナル法が用いられてきた。
<Conventional techniques and their problems> Conventionally, in order to machine micro holes of 0.3 to 3.0 mm diameter in difficult-to-cut materials such as ceramics, plastics, and metals, ultrasonic machining using free abrasive grains, electrical discharge machining, Special processing methods such as laser processing and internal electrodeposition methods have been used.

しかし前者の特殊加工法では真円度や深さ方向の孔径の
制御が困難で加工速度もおそいという問題があった。ま
た後者の加工法においては円柱状の合金の外周にダイヤ
モンドパウダーを固着した形状のため、切粉の排除、ク
ーラントの潤滑が充分になされないため、ダイヤモンド
パウダーが能力を発揮する前に脱落し、工具寿命が短い
という問題があった。
However, the former special processing method has problems in that it is difficult to control roundness and the hole diameter in the depth direction, and the processing speed is slow. In addition, in the latter processing method, because the diamond powder is fixed to the outer periphery of the cylindrical alloy, it is not possible to remove chips or lubricate the coolant sufficiently, so the diamond powder falls off before it reaches its full potential. There was a problem that the tool life was short.

このほか0.3〜3.0.#Iφの範囲でバイブ状のコ
アドリルは製造上高価となり、また工具の剛性も低くな
るため、難削材の加工には不適とされていた。
In addition, 0.3 to 3.0. Vib-shaped core drills in the #Iφ range are expensive to manufacture and have low tool rigidity, so they have been considered unsuitable for machining difficult-to-cut materials.

く問題点を解決するための手段〉 この発明は上記した従来の微細孔加工の問題点を解決す
るべく検討の結果得られたものである。
Means for Solving the Problems> The present invention was obtained as a result of studies to solve the problems of the conventional microhole processing described above.

即ち、この発明は、切刃周面上に超砥粒粉末を植設した
ツイストドリルをワークに押しつけて回転せしめること
を特徴とする微細孔の加工法およびツイストドリルの切
刃径と長さの比が1:1.6乃至1:13であり、切刃
の周面上に超砥粒粉末が植設されてなる・微細孔加工用
ドリルを提供するものである。
That is, the present invention provides a microhole processing method characterized by pressing a twist drill in which superabrasive powder is implanted on the circumferential surface of the cutting edge against a workpiece and rotating it, and a method for machining microholes, which is characterized by changing the diameter and length of the cutting edge of the twist drill. The present invention provides a micro-hole drilling drill in which the ratio is 1:1.6 to 1:13 and superabrasive powder is implanted on the circumferential surface of the cutting blade.

〈作用〉 この発明のドリルAは第1図にその形状を示すように合
金の形状をその円筒外周にラセン状の溝1をつけたツイ
ストドリル型としたことが第1の特徴である。
<Operation> The first feature of the drill A of the present invention is that the shape of the alloy is a twist drill type with a spiral groove 1 formed on the cylindrical outer periphery, as shown in FIG.

そしてこのツイストドリルAの切刃2周面上に超砥粒粉
末を電着により植設固着させたことが第2の特徴である
The second feature of this twist drill A is that superabrasive powder is implanted and fixed onto the two circumferential surfaces of the cutting blade by electrodeposition.

このように切刃周面上に超砥粒粉末を植設固着せ 、し
めたツイストドリルとしたためにセラミックスなどのワ
ークにこのドリルを押しつけ、回転せしめて微細孔の加
工を行なった場合、切粉の排出、クーラントの回りがよ
く、また砥粒とメツキ層がドリルの凹凸面上に化学的に
固着されているために、従来、円筒台金にダイヤモンド
パウダーを化学的接着せしめただけの場合に比べて強固
に固定されており、これによって砥粒はより高い切削紙
片に耐えることができ、高能率加工を行うことかできる
の(゛ある。
In this way, superabrasive powder is implanted and fixed on the circumferential surface of the cutting edge to create a tightened twist drill, so when this drill is pressed against a workpiece such as ceramics and rotated to machine a microscopic hole, chips are generated. Because the abrasive grains and plating layer are chemically bonded to the uneven surface of the drill, the diamond powder is chemically bonded to the cylindrical base metal. In comparison, the abrasive grains are firmly fixed, which allows the abrasive grains to withstand higher cutting paper fragments, allowing for high-efficiency machining.

この発明においてツイストドリルの台金としてはその剛
性を高めるために従来のピアノ線に代えてハイスまたは
超硬合金を用いることが好ましい。
In the present invention, it is preferable to use high speed steel or cemented carbide as the base metal of the twist drill in place of conventional piano wire in order to increase its rigidity.

またツイストドリルのラセン状溝部を設けた切刃周面上
に電着等により植設固着せしめる超砥粒粉末としては2
0〜1000のメツシュのダイヤモンド粉末や立方晶窒
化硼素粉末が好適に用いられる。
In addition, as a superabrasive powder that is implanted and fixed by electrodeposition etc. on the circumferential surface of the cutting edge with a helical groove of a twist drill, 2
Diamond powder or cubic boron nitride powder with a mesh size of 0 to 1000 is preferably used.

この発明によるツイストドリルはその切刃径と長さの比
がl:1.6乃至1:13が好ましく、またワークに押
しつけて微細孔を加工する場合の回転数は12000R
PI(以上が好ましい。
The twist drill according to the present invention preferably has a cutting edge diameter to length ratio of 1:1.6 to 1:13, and the number of revolutions when pressing against a workpiece to machine a microhole is 12,000 R.
PI (preferably.

〈実施例〉 次に実施例によりこの発明の詳細な説明する。<Example> Next, the present invention will be explained in detail with reference to Examples.

まず超硬合金を素材として第2図に示すように全長し、
切刃先端の外径φDでドリル本体部3にラセン状溝部1
を加工した台金Bを用意した。
First, we used cemented carbide as a material and made the entire length as shown in Figure 2.
A helical groove 1 is formed in the drill body 3 with the outer diameter φD of the tip of the cutting blade.
Base metal B was prepared by processing.

次にこの台金8のシャンク部4に第3図に示すように絶
縁塗膜5を形成させた。
Next, an insulating coating film 5 was formed on the shank portion 4 of this base metal 8 as shown in FIG.

その後この台金Bのドリル本体部3表面のクリーニング
と活性化のために該表面について電解説詣→水洗→酸洗
い→水洗の前処理を行ってからこのドリル本体部表面に
下地層として厚み2〜5μmの下地ニッケルめっきを施
した。
After that, in order to clean and activate the surface of the drill body part 3 of this base metal B, the surface is subjected to a pretreatment of electric commentary → water washing → pickling → water washing, and then a base layer is applied to the surface of this drill body part with a thickness of 2 A base nickel plating of ~5 μm was applied.

かく処理した台金Bのドリル本体部を第4図に示すニッ
ケルめっき液9を収容せるめつき槽6内の砥粒8を入れ
た砥粒量は治具7内に浸漬し、前記治具Bを陰極とし、
めつき槽6内のNL板10を陽極として所定の条件でニ
ッケルめっきを行ない、砥粒量は治具7内の砥粒8をド
リル本体部の表面に電着固着した。
The drill body of the base metal B thus treated is immersed in a jig 7 containing abrasive grains 8 in a plating tank 6 containing a nickel plating solution 9 as shown in FIG. B is a cathode,
Nickel plating was performed under predetermined conditions using the NL plate 10 in the plating bath 6 as an anode, and the abrasive grains 8 in the jig 7 were fixed by electrodeposition on the surface of the drill body.

次に砥粒の固着後台金8を第5図に示すニッケルめっき
液9を入れた別のめつき栖11に移し、ドリル本体部表
面に固着した砥粒径の60〜70%のめつき厚みになる
までニッケルめっきを施した。
Next, after fixing the abrasive grains, the base metal 8 is transferred to another plating plate 11 filled with nickel plating solution 9 as shown in FIG. Nickel plating was applied until it became .

その後台金8をめっき槽より取り出してからシャンク部
4表面の絶縁塗膜5をアセトンまたはシンナー等の溶剤
で除去することによってこの発明のドリルを得た。
Thereafter, the base metal 8 was taken out from the plating bath, and the insulating coating film 5 on the surface of the shank portion 4 was removed with a solvent such as acetone or thinner, thereby obtaining a drill of the present invention.

かくして得た第1表に示すこの発明のドリルと従来品の
ドリルを用いてジルコニアセラミックス被削材に0.3
〜2.Omrnφの微細孔加工を試みたところ、この発
明のドリルが性能、寿命ともに従来品を大幅に上回る結
果が得られた。
Using the drill of the present invention and the conventional drill shown in Table 1 obtained in this way, the zirconia ceramic work material was
~2. When we tried drilling Omrnφ microholes, we found that the drill of this invention significantly exceeded conventional products in both performance and lifespan.

特にこの発明のドリルにおいては回転数so、oo。Especially in the drill of this invention, the rotational speed is so, oo.

rlPHにて非常によい結果が認められた。Very good results were observed with rlPH.

第   1   表 なお上記実施例においては超砥粒粉末をドリル本体部即
ち切刃部全周に固着したものを示したが、溝部等直接研
削に関与しない部分には超砥粒粉末を施さなくても差し
支えない。
Table 1 Note that in the above examples, the superabrasive powder was fixed to the entire circumference of the drill body, that is, the cutting edge, but the superabrasive powder was not applied to the grooves and other parts that are not directly involved in grinding. There is no problem.

〈発明の効果〉 以上説明したようにこの発明のドリルはツイスト型とし
たうえ、ドリル本体部に超砥粒粉末を植設固着せしめた
ことによって、ワークに微細孔を施すに当たって研削が
細かい径でも行うことができ、また難削材においても最
高切込速度を大きく設定でき、従来品に比べて高能率で
2〜3倍の生産性を向上さすことができる。
<Effects of the Invention> As explained above, the drill of the present invention is of a twist type, and by implanting and fixing superabrasive powder into the drill body, it is possible to grind even small diameter holes when making micro holes in a workpiece. Furthermore, the maximum cutting speed can be set high even for difficult-to-cut materials, and productivity can be improved two to three times with high efficiency compared to conventional products.

また工具1本当たりの寿命が3〜8倍に向上し、加工品
質も一段と向上させることができるのである。
Furthermore, the life of each tool can be increased by 3 to 8 times, and the machining quality can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のドリルの側面図、第2図乃至第5図
はこの発明のドリルの製造工程の1例を示す説明図であ
る。
FIG. 1 is a side view of the drill of the present invention, and FIGS. 2 to 5 are explanatory diagrams showing one example of the manufacturing process of the drill of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)切刃周面上に超砥粒粉末を植設したツイストドリ
ルをワークに押しつけて回転せしめることを特徴とする
微細孔の加工法。
(1) A microhole machining method characterized by pressing a twist drill with superabrasive powder implanted on the circumferential surface of the cutting edge against a workpiece and rotating it.
(2)ツイストドリルの切刃径は3.0m/m以下であ
り、回転数は12000RPM以上である特許請求の範
囲第1項記載の加工法。
(2) The processing method according to claim 1, wherein the twist drill has a cutting edge diameter of 3.0 m/m or less and a rotation speed of 12,000 RPM or more.
(3)ツイストドリルの切刃径と長さの比が1:1.6
乃至1:13であり、切刃の全周面上に超砥粒粉末が植
設されてなることを特徴とする微細孔加工用ドリル。
(3) The cutting edge diameter and length ratio of the twist drill is 1:1.6
1 to 1:13, and is characterized in that superabrasive powder is implanted on the entire circumferential surface of the cutting blade.
(4)超砥粒粉末は20〜1000メッシュの大きさの
ダイヤモンド粉末またはCBNである特許請求の範囲第
3項記載の微細孔加工用ドリル。
(4) The drill for microhole drilling according to claim 3, wherein the superabrasive powder is diamond powder or CBN with a size of 20 to 1000 mesh.
(5)超砥粒粉末は、超硬合金またはハイスからなるツ
イストドリル基体の周面に、電着により植設されてなる
特許請求の範囲第3項または第4項記載の微細孔加工用
ドリル。
(5) The micro-hole drilling drill according to claim 3 or 4, wherein the superabrasive powder is implanted by electrodeposition on the circumferential surface of a twist drill base made of cemented carbide or high speed steel. .
JP62331761A 1987-12-26 1987-12-26 Machine method and machining drill for fine hole Pending JPH01171712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331761A JPH01171712A (en) 1987-12-26 1987-12-26 Machine method and machining drill for fine hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331761A JPH01171712A (en) 1987-12-26 1987-12-26 Machine method and machining drill for fine hole

Publications (1)

Publication Number Publication Date
JPH01171712A true JPH01171712A (en) 1989-07-06

Family

ID=18247324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331761A Pending JPH01171712A (en) 1987-12-26 1987-12-26 Machine method and machining drill for fine hole

Country Status (1)

Country Link
JP (1) JPH01171712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699650A (en) * 2012-06-01 2012-10-03 青岛惠运办公科技集团有限公司 Method for machining hollow drill needle
CN109227064A (en) * 2018-11-27 2019-01-18 沈阳航天新光集团有限公司 Deep hole sealing lip processing method
JP2020055049A (en) * 2018-09-28 2020-04-09 株式会社Kamogawa Cutting tool coated with electrodeposition abrasive grain layer and method of reproducing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216088B1 (en) * 1971-05-14 1977-05-06
JPS6056413B2 (en) * 1982-04-27 1985-12-10 三菱マテリアル株式会社 Co-based alloy for magnetic recording media
JPS6135710B2 (en) * 1978-02-16 1986-08-14 Nippon Electric Co

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216088B1 (en) * 1971-05-14 1977-05-06
JPS6135710B2 (en) * 1978-02-16 1986-08-14 Nippon Electric Co
JPS6056413B2 (en) * 1982-04-27 1985-12-10 三菱マテリアル株式会社 Co-based alloy for magnetic recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699650A (en) * 2012-06-01 2012-10-03 青岛惠运办公科技集团有限公司 Method for machining hollow drill needle
JP2020055049A (en) * 2018-09-28 2020-04-09 株式会社Kamogawa Cutting tool coated with electrodeposition abrasive grain layer and method of reproducing the same
CN109227064A (en) * 2018-11-27 2019-01-18 沈阳航天新光集团有限公司 Deep hole sealing lip processing method

Similar Documents

Publication Publication Date Title
JPH0310458B2 (en)
US4547998A (en) Electrodeposited grinding tool
JPS59219500A (en) Diamond sintered body and treatment thereof
US4373933A (en) Method of producing precision abrasive tools
CN108177030A (en) A kind of mirror grinding method of brait grinding wheel
JPS63174877A (en) Electroformed thin blade grinding stone
JPH01171712A (en) Machine method and machining drill for fine hole
Aziz et al. Advanced burr-free hole machining using newly developed micro compound tool
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
CN113732366B (en) Ultrasonic vibration machining tool for inner wall of deep small hole and preparation method thereof
JPH079349A (en) Compound abrasive grain tool
JPH0760547A (en) Thread cutting tool and manufacture thereof
JPS59192461A (en) Tubular boring grindstone and manufacture
JP2004283951A (en) End mill
TWM584717U (en) Tool having both hard coating and super-hard coating
JPH0957515A (en) Drill
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JP2969440B2 (en) Rotary multi-blade tool for aluminum alloy
JP4467865B2 (en) Mold member processing method and manufacturing method
CN115194955B (en) Ultra-precise machining method for silicon carbide ceramic deep small holes
JP4494590B2 (en) Thin blade blade manufacturing method
JPS62224576A (en) Electroformed thin blade grindstone and its manufacture
JPH03281175A (en) Sharp edged grinding stone with hub and manufacture thereof
JP2000061931A (en) Core bit having clearance in base metal
JPS62213965A (en) Grinding wheel with electroformed thin cutting edge and its manufacturing method