JPS6255710B2 - - Google Patents

Info

Publication number
JPS6255710B2
JPS6255710B2 JP52084833A JP8483377A JPS6255710B2 JP S6255710 B2 JPS6255710 B2 JP S6255710B2 JP 52084833 A JP52084833 A JP 52084833A JP 8483377 A JP8483377 A JP 8483377A JP S6255710 B2 JPS6255710 B2 JP S6255710B2
Authority
JP
Japan
Prior art keywords
pattern
gate electrode
self
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52084833A
Other languages
Japanese (ja)
Other versions
JPS5419372A (en
Inventor
Masanori Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8483377A priority Critical patent/JPS5419372A/en
Publication of JPS5419372A publication Critical patent/JPS5419372A/en
Publication of JPS6255710B2 publication Critical patent/JPS6255710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Description

【発明の詳細な説明】 この発明は半導体メモリの製造方法に関し、特
に絶縁ゲート型不揮発性半導体メモリの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor memory, and more particularly to a method of manufacturing an insulated gate nonvolatile semiconductor memory.

本出願人は先に特願昭52−9911号明細書(昭和
52年1月31日出願)に於いて新しい不揮発性半導
体記憶装置およびその製造法を提案した。この提
案の装置では、制御ゲート電極と浮遊ゲート電極
は少くともチヤンネル方向に沿つてセルフ・アラ
インに形状決定されており、さらにこれら両電極
に対しセルフ・アラインにソース、ドレイン領域
が形成されている。この様な構造とすることによ
り装置の寸法を最小限に抑えかつ特性面では最大
限の効果が発揮できることを示した。
The applicant previously filed the specification of Japanese Patent Application No. 52-9911 (Showa
(filed on January 31, 1952), we proposed a new nonvolatile semiconductor memory device and its manufacturing method. In this proposed device, the control gate electrode and the floating gate electrode are self-aligned at least along the channel direction, and the source and drain regions are formed in self-alignment with respect to both electrodes. . It was shown that by adopting such a structure, the dimensions of the device can be minimized and the maximum effect can be achieved in terms of characteristics.

一方この種のいわゆる一般にSAMOS
(Stacked―Gate Avalanche―Injection MOS)
メモリと呼ばれているもので、「チヤンネル注入
法」という名称で親しまれている電子注入法を利
用する場合、チヤンネル領域の基体表面濃度が高
い程注入は起り易くなり、いわゆる〓書込″が容
易になるため例えばイオン注入法等によつてチヤ
ンネル領域となる基体表面に、基体と同型かつ高
濃度の不純物を添加する方法が知られており、例
えばProceedings of the 1976 International
Electron Device Meeting,pp.173―176にその
一例が示されている。所が一方、このチヤンネル
領域の基体表面濃度を上げることは、メモリトラ
ンジスタのスレツシヨルド電圧の上昇、従つてメ
モリトランジスタのコンダクタンスの低下をもた
らし、必要なコンダクタンスを得るためにはメモ
リトランジスタの寸法を大きくしなければならな
いという重大な欠点を伴う。従つて本発明の目的
はチヤンネル注入法による半導体メモリでかつ上
記欠点を最小限に抑えることの可能な半導体メモ
リ装置の製造法を提供することである。
On the other hand, this kind of so-called SAMOS in general
(Stacked-Gate Avalanche-Injection MOS)
When using an electron injection method known as "channel injection method" for what is called memory, the higher the substrate surface concentration in the channel region, the more likely the injection will occur, and the so-called 〓writing'' will occur. To facilitate this, a method is known in which impurities of the same type and high concentration as the substrate are added to the surface of the substrate, which will become the channel region, by ion implantation, etc., for example, as described in Proceedings of the 1976 International
An example is given in Electron Device Meeting, pp. 173-176. However, increasing the substrate surface concentration in this channel region increases the threshold voltage of the memory transistor and therefore decreases the conductance of the memory transistor, and in order to obtain the necessary conductance, the dimensions of the memory transistor must be increased. This comes with the serious drawback of having to do so. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor memory device using a channel implantation method, which can minimize the above-mentioned drawbacks.

この発明の製造方法により得られる絶縁ゲート
型不揮発性半導体メモリは、基体の主平面近傍に
互に間隔を置いて設けられた、基体と逆導電型を
有する一対の領域と、これらの領域の少くとも一
方に接して設けられた基体と同型かつ高不純物濃
度を有する領域と、前記一対の領域間の主平面上
に絶縁膜中に埋込まれた浮遊ゲート電極と、外表
面に外部ゲート電極とを具備し、前記浮遊ゲート
電極が前記外部ゲート電極に対し自己整合的に形
状決定され、かつ前記高濃度領域および前記一対
の領域も前記外部ゲート電極に対し自己整合的に
形状決定された構造を有している。
The insulated gate nonvolatile semiconductor memory obtained by the manufacturing method of the present invention includes a pair of regions having a conductivity type opposite to that of the substrate, which are spaced apart from each other near the main plane of the substrate, and a small number of these regions. a region having the same shape as the substrate and having a high impurity concentration provided in contact with one of the two regions, a floating gate electrode embedded in an insulating film on the main plane between the pair of regions, and an external gate electrode on the outer surface. , wherein the floating gate electrode is shaped in a self-aligned manner with respect to the external gate electrode, and the high concentration region and the pair of regions are also shaped in a self-aligned manner with respect to the external gate electrode. have.

本発明の絶縁ゲート型不揮発性半導体メモリの
製造法は、上に述べた如き好ましい構造を安定か
つ容易に実現するための方法に関するもので、所
定の半導体基体の主平面上に第1のゲート絶縁膜
を形成する工程と、この上に導体又は半導体から
なる第1の導電膜を形成する工程と、この上に第
のゲート絶縁膜を形成する工程と、この上に導体
又は半導体からなる第2の導電膜を形成する工程
と、第2の導電膜にパターニングを施して外部ゲ
ート電極の形状を決定する工程と、外部ゲート電
極に自己整合的に前記第1の導電膜にパターニン
グを施して浮遊ゲート電極の形状を決定する工程
と、互に自己整合的に形状決定された外部ゲート
電極および浮遊ゲート電極のいづれに対しても自
己整合的に基体と同型かつより高濃度の不純物を
主平面近傍に添加する工程と、前記2種のゲート
電極のいづれに対しても自己整合的に基体と逆導
電型を与える不純物を主平面近傍に添加して前記
基体と同型高濃度領域に対しても自己整合的な基
体と逆導電型を有する一対の領域を形成する工程
を含んでいる。
The method for manufacturing an insulated gate nonvolatile semiconductor memory of the present invention relates to a method for stably and easily realizing the preferred structure as described above, and includes a first gate insulator on a main plane of a predetermined semiconductor substrate. A step of forming a first conductive film made of a conductor or semiconductor on this, a step of forming a second gate insulating film on this, and a step of forming a second conductive film made of a conductor or semiconductor on this. forming a conductive film, patterning the second conductive film to determine the shape of the external gate electrode, and patterning the first conductive film in self-alignment with the external gate electrode to form a floating The process of determining the shape of the gate electrode, and the step of applying impurities of the same shape and higher concentration as the substrate in a self-aligned manner to both the external gate electrode and the floating gate electrode whose shapes are determined in a self-aligned manner to each other near the main plane. The step of adding an impurity that gives each of the two types of gate electrodes a conductivity type opposite to that of the substrate in a self-aligned manner is added in the vicinity of the principal plane, and the high concentration region of the same type as the substrate also has a self-doping step. forming a matched substrate and a pair of regions having opposite conductivity types.

次にこの発明の特徴をより解り易くする為に、
いくつかの実施例につき図面を参照しながら詳し
く説明する。
Next, in order to make the characteristics of this invention easier to understand,
Several embodiments will be described in detail with reference to the drawings.

第1図A〜Iは本発明に関係する絶縁ゲート型
不揮発性半導体メモリの製造工程の一例を示す断
面模型図である。
1A to 1I are cross-sectional model diagrams showing an example of the manufacturing process of an insulated gate nonvolatile semiconductor memory related to the present invention.

第1図Aでは比抵抗約100Ω―cmのP型Si半導
体基体1の一主平面2上に熱酸化法により膜厚が
約1μのSiO2膜3を形成した後、標準のPR技術
により後にソース、チヤンネル、ドレイン領域と
なるべき部分上のSiO2膜3に開孔4を穿つて基
体表面2を一部露出させ、この露出した基体表面
上に、熱酸化法により膜厚約1000Åの第1ゲート
SiO2膜5を形成する。Bでは全面にSiH4のN2
における熱分解により膜厚約1000Åの第1の多結
晶シリコン膜6を成長させる。次に標準のPR技
術により多結晶シリコン膜6の図面すなわちチヤ
ンネル方向に対し垂直方向の形状決定を行う。C
では第1の多結晶シリコン膜6への導電型不純物
の添加と、熱酸化法による膜厚約1000Åの第2ゲ
ートSiO2膜7の形成とを行う。Dではこの上に
SiH4のN2中での熱分解法により膜厚約5000Åの
第2の多結晶シリコン膜8を形成する。Eでは第
2の多結晶シリコン膜8上にパターニングのため
の形状決定したマスク層9を形成する。次にFで
は9をマスクにして、まず第2の多結晶シリコン
膜8の形状決定、次に第2のゲートSiO2膜7の
部分的除去、次に第1の多結晶シリコン膜6の形
状決定、次に第1のゲートSiO2膜5の部分除去
を行つて互に自己整合的に形状決定された第2の
多結晶シリコン膜8から成る外部ゲート電極と第
1の多結晶シリコン膜6から成る浮遊ゲート電極
が得られる。Gでは上記の如く互に自己整合的に
形状決定された両電極に自己整合的にボロンをエ
ネルギーE=50Kev、ドーズ量φ=4×1013cm-2
でイオン注入した後、1100℃,N2中で3時間押
し込んでP型高濃度領域10,11を形成する。
Hではマスク層9を除去した後、上記の如く互に
自己整合的に形状決定された両電極に自己整合的
にリンを拡散して、外部ゲート電極へのリンの添
加と、P型領域10,11に対しても自己整合的
なN型のソース領域12、ドレイン領域13を形
成する。以下は公知のNチヤンネルシリコンゲー
ト技術と同様にSiO2膜14の形成、コンタクト
孔15,16,17の開孔、Alのソース引き出
し電極18、外部ゲート引き出し電極19、ドレ
イン引き出し電極20を形成しIの如く装置を完
成する。
In FIG. 1A, a SiO 2 film 3 with a thickness of about 1 μm is formed on one principal plane 2 of a P-type Si semiconductor substrate 1 with a specific resistance of about 100 Ω-cm by a thermal oxidation method, and then later by a standard PR technique. Openings 4 are made in the SiO 2 film 3 on the portions that are to become the source, channel, and drain regions to expose a portion of the substrate surface 2, and a layer of about 1000 Å thick is formed on the exposed substrate surface by thermal oxidation. 1 gate
A SiO 2 film 5 is formed. In B, a first polycrystalline silicon film 6 having a thickness of about 1000 Å is grown on the entire surface by thermal decomposition of SiH 4 in N 2 . Next, the shape of the polycrystalline silicon film 6 in the drawing, that is, in the direction perpendicular to the channel direction is determined using standard PR technology. C
Next, a conductive type impurity is added to the first polycrystalline silicon film 6, and a second gate SiO 2 film 7 having a thickness of about 1000 Å is formed by thermal oxidation. On top of this in D
A second polycrystalline silicon film 8 having a thickness of approximately 5000 Å is formed by thermal decomposition of SiH 4 in N 2 . In E, a mask layer 9 whose shape has been determined for patterning is formed on the second polycrystalline silicon film 8. Next, in F, using 9 as a mask, first determine the shape of the second polycrystalline silicon film 8, then partially remove the second gate SiO 2 film 7, and then shape the first polycrystalline silicon film 6. Then, by partially removing the first gate SiO 2 film 5, an external gate electrode consisting of the second polycrystalline silicon film 8 and the first polycrystalline silicon film 6 are formed in a mutually self-aligned manner. A floating gate electrode consisting of is obtained. In G, boron is applied in a self-aligned manner to both electrodes whose shapes are determined in a self-aligned manner as described above, at an energy of E=50 Kev and a dose of φ=4×10 13 cm -2
After ion implantation at 1100° C. in N 2 for 3 hours, P-type high concentration regions 10 and 11 are formed.
In H, after removing the mask layer 9, phosphorus is self-alignedly diffused into both electrodes whose shapes are determined in a self-aligned manner as described above, and phosphorus is added to the external gate electrode and the P-type region 10 , 11 as well, self-aligned N-type source regions 12 and drain regions 13 are formed. The following steps are similar to the known N-channel silicon gate technology: forming the SiO 2 film 14, opening contact holes 15, 16, 17, forming the Al source extraction electrode 18, external gate extraction electrode 19, and drain extraction electrode 20. Complete the device as shown in I.

この装置では外部ゲート引き出し電極19に正
電圧を印加してソース、ドレイン間を導通状態に
し、さらにソース、ドレイン間の高電界で加速さ
せたホツトなエレクトロンを浮遊ゲート電極6に
注入する、いわゆるチヤンネル注入法により外部
ゲート引き出し電極19からみたメモリトランジ
スタのスレツシヨルド電圧を上げることにより書
込みが行われる。この際外部ゲート電極8と浮遊
ゲート電極6とは自己整合的に形状決定されてい
る為、外部ゲート電極8への印加電圧による注入
効果は最大限に発揮されると共に装置寸法を何ら
増大させることもない。次にこのメモリ装置を消
去する場合、光学的方法と電気的方法にいづれも
可能である。光学的方法では例えば紫外線を装置
に照射することにより浮遊ゲート電極6中に注入
されているエレクトロンをエネルギー励起し、基
体1や外部ゲート電極8へ放出することにより行
われる。この際この発明のメモリ装置では外部ゲ
ート電極8と浮遊ゲート電極6とは自己整合的に
形状決定されているので照射紫外線の外部ゲート
電極8による遮蔽効果が少いので消去は短時間で
容易に行えるという大きな利点がある。次に電気
的消去法では例えば外部ゲート引き出し電極19
を接地電位にするか、あるいは負電圧を印加した
状態でソース引き出し電極18に正の高電圧を印
加し、ソースN型領域12と、P型領域10およ
び基体1とのP―N接合をブレークダウンさせ、
この時発生するホツトなエレクトロン―ホール対
の内第1ゲートSiO2膜5中の電界の向きにより
ホールのみを選択的に浮遊ゲート電極6に注入
し、既に注入されているエレクトロンと電荷相殺
させることにより行われる。このホール注入の際
にも、先にエレクトロン注入に際して述べたと全
く同一の理由により本発明装置では注入効果が最
大限に発揮され消去は短時間で容易に行えるとい
う秀れた長所を有している。このメモリ装置の読
出し動作時に於いては、例えば外部ゲート引き出
し電極19に正電圧を印加し、消去状態にある場
合にはソース、ドレイン間は導通、書込まれたも
のでは非導通であることを区別することにより行
われる。この読出し動作の際、消去状態にあるメ
モリ装置は出来るだけコンダクタンスの高いこと
が望ましいが、本発明装置では基体より高濃度の
P型領域10,11がソース、ドレイン領域1
2,13にそれぞれ自己整合的に形成され、ごく
近傍に局在しているのでP型領域10,11によ
るコンダクタンスの低下は最小限に抑えられるの
で十分小さな装置寸法でも必要十分なコンダクタ
ンスが得られるという利点がある。又ソース、ド
レイン領域12,13が外部ゲート電極8、浮遊
ゲート電極6のいづれに対しても自己整合的に形
成されている為、いわゆるミラー容量が少く、高
周波動作等の特性も非常にすぐれている。
In this device, a positive voltage is applied to the external gate extraction electrode 19 to bring the source and drain into a conductive state, and hot electrons accelerated by a high electric field between the source and drain are injected into the floating gate electrode 6, which is a so-called channel. Writing is performed by increasing the threshold voltage of the memory transistor as viewed from the external gate lead-out electrode 19 using the injection method. At this time, since the shapes of the external gate electrode 8 and the floating gate electrode 6 are determined in a self-aligned manner, the injection effect due to the voltage applied to the external gate electrode 8 is maximized, and the device size is not increased in any way. Nor. Next, when erasing this memory device, both optical and electrical methods are possible. In the optical method, for example, by irradiating the device with ultraviolet rays, electrons injected into the floating gate electrode 6 are excited with energy and emitted to the substrate 1 or the external gate electrode 8. At this time, in the memory device of the present invention, the shapes of the external gate electrode 8 and the floating gate electrode 6 are determined in a self-aligned manner, so that the shielding effect of the external gate electrode 8 on the irradiated ultraviolet rays is small, so that erasing can be easily performed in a short time. The big advantage is that you can do it. Next, in the electrical erasing method, for example, the external gate lead electrode 19
is grounded, or a high positive voltage is applied to the source extraction electrode 18 with a negative voltage applied to break the P-N junction between the source N-type region 12, the P-type region 10, and the substrate 1. let it down,
Of the hot electron-hole pairs generated at this time, only the holes are selectively injected into the floating gate electrode 6 depending on the direction of the electric field in the first gate SiO 2 film 5, and the charges are canceled out with the electrons already injected. This is done by During this hole injection, for exactly the same reasons as mentioned above for electron injection, the device of the present invention has the excellent advantage that the injection effect is maximized and erasing can be easily performed in a short time. . During a read operation of this memory device, for example, a positive voltage is applied to the external gate lead-out electrode 19, and it is confirmed that the source and drain are conductive when in the erased state, and non-conductive when written. This is done by making a distinction. During this read operation, it is desirable that the conductance of the memory device in the erased state is as high as possible; however, in the device of the present invention, the P-type regions 10 and 11, which have a higher concentration than the substrate, are the source and drain regions 1.
2 and 13 in a self-aligned manner, and are localized very close to each other, the decrease in conductance due to the P-type regions 10 and 11 is minimized, so that the necessary and sufficient conductance can be obtained even with a sufficiently small device size. There is an advantage. Furthermore, since the source and drain regions 12 and 13 are formed in a self-aligned manner with respect to both the external gate electrode 8 and the floating gate electrode 6, so-called mirror capacitance is small, and characteristics such as high frequency operation are also excellent. There is.

この様にこの絶縁ゲート型不揮発性半導体メモ
リは、書込、消去、読出の全ての動作に関し、従
来装置に比べはるかに優つている。
In this way, this insulated gate nonvolatile semiconductor memory is far superior to conventional devices in all write, erase, and read operations.

第2図は本発明に関係する絶縁ゲート型不揮発
性半導体メモリの参考例を示す断面模型図であ
る。この第2図に於いて装置外部を示す番号は第
1図Iと対応している。第2図の装置では高濃度
P型領域11はドレインN型領域13近傍にのみ
設けられている。この例ではマスク工程が余分に
必要であり、また書込は第1図の場合と同様であ
るが、読み出しはソース側で決まるためドレイン
からの空乏層の影響を受け易い。
FIG. 2 is a cross-sectional model diagram showing a reference example of an insulated gate type nonvolatile semiconductor memory related to the present invention. In FIG. 2, the numbers indicating the outside of the device correspond to those in FIG. 1. In the device shown in FIG. 2, the heavily doped P-type region 11 is provided only in the vicinity of the drain N-type region 13. In this example, an extra mask step is required, and although writing is the same as in the case of FIG. 1, reading is determined on the source side and is therefore susceptible to the influence of the depletion layer from the drain.

第3図A〜Jは本発明の絶縁ゲート型不揮発性
半導体メモリの製造工程の一例を示す断面模型図
である。この図に於ける装置各部で第1図と同一
個所の部分は同一番号で示してある。この第3図
A,Bは第1図A,Bと基本的には全く同一であ
る。Cでは第1の多結晶シリコン層6に対し、チ
ヤンネル方向にも概略のパターニングを行う。D
では概略形状の定つた第1の多結晶シリコン層へ
のリンの添加と、熱酸化法による膜厚約1000Åの
第2ゲートSiO2膜7の成長を行う。Eでは第1
図D,Eと同様に第2の多結晶シリコン層8、マ
スク層9を形成する。Fでは9をマスクにして第
2の多結晶シリコン層8の形状決定と、第2ゲー
トSiO2膜7の部分的除去を行う。Gでは形状の
決定した第2の多結晶シリコン層からなる外部ゲ
ート電極6に自己整合的に高濃度P型領域10,
11形成の為、エネルギーE=150Kev、ドーズ
量φ=4×1013cm-2でボロンをイオン注入した
後、1100℃,N2中で3時間押し込みを行う。H
ではエネルギーE=150Kev、ドーズ量φ=1×
1014cm-2でリンをイオン注入して外部ゲート電極
8とP型領域10,11とに自己整合的にN型領
域21,22を形成する。Iでは第1の多結晶シ
リコン層をマスクにして第1ゲートSiO2膜5を
部分的に除去した後、マスク層9も除去し、リン
拡散を行つてソースN型領域12、ドレインN型
領域13を形成すると共に、第2の多結晶シリコ
ン層からなる外部ゲート電極8へのリンの添加、
さらに第1の多結晶シリコン層6の露出した部分
へのリンの添加を同時に行う。この際ソース、ド
レイン領域12,13とN型領域21,22とは
それぞれ自動的に継がる。Jでは第1と第2の多
結晶シリコン層6,8の膜厚の違いを利用して、
熱酸化法により第1の多結晶シリコン層6が外部
ゲート電極8の外部に位置している部分をSiO2
膜に変えると共に、外部ゲート電極8および露出
した基体表面上にSiO2膜23を形成する。Jか
らKまでは実施例1で説明したと同様の公知のN
チヤンネルシリコンゲート技術を利用することに
より装置が完成する。
3A to 3J are cross-sectional model views showing an example of the manufacturing process of the insulated gate type nonvolatile semiconductor memory of the present invention. The same parts of the apparatus in this figure as in FIG. 1 are designated by the same numbers. These FIGS. 3A and 3B are basically completely the same as FIGS. 1A and 1B. In step C, the first polycrystalline silicon layer 6 is roughly patterned also in the channel direction. D
Next, phosphorus is added to the first polycrystalline silicon layer whose rough shape has been determined, and a second gate SiO 2 film 7 having a thickness of about 1000 Å is grown by a thermal oxidation method. 1st in E
A second polycrystalline silicon layer 8 and a mask layer 9 are formed in the same manner as in FIGS. D and E. In F, using 9 as a mask, the shape of the second polycrystalline silicon layer 8 is determined and the second gate SiO 2 film 7 is partially removed. In G, a highly doped P-type region 10,
To form No. 11, boron ions are implanted at energy E=150 Kev and dose φ=4×10 13 cm −2 , and then indentation is performed at 1100° C. in N 2 for 3 hours. H
Then energy E=150Kev, dose φ=1×
Phosphorus is ion-implanted at 10 14 cm -2 to form N-type regions 21 and 22 in a self-aligned manner between external gate electrode 8 and P-type regions 10 and 11. In I, the first gate SiO 2 film 5 is partially removed using the first polycrystalline silicon layer as a mask, the mask layer 9 is also removed, and phosphorus is diffused to form the source N-type region 12 and drain N-type region. 13 and addition of phosphorus to the external gate electrode 8 made of the second polycrystalline silicon layer;
Further, phosphorus is added to the exposed portion of the first polycrystalline silicon layer 6 at the same time. At this time, the source and drain regions 12 and 13 and the N-type regions 21 and 22 are automatically connected to each other. In J, by utilizing the difference in film thickness between the first and second polycrystalline silicon layers 6 and 8,
The portion of the first polycrystalline silicon layer 6 located outside the external gate electrode 8 is heated with SiO 2 by thermal oxidation.
At the same time, a SiO 2 film 23 is formed on the external gate electrode 8 and the exposed substrate surface. J to K are the same known N as explained in Example 1.
The device is completed using channel silicon gate technology.

このKの絶縁ゲート型不揮発性半導体メモリで
も、外部ゲート電極8、浮遊ゲート電極6、高濃
度P型領域10と11、ソース領域(12+2
1)とドレイン領域(13+22)はそれぞれ互
に自己整合的に形成されており、第1図に示した
実施例で詳述した本発明の利点は最大限に発揮さ
れる。
This K insulated gate nonvolatile semiconductor memory also includes an external gate electrode 8, a floating gate electrode 6, highly doped P-type regions 10 and 11, and a source region (12+2
1) and the drain region (13+22) are formed in self-alignment with each other, so that the advantages of the present invention detailed in the embodiment shown in FIG. 1 are fully exhibited.

第4図は本発明の絶縁ゲート型不揮発性半導体
メモリについて第1図の実施例から第2図の実施
例への変形を行つたと全く同様の変形を行つたも
のである。
FIG. 4 shows an insulated gate nonvolatile semiconductor memory according to the present invention which has been modified in exactly the same way as the embodiment shown in FIG. 1 has been modified to the embodiment shown in FIG.

上述のいくつかの実施例は単に例示の為のもの
であり、本発明がこれに限定されるものでないこ
とは、上述の説明からも明らかである。例えば装
置各部の材質や寸法、又製法を変えることもでき
るし、導電型や導電型不純物の変更、さらに各種
動作状態に於いて各種電極に印加すべき電圧の極
性等を変えることもある程度可能である。
It is clear from the above description that the several embodiments described above are merely for illustrative purposes and the present invention is not limited thereto. For example, it is possible to change the materials, dimensions, and manufacturing methods of each part of the device, and to some extent it is also possible to change the conductivity type and conductivity type impurities, as well as the polarity of the voltages to be applied to various electrodes in various operating states. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Iは本発明の参考例における絶縁ゲ
ート型不揮発性半導体メモリの製造工程の一例を
示す断面模型図、特にIはその完成図である。第
2図は本発明の他の参考例を示す断面模型図、第
3図A〜Kは本発明の実施例の製造工程の一例を
示す断面模型図で特にKはその完成図、第4図は
さらに他の本発明の実施例を示す断面模型図であ
る。 こられの図に於いて、1……P型Si半導体基
体、2……1の主平面、3,14,23……
SiO2膜、4……SiO2膜中に開けた開孔、5……
第1ゲートSiO2膜、6……第1の多結晶Si層、7
……第2ゲートSiO2膜、8……第2の多結晶Si
層、9……マスク層、10,11……P型高濃度
領域、12,13……ソース、ドレインN型領
域、15,16,17……ソース、外部ゲート、
ドレインコンタクト孔、18,19,20……ソ
ース、外部ゲート、ドレイン引き出し電極、2
1,22……N型領域。
1A to 1I are cross-sectional model views showing an example of the manufacturing process of an insulated gate type nonvolatile semiconductor memory according to a reference example of the present invention, and in particular, FIG. 1A is a completed view thereof. FIG. 2 is a cross-sectional model diagram showing another reference example of the present invention, FIGS. 3 A to K are cross-sectional model diagrams showing an example of the manufacturing process of the embodiment of the present invention, and in particular, K is a completed view thereof, and FIG. FIG. 2 is a cross-sectional model diagram showing still another embodiment of the present invention. In these figures, 1... P-type Si semiconductor substrate, 2... main plane of 1, 3, 14, 23...
SiO 2 film, 4... Openings made in SiO 2 film, 5...
First gate SiO 2 film, 6...First polycrystalline Si layer, 7
...Second gate SiO 2 film, 8...Second polycrystalline Si
Layer 9... Mask layer, 10, 11... P-type high concentration region, 12, 13... Source, drain N-type region, 15, 16, 17... Source, external gate,
Drain contact hole, 18, 19, 20...source, external gate, drain extraction electrode, 2
1, 22...N type region.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の素子形成領域上に一様に形成さ
れた第1の絶縁膜を介して浮遊ゲート電極となる
第1の導電層パターンを形成する工程と、該第1
の導電層パターン上に外部ゲート電極となりかつ
該第1のパターンよりも面積の小さい第2の導電
層パターンを形成する工程と、ソース、ドレイン
領域のそれぞれのチヤンネル領域に隣接する第1
の部分を前記第2のパターンと自己整合的にイオ
ン注入法によつて浅く形成する工程と、前記第1
のパターンをマスクとしてこの第1のパターン下
以外の該第1の絶縁膜を除去する工程と、前記第
1の絶縁膜の除去された部分から不純物を拡散し
て前記ソース、ドレイン領域のそれぞれの引き出
し電極と接続される第2の部分を前記第1のパタ
ーンと自己整合的に深く形成する工程と、該第1
のパターンを該第2のパターンをマスクとして該
第2のマスクと重なるように再パターニングする
工程とを有することを特徴とする半導体装置の製
造方法。
1. A step of forming a first conductive layer pattern to become a floating gate electrode through a first insulating film uniformly formed on an element formation region of a semiconductor substrate;
forming a second conductive layer pattern which becomes an external gate electrode and has a smaller area than the first pattern on the conductive layer pattern;
forming a shallow portion by ion implantation in a self-aligned manner with the second pattern;
using the pattern as a mask to remove the first insulating film except under the first pattern, and diffusing impurities from the removed portions of the first insulating film to form each of the source and drain regions. forming a second portion connected to the extraction electrode deeply in self-alignment with the first pattern;
a step of re-patterning the pattern using the second pattern as a mask so as to overlap the second mask.
JP8483377A 1977-07-14 1977-07-14 Production of semiconductor memory Granted JPS5419372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8483377A JPS5419372A (en) 1977-07-14 1977-07-14 Production of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8483377A JPS5419372A (en) 1977-07-14 1977-07-14 Production of semiconductor memory

Publications (2)

Publication Number Publication Date
JPS5419372A JPS5419372A (en) 1979-02-14
JPS6255710B2 true JPS6255710B2 (en) 1987-11-20

Family

ID=13841771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8483377A Granted JPS5419372A (en) 1977-07-14 1977-07-14 Production of semiconductor memory

Country Status (1)

Country Link
JP (1) JPS5419372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126647C (en) * 1999-03-24 2003-11-05 索尼公司 Robot

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376947A (en) * 1979-09-04 1983-03-15 Texas Instruments Incorporated Electrically programmable floating gate semiconductor memory device
JPS56104473A (en) * 1980-01-25 1981-08-20 Hitachi Ltd Semiconductor memory device and manufacture thereof
JPS57130475A (en) * 1981-02-06 1982-08-12 Mitsubishi Electric Corp Semiconductor memory storage and its manufacture
JPS60134477A (en) * 1983-12-23 1985-07-17 Toshiba Corp Nonvolatile memory and manufacture thereof
JP2558961B2 (en) * 1990-03-13 1996-11-27 株式会社東芝 Method for manufacturing semiconductor device
US5424567A (en) * 1991-05-15 1995-06-13 North American Philips Corporation Protected programmable transistor with reduced parasitic capacitances and method of fabrication
JP2848223B2 (en) * 1993-12-01 1999-01-20 日本電気株式会社 Erasing method and manufacturing method for nonvolatile semiconductor memory device
US7049188B2 (en) * 2002-11-26 2006-05-23 Advanced Micro Devices, Inc. Lateral doped channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159281A (en) * 1974-11-20 1976-05-24 Mitsubishi Electric Corp Handotaisochino seizoho
JPS5259585A (en) * 1975-10-29 1977-05-17 Intel Corp Method of producing mos polycrystalline ic
JPS52146569A (en) * 1976-05-31 1977-12-06 Toshiba Corp Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159281A (en) * 1974-11-20 1976-05-24 Mitsubishi Electric Corp Handotaisochino seizoho
JPS5259585A (en) * 1975-10-29 1977-05-17 Intel Corp Method of producing mos polycrystalline ic
JPS52146569A (en) * 1976-05-31 1977-12-06 Toshiba Corp Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126647C (en) * 1999-03-24 2003-11-05 索尼公司 Robot

Also Published As

Publication number Publication date
JPS5419372A (en) 1979-02-14

Similar Documents

Publication Publication Date Title
US4701776A (en) MOS floating gate memory cell and process for fabricating same
US4822750A (en) MOS floating gate memory cell containing tunneling diffusion region in contact with drain and extending under edges of field oxide
JP2978477B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
US5284785A (en) Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and methods for making and using the same
JP3968107B2 (en) Method for forming a non-volatile memory structure having a floating gate
JP3788552B2 (en) Split gate flash memory cell structure
JP2817393B2 (en) Method for manufacturing semiconductor memory device
JP4663836B2 (en) Nonvolatile memory device and manufacturing method thereof
JP3241330B2 (en) Flash memory and manufacturing method thereof
JPH0418711B2 (en)
EP0160003B1 (en) Mos floating gate memory cell and process for fabricating same
JP4217409B2 (en) Nonvolatile memory device and manufacturing method thereof
JP2819975B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPS63271973A (en) Electrically programmable and electrically erasable memory cell and manufacture of the same
JPH07130894A (en) Eeprom flash memory cell, memory device and their manufacture
JPS6255710B2 (en)
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
JPH0677492A (en) Semiconductor device provided with nonvolatile memory circuit and its manufacture
KR100243493B1 (en) Asymmetrical non-volatile memory cell, arrays and manufacturing method thereof
JPH06104451A (en) Nonvolatile semiconductor storage device
JPH0147905B2 (en)
JP3807633B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH02295169A (en) Nonvolatile semiconductor memory
JP3948535B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP3869066B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof