JPS613529A - Error correction system - Google Patents

Error correction system

Info

Publication number
JPS613529A
JPS613529A JP12365284A JP12365284A JPS613529A JP S613529 A JPS613529 A JP S613529A JP 12365284 A JP12365284 A JP 12365284A JP 12365284 A JP12365284 A JP 12365284A JP S613529 A JPS613529 A JP S613529A
Authority
JP
Japan
Prior art keywords
digital signal
signal
circuit
synchronization word
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12365284A
Other languages
Japanese (ja)
Other versions
JPH0152937B2 (en
Inventor
Takeji Kori
武治 郡
Shuzo Kato
加藤 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12365284A priority Critical patent/JPS613529A/en
Publication of JPS613529A publication Critical patent/JPS613529A/en
Publication of JPH0152937B2 publication Critical patent/JPH0152937B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a transmitter/receiver for a convolutionally coded signal by applying convolution coding after a synchronizing signal is incorporated into a digital signal to be transmitted. CONSTITUTION:In a transmission system transmitting a prescribed periodic signal, a synchronizing word 4 is inserted and incorporated to a digital signal 1 to be transmitted via a synchronous word (signal) insertion circuit 6, convolution coding for error correction is executed and transmitted by a coder 5, and after a reception side decodes a coded digital signal, the digital signal is detected separately. Thus, it is not required to provide two systems of clock circuits and a decoding circuit in follow-up to a clock faster than the transmission speed of data and simple circuit constitution is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一定周期の同期符号を有する伝送系における最
尤複号方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a maximum likelihood decoding method in a transmission system having a synchronous code with a constant period.

〔従来技術と問題点〕[Prior art and problems]

従来、この種の方式においては先に送信ディジタル信号
のみについて、たたみ込み符号化を行ない、その後、同
期語を付加する構成が採られていた。
Conventionally, this type of system has adopted a configuration in which only the transmitted digital signal is first subjected to convolutional encoding, and then a synchronization word is added.

第1図は従来の送信回路の構成の1例を示すブロック図
であって、1は伝送すべ艶ディジタル信号、2はたたみ
込み符号化されたディジタル信号、3は同期語を付加し
た送信ディジタル信号、4は同期語信号、5は符号化回
路、6は同期語挿入回路を表わしている。
FIG. 1 is a block diagram showing an example of the configuration of a conventional transmitting circuit, in which 1 is a transmitted smooth digital signal, 2 is a convolutionally encoded digital signal, and 3 is a transmitted digital signal with a synchronization word added. , 4 represents a synchronization word signal, 5 represents an encoding circuit, and 6 represents a synchronization word insertion circuit.

第2図は送信回路各部の信号の例を示す図で、(1)〜
(3)はそれぞれ第1図の1〜3に対応しており、D1
〜D4は符号化前のデータ、C11〜C24は符号化後
のデータ、斜線を施した部分は同期語を示している。
Figure 2 is a diagram showing examples of signals in each part of the transmitting circuit, and shows (1) to
(3) corresponds to 1 to 3 in Figure 1, respectively, and D1
~D4 represents data before encoding, C11~C24 represents data after encoding, and the shaded portion represents a synchronization word.

第3図は複号回路の構成の1例を示すブロック図であっ
て、7は受信復調信号、8は同期語分離回路、9は同期
語を分離した受信復調信号、10は複号回路、11は複
号した伝送すべbディジタル信号を表わしている。
FIG. 3 is a block diagram showing an example of the configuration of a decoding circuit, in which 7 is a received demodulated signal, 8 is a synchronizing word separation circuit, 9 is a received demodulated signal from which the synchronizing word has been separated, 10 is a decoding circuit, 11 represents the decoded transmitted B digital signal.

第4図は複号回路各部の信号の例を示す図で、(7)、
(9)、(11)はそれぞれ13図の7.9゜11に対
応しでおり、7は受信復調信号、9は同期語を分離した
受信復調信号、11は複号した伝送すべきディジタル信
号全表わしていて、D1〜D4、CIl〜C24および
斜線を施した部分などは第2図と同様である。
FIG. 4 is a diagram showing an example of signals in each part of the decoding circuit, (7),
(9) and (11) respectively correspond to 7.9°11 in Fig. 13, where 7 is the received demodulated signal, 9 is the received demodulated signal from which the synchronization word has been separated, and 11 is the decoded digital signal to be transmitted. The entire figure is shown, and D1 to D4, CI1 to C24, and hatched areas are the same as in FIG. 2.

Ill&3図の複号回路では、このように受信復調信号
から同期語を除き再び連続した符号化信号として、ビタ
ビ複号を行なう構成になっている。
The decoding circuit shown in FIGS. 1 and 3 is configured to remove the synchronization word from the received demodulated signal and perform Viterbi decoding on the received demodulated signal again as a continuous encoded signal.

以上説明した送信回路と複号回路の組合わせによる従来
の方式では、送信側では符号化した後同期語を挿入する
ための合成回路が必要であり、受信側では複号するため
に同期語部で回路動作を止める機能が必−であって、回
路構成や制御が複雑になるうえ、伝送特性は同期語を除
き符号化信号のみを送受した場合と同等になり、同期語
の情・報が誤り訂正に寄与していないという欠点があっ
た。
In the conventional system using a combination of a transmitting circuit and a decoding circuit as described above, a synthesis circuit is required on the transmitting side to insert a synchronization word after encoding, and a synchronization word section is required on the receiving side for decoding. This requires a function to stop the circuit operation, which complicates the circuit configuration and control, and the transmission characteristics are the same as when only encoded signals are sent and received, excluding the synchronization word, and the information of the synchronization word is The drawback was that it did not contribute to error correction.

第5図は従来の複号回路の構成の他の例を示すブロック
図であって、7は受信復調信号、12は同期語分離“θ
″挿入回路、13はクロック切替回路、10は複号回路
、11は伝送すべ塾ディジタル信号、 14は高速クロ
ック、14′は伝送速度と同じ速度のクロック、15は
複号回路の入力信号、16はクロック信号を表わしてい
る。
FIG. 5 is a block diagram showing another example of the configuration of a conventional decoding circuit, in which 7 is a received demodulated signal, 12 is a synchronization word separation "θ
``insertion circuit, 13 is a clock switching circuit, 10 is a decoding circuit, 11 is a cram school digital signal to be transmitted, 14 is a high-speed clock, 14' is a clock having the same speed as the transmission speed, 15 is an input signal of the decoding circuit, 16 represents a clock signal.

IIpi6図は複号回路の各部の信号の例を示す図であ
って、(7)、(15)、(16)、(11)はそれぞ
れ第5図の 7.15.16.11に対応しており、7
は受信復調信号、15は同期語を除き“θ″を挿入した
複号回路入力信号、・16はりaツク信号、11は複号
した伝送すべきディジタル信号、4は同期語、17は“
θ″信号表わしている。
Figure IIpi6 is a diagram showing examples of signals in each part of the decoder circuit, where (7), (15), (16), and (11) correspond to 7.15.16.11 in Figure 5, respectively. 7
15 is the received demodulated signal, 15 is the decoding circuit input signal excluding the synchronization word and inserting "θ", 16 is the ack signal, 11 is the decoded digital signal to be transmitted, 4 is the synchronization word, and 17 is "
It represents the θ″ signal.

この例においては、受信復調信号から同期語を除き、 
′0″′を挿入し、複号回路をリセッ)する構成を採っ
ている。
In this example, the synchronization word is removed from the received demodulated signal,
A configuration is adopted in which '0''' is inserted and the decoding circuit is reset.

従来の、この方式においては、複号回路をリセットする
ため、同期語を受信している闇に、伝送速度より速いク
ロックを用いてリセットを完了しなければならないから
、2系統のクロック回路と該クロックを切り替える回路
および速いクロックに追従することのできる複号回路を
必要とする等、回路構成が複雑で制御が困難であるとい
う欠点があった。
In this conventional method, in order to reset the decoding circuit, it is necessary to complete the reset using a clock faster than the transmission speed while the synchronization word is being received, so two systems of clock circuits and the corresponding clock are used. The disadvantage is that the circuit configuration is complicated and control is difficult, such as requiring a clock switching circuit and a decoding circuit that can follow a fast clock.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点を解決するため、伝送すべきデ
ィジタル信号と同期語を同時に符号化したディジタル信
号を用いて通信を行なうものであって、同期語を有効に
利用することが可能で複号の効率が高(、また、クロッ
ク速度より速い信号処理をする必要がなく簡潔な回路で
実現可能なWkg訂正方式を提供することを目的として
いる。
In order to solve the above-mentioned conventional drawbacks, the present invention performs communication using a digital signal in which a digital signal to be transmitted and a synchronization word are simultaneously encoded. The purpose of the present invention is to provide a Wkg correction method that has high signal efficiency (also, does not require signal processing faster than the clock speed and can be implemented with a simple circuit).

以下、その構成等に関し実施例の図面に基づいて詳細に
説明する。
Hereinafter, the configuration and the like will be explained in detail based on the drawings of the embodiments.

〔実施例〕〔Example〕

以降、本発明の実施例の記述に関してはl!魚を簡潔に
説明するため符号化を伝送能率1/2、拘束長3、多項
式i+x十x” 、i十x”とし、同期sitが3の場
合について述べる。
Hereinafter, regarding the description of the embodiments of the present invention, please refer to l! In order to explain the process concisely, we will describe the case where the encoding is set to have a transmission efficiency of 1/2, a constraint length of 3, polynomials i+xx", ixx", and a synchronization sit of 3.

第7図は本発明の1実施例の送信回路の構成を示すブロ
ック図であって、 1は伝送すべきディジタル信号、6
は同期語挿入回路、5は符号化回路、19は符号化送信
ディジタル信号を表わしている。
FIG. 7 is a block diagram showing the configuration of a transmitting circuit according to an embodiment of the present invention, in which 1 represents a digital signal to be transmitted, 6
5 represents a synchronization word insertion circuit, 5 represents an encoding circuit, and 19 represents an encoded transmission digital signal.

第8図は送信回路各部の信号を示す図で、(1)、(1
8)、(19)は第7図の 1.18.19に対応して
おり、1は伝送すべきディジタル信号、18は同期語を
挿入した信号、19は符号化送信ディジタル信号を表わ
している。*た、20は同期語と隣接するディジタル信
号から生成される符号化信号、21は同期語により決定
される固定パターンを示している。
Figure 8 is a diagram showing the signals of each part of the transmitting circuit, (1), (1
8) and (19) correspond to 1.18.19 in Fig. 7, where 1 represents the digital signal to be transmitted, 18 represents the signal with a synchronization word inserted, and 19 represents the encoded transmission digital signal. . *In addition, 20 indicates an encoded signal generated from a digital signal adjacent to the synchronization word, and 21 indicates a fixed pattern determined by the synchronization word.

第9図は本発明の1実施例の複号回路を示すブロック図
であって、22はメトリック演算回路、23はパスメモ
リ、24はパスメモリ選択回路、18は入力信号、25
は固定パターンを強制的に入力する信号、26は最尤判
定回路、27は強制的にパスを選択する信号を表わして
いる。
FIG. 9 is a block diagram showing a decoding circuit according to an embodiment of the present invention, in which 22 is a metric calculation circuit, 23 is a path memory, 24 is a path memory selection circuit, 18 is an input signal, 25
26 represents a maximum likelihood determination circuit, and 27 represents a signal that forcibly selects a path.

この回路は同期語のない所では通常のビタビ複号を行な
い、7レーム周期、にへカされる固定パターン21を受
信した時のみ、受信信号ではなく既知である固定パター
ンを用いてメトリック演算を行ない、また、最尤パス判
定において、ノドリック演算による結果ではなく、25
により検出した同期語のパターンに従って判定を行なう
ごとく動作するものである。
This circuit performs normal Viterbi decoding where there is no synchronization word, and performs metric calculation using the known fixed pattern instead of the received signal only when it receives the fixed pattern 21 that is decoded in 7 frame periods. In addition, in the maximum likelihood path judgment, 25
It operates as if it were to make a determination according to the synchronization word pattern detected by the method.

第10図は誤ったパスを選択した後の複号回路の状態の
変遷を示す図で、28は従来のオール“θ″を入力すね
リセット形の複号法の特性、29は従来の同期語を除い
て複号する複号法の特性、30は本発明の複号法の特性
、31は正しい遷移を示しており、また、32は同期語
長を示している。
Figure 10 is a diagram showing the transition of the state of the decoding circuit after selecting an incorrect path. 28 is the characteristic of the conventional decoding method using all "θ" inputs and a reset type, and 29 is the characteristic of the conventional synchronous word input decoding method. 30 is a characteristic of the decoding method of the present invention, 31 is a correct transition, and 32 is a synchronization word length.

図より明らかなように、従来の同期語を除去する複号法
に比べて、正しいパスに戻る時間が速く、誤り訂正能力
の大くいことがわかる。
As is clear from the figure, compared to the conventional decoding method that removes synchronization words, the time to return to the correct path is faster and the error correction ability is greater.

(発明の効果〕 以上、詳細に説明したように、本発明の方式によれば、
クロック回路を2系統設けたり、データの伝送速度より
速いクロックに追従する複号回路などを必要とすること
なく、簡潔な回路構成で装置を実現することができる利
点がある。
(Effects of the Invention) As described above in detail, according to the method of the present invention,
There is an advantage that the device can be realized with a simple circuit configuration without requiring two systems of clock circuits or a decoding circuit that follows a clock faster than the data transmission speed.

また、同期語情報を誤り訂正に寄与せしめることがでト
るので複号効率の高い通信な実現し得るから効果は大で
ある。
Furthermore, since the synchronization word information can be made to contribute to error correction, communication with high decoding efficiency can be realized, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の送信回路の構成の1例を示すブロック図
、第2図は送信回路各部の信号の例を示す図、第3図は
複号回路の構成の1例を示すブロック図、第4図は複号
回路各部の信号の例を示す図、第5図は従来の複号回路
の構成の他の例を示すブロック図、第6図は複号回路各
部の信号の例を示す図、第7図は本発明の1実施例の送
信回路の構成を示すブロック図、第8図は送信回路各部
の信号を示す図、第9図は本発明の1実施例の複号回路
を示すブロック図、第10図は誤ったパスを選択した後
の複号回路の状態のJ!i遷を示す図である。 1・・・・・・伝送すべきディジタル信号、2・・・・
・・たたみ込み符号化されたディジタル信号、3・・・
・・・同期語を付加した送信ディジタル信号、4・・・
・・・同期語信号、5・・・・・・符号化回路、6・・
・・・・同期語挿入回路、7・・・・・・受信復調信号
、8・・・・・・同期W!分離回路、9・・・・・・同
期語を分離した受信復調信号、10・・・・・・複号回
路、11・・・・・・複号した伝送すべきディジタル信
号、12・・・・・・同期語分離“θ″挿入回路、13
・・・・・・クロック切替回路、14・・・・・・高速
クロック、14′・・・・・・伝送速度と同じ速度のク
ロック、15・・・・・・複号回路の入力信号、16・
・・・・・クロック信号、17・・・・・・“θ″信号
18・・・・・・同期語を挿入した信号、19・・・・
・・符号化送信ディジタル信号、20・・・・・・同期
語と隣接するディジタル信号から生成される符号化信号
、21・・・・・・同期語により決定される固定パター
ン、22・・・・・・メトリック演算回路、23・・・
・・・パスメモリ、24・・・・・・パスメモリ選択回
路%25・・・・・・固定パターンを強制的lこ入力す
る信号、26・・・・・・最尤判定回路、27・・・・
・・強制的にパスを選択する信号、28・・・・・・従
来のオール″θ″を入力するリセット形の特性、29・
・・・・・従来の同期語を除いて複号する複号法の特性
、30・・・・・・本発明の複号法の特性、31・・・
・・・正しい遷移、32・・・・・・同期lli長 代理人 弁理士  本  1111      崇第 
/ 回 第2図 第3 図 第4図 第6図 第 6図 (If) n「][]] 第7図 第5 図 zOど/   lt/
FIG. 1 is a block diagram showing an example of the configuration of a conventional transmitting circuit, FIG. 2 is a diagram showing an example of signals in each part of the transmitting circuit, and FIG. 3 is a block diagram showing an example of the configuration of a decoding circuit. Fig. 4 is a diagram showing an example of signals in each part of the decoding circuit, Fig. 5 is a block diagram showing another example of the configuration of a conventional decoding circuit, and Fig. 6 is a diagram showing an example of signals in each part of the decoding circuit. 7 is a block diagram showing the configuration of a transmitting circuit according to an embodiment of the present invention, FIG. 8 is a diagram showing signals of each part of the transmitting circuit, and FIG. 9 is a block diagram showing the configuration of a transmitting circuit according to an embodiment of the present invention. The block diagram shown in FIG. 10 is J! of the state of the decoder circuit after selecting the wrong path. FIG. 1...Digital signal to be transmitted, 2...
...Convolutionally encoded digital signal, 3...
...Transmission digital signal with synchronization word added, 4...
... Synchronization word signal, 5 ... Encoding circuit, 6 ...
... Synchronization word insertion circuit, 7 ... Received demodulated signal, 8 ... Synchronization W! Separation circuit, 9... Received demodulated signal from which the synchronization word has been separated, 10... Decoding circuit, 11... Decoded digital signal to be transmitted, 12... ... Synchronous word separation "θ" insertion circuit, 13
...... Clock switching circuit, 14... High speed clock, 14'... Clock at the same speed as the transmission speed, 15... Input signal of decoder circuit, 16・
... Clock signal, 17 ... "θ" signal 18 ... Signal with synchronization word inserted, 19 ...
...Encoded transmission digital signal, 20...Encoded signal generated from the digital signal adjacent to the synchronization word, 21...Fixed pattern determined by the synchronization word, 22... ...Metric calculation circuit, 23...
...Path memory, 24...Path memory selection circuit %25...Signal for forcibly inputting a fixed pattern, 26...Maximum likelihood determination circuit, 27. ...
...Signal for forcibly selecting a path, 28...Characteristics of the conventional reset type that inputs all "θ", 29.
...Characteristics of the conventional multicoding method for decoding excluding synchronization words, 30...Characteristics of the multicoding method of the present invention, 31...
...Correct transition, 32...Synchronized LLI Chief Agent Patent Attorney Book 1111 Takashi
/ times Figure 2 Figure 3 Figure 4 Figure 6 Figure 6 (If) n "] []] Figure 7 Figure 5 zO/lt/

Claims (1)

【特許請求の範囲】 (1)一定周期で同期をとる信号を伝送する伝送系にお
いて、送信側で伝送すべきディジ タル信号と同期語を一体化したディジタル 信号をたたみ込み符号化して符号化ディジ タル信号として送信すると共に、受信側で 該符号化ディジタル信号を複号した後、伝 送すべきディジタル信号を分離検出するこ とを特徴とする誤り訂正方式。 (2)受信側で複号前または複号後に同期を確立して検
出または推定した同期語によりフ レームタイミングごとに受信信号の一部を 特定ビットで置き換える特許請求の範囲第 (1)項記載の誤り訂正方式。 (3)受信側で最尤複号回路のメトリック演算及び最尤
パスの選択を同期語に従って行な う特許請求の範囲第(1)項または第(2)項記載の誤
り訂正方式。
[Claims] (1) In a transmission system that transmits a signal that synchronizes at a constant cycle, a digital signal to be transmitted on the transmitting side and a digital signal that integrates a synchronization word are convolutionally encoded to produce an encoded digital signal. An error correction method characterized in that the encoded digital signal is transmitted as an encoded digital signal, and after decoding the encoded digital signal on the receiving side, the digital signal to be transmitted is separated and detected. (2) A part of the received signal is replaced with a specific bit at each frame timing by establishing synchronization before or after decoding on the receiving side and using a detected or estimated synchronization word. Error correction method. (3) The error correction method according to claim (1) or (2), wherein the receiving side performs metric calculation of the maximum likelihood decoding circuit and selection of the maximum likelihood path according to the synchronization word.
JP12365284A 1984-06-18 1984-06-18 Error correction system Granted JPS613529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12365284A JPS613529A (en) 1984-06-18 1984-06-18 Error correction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12365284A JPS613529A (en) 1984-06-18 1984-06-18 Error correction system

Publications (2)

Publication Number Publication Date
JPS613529A true JPS613529A (en) 1986-01-09
JPH0152937B2 JPH0152937B2 (en) 1989-11-10

Family

ID=14865909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12365284A Granted JPS613529A (en) 1984-06-18 1984-06-18 Error correction system

Country Status (1)

Country Link
JP (1) JPS613529A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112322A (en) * 1988-10-21 1990-04-25 Nec Corp Error correction encoding method
JPH0555932A (en) * 1991-08-23 1993-03-05 Matsushita Electric Ind Co Ltd Error correction coding and decoding device
WO1999008412A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Device and method for transmitting digital data, device and method for demodulating digital data, and transmission medium
US6118825A (en) * 1997-08-11 2000-09-12 Sony Corporation Digital data transmission device and method, digital data demodulation device and method, and transmission medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374806A (en) * 1976-12-15 1978-07-03 Nec Corp Error correction encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374806A (en) * 1976-12-15 1978-07-03 Nec Corp Error correction encoder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112322A (en) * 1988-10-21 1990-04-25 Nec Corp Error correction encoding method
JPH0555932A (en) * 1991-08-23 1993-03-05 Matsushita Electric Ind Co Ltd Error correction coding and decoding device
WO1999008412A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Device and method for transmitting digital data, device and method for demodulating digital data, and transmission medium
EP0946013A1 (en) * 1997-08-11 1999-09-29 Sony Corporation Device and method for transmitting digital data, device and method for demodulating digital data, and transmission medium
US6118825A (en) * 1997-08-11 2000-09-12 Sony Corporation Digital data transmission device and method, digital data demodulation device and method, and transmission medium
AU734105B2 (en) * 1997-08-11 2001-06-07 Sony Corporation Digital data transmission device and method, digital data demodulation device and method, and transmission medium
EP0946013A4 (en) * 1997-08-11 2002-11-13 Sony Corp Device and method for transmitting digital data, device and method for demodulating digital data, and transmission medium

Also Published As

Publication number Publication date
JPH0152937B2 (en) 1989-11-10

Similar Documents

Publication Publication Date Title
US5974584A (en) Parity checking in a real-time digital communications system
US5696800A (en) Dual tracking differential manchester decoder and clock recovery circuit
US5694429A (en) Mobile radio communication system
JP3645721B2 (en) Demodulator
JPS613529A (en) Error correction system
JPH06276107A (en) Synchronization detecting system of viterbi decoder
US6209109B1 (en) Code synchronization decision circuit of Viterbi decoder
US4928289A (en) Apparatus and method for binary data transmission
US6363055B1 (en) Control channel determiner
EP0066620B1 (en) Circuit for clock recovery
JPH03270526A (en) Error inflection suppressing system in differential encoding
JPH04335718A (en) Viterbi decoder
JPS62190932A (en) Interleaving system
JP2944153B2 (en) Demodulation reference phase ambiguity removal method
JPH038140B2 (en)
JP2705442B2 (en) Synchronous method
JP2803627B2 (en) Convolutional decoding circuit
KR0155332B1 (en) Method of variable rate data transmission
KR19990002525A (en) Parallel Channel Viterbi Decoder
JPH0761059B2 (en) Route identification method
JPS6225305B2 (en)
JP3189196B2 (en) Data transmission system
JPS54114112A (en) Reception picture information correcting system for facsimile
JPH03198432A (en) Encoding/decoding device
JPH0123972B2 (en)