JPS6132819B2 - - Google Patents

Info

Publication number
JPS6132819B2
JPS6132819B2 JP55178885A JP17888580A JPS6132819B2 JP S6132819 B2 JPS6132819 B2 JP S6132819B2 JP 55178885 A JP55178885 A JP 55178885A JP 17888580 A JP17888580 A JP 17888580A JP S6132819 B2 JPS6132819 B2 JP S6132819B2
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit chip
heat
cap
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55178885A
Other languages
Japanese (ja)
Other versions
JPS57103337A (en
Inventor
Takahiro Ooguro
Noryuki Ashiwake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17888580A priority Critical patent/JPS57103337A/en
Publication of JPS57103337A publication Critical patent/JPS57103337A/en
Publication of JPS6132819B2 publication Critical patent/JPS6132819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4338Pistons, e.g. spring-loaded members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は大型電子計算機における集積回路を冷
却する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for cooling integrated circuits in large-scale electronic computers.

〔発明の背景〕[Background of the invention]

大型電子計算機では計算速度の速いことが要求
されるため、近年、半導体素子を大規模に集積し
た回路チツプが開発されている。またその集積回
路チツプを接続する電気配線をできるだけ短かく
するため、基板に多数の集積回路を実装する方法
が開発されている。
Since large-scale electronic computers are required to have high calculation speed, circuit chips in which semiconductor elements are integrated on a large scale have been developed in recent years. Furthermore, in order to make the electrical wiring connecting the integrated circuit chips as short as possible, methods have been developed for mounting a large number of integrated circuits on a substrate.

上記集積回路の実装密度が低く、かつ発生熱量
が少量の場合には、従来、標準的な強制対流冷却
による空冷方法が行われていた。しかるに前記集
積回路の実装密度の上昇により発生熱量が増加す
ると、空冷方法により十分な冷却を行うために空
気速度を増大させねばならない。ところが現状の
大型電子計算機では、空気流による騒音問題が発
生し、また何らかの補助手段を施さないと、許容
温度範囲が狭い集積回路を安定な温度範囲に保つ
ことができない。
Conventionally, when the integrated circuit has a low packaging density and generates a small amount of heat, a standard air cooling method using forced convection cooling has been used. However, as the amount of heat generated increases due to the increase in the packaging density of the integrated circuits, the air velocity must be increased in order to provide sufficient cooling by air cooling methods. However, in current large electronic computers, noise problems occur due to airflow, and integrated circuits with narrow allowable temperature ranges cannot be maintained within a stable temperature range unless some kind of auxiliary means is provided.

そこで大型電子計算機における集積回路の冷却
装置に関し、第1図に示すような熱伝達接続装置
が米国特許第4156458号に示されている。すなわ
ち集積回路チツプ1は多数の導電層および絶縁層
からなり、かつ裏面に任意数の接続ピン3を備え
る多層回路基板2(以下基板と称す)上に設けた
Face−Down−Bonding接続部9(以下接続部と
称す)を介して複数個設置されている。基板2に
装着され前記集積回路チツプ1をおおう熱伝導性
の良好な材料で作られたキヤツプ4上には、冷水
または空気の流通する冷却器8が取付けられてい
る。
Accordingly, regarding a cooling device for an integrated circuit in a large computer, a heat transfer connection device as shown in FIG. 1 is disclosed in US Pat. No. 4,156,458. That is, an integrated circuit chip 1 is provided on a multilayer circuit board 2 (hereinafter referred to as the board), which is composed of a large number of conductive layers and insulating layers, and has an arbitrary number of connection pins 3 on the back surface.
A plurality of them are installed via Face-Down-Bonding connection parts 9 (hereinafter referred to as connection parts). A cooler 8 through which cold water or air flows is mounted on a cap 4 made of a material with good thermal conductivity and mounted on the substrate 2 and covering the integrated circuit chip 1.

上記キヤツプ4の内面には背板6が取付けら
れ、この背板6に設けた溝内に金属箔束5の一端
が接着されており、この金属箔束5の他端は集積
回路チツプ1の背面に45゜の角度で接触してい
る。したがつて集積回路チツプ1は冷却器8、キ
ヤツプ4、背板6および金属箔束5により形成さ
れる熱流路を介して冷却される。
A back plate 6 is attached to the inner surface of the cap 4, and one end of a metal foil bundle 5 is glued into a groove provided in the back plate 6, and the other end of the metal foil bundle 5 is attached to the integrated circuit chip 1. It touches the back at a 45° angle. The integrated circuit chip 1 is therefore cooled via the heat flow path formed by the cooler 8, the cap 4, the back plate 6 and the metal foil bundle 5.

ところが上述したような構造では、金属箔束5
のばね作用により接続部9に常に圧力が加えられ
ることになる。集積回路チツプ1は通電サイクル
にしたがつて発熱するので、通常、接続部9には
繰り返し熱応力が加わる。接続部9に一定圧以上
の荷重が加えられる場合には、短時間に接続部9
が疲労して破断する。これを防止するために金属
箔束5のばね作用による荷重を減少させれば、金
属箔束5と集積回路チツプ1との接触状態が悪化
し、接触熱抵抗が増大する。このように冷却性能
の向上と電気接続部の熱疲労強度向上とは互に相
反することになる欠点がある。
However, in the structure described above, the metal foil bundle 5
Pressure is constantly applied to the connection part 9 due to the spring action. Since the integrated circuit chip 1 generates heat as it is energized, the connections 9 are normally subject to repeated thermal stress. When a load higher than a certain pressure is applied to the connection part 9, the connection part 9
becomes fatigued and breaks. If the load due to the spring action of the metal foil bundle 5 is reduced in order to prevent this, the contact condition between the metal foil bundle 5 and the integrated circuit chip 1 will deteriorate and the contact thermal resistance will increase. As described above, there is a drawback that improvement in cooling performance and improvement in thermal fatigue strength of electrical connections are mutually contradictory.

また、第2図に示すような冷却装置が特開昭52
−53547号公報に記載されている。キヤツプ4内
には、多数のシリンダ10が開けられ、集積回路
チツプ1から熱を導くピストン11と、ピストン
11に押圧力を加えるばね12がシリンダ10中
に挿入されている。基板2とキヤツプ4とで囲ま
れた空間には高熱伝導性のヘリウムガスが満たさ
れている。集積回路チツプ1からの発生熱は、ピ
ストン11と集積回路チツプ1の接触部に介在す
るヘリウムガス層を介してピストン11に伝えら
れる。更に、ピストン11からピストン11とシ
リンダ10との間隙20に介在するヘリウムガス
層に伝わり、キヤツプ4に導びかれる。この場
合、下記の点で冷却性能向上に限度がある。
In addition, a cooling device as shown in Fig. 2 was developed in JP-A-52
It is described in the -53547 publication. A number of cylinders 10 are opened in the cap 4, and a piston 11 for conducting heat from the integrated circuit chip 1 and a spring 12 for applying a pressing force to the piston 11 are inserted into the cylinders 10. A space surrounded by the substrate 2 and the cap 4 is filled with highly thermally conductive helium gas. Heat generated from the integrated circuit chip 1 is transferred to the piston 11 through a helium gas layer interposed at the contact portion between the piston 11 and the integrated circuit chip 1. Further, it is transmitted from the piston 11 to the helium gas layer interposed in the gap 20 between the piston 11 and the cylinder 10, and is guided to the cap 4. In this case, there are limits to the improvement in cooling performance due to the following points.

ヘリウムガスの熱伝導率は気体の中で大きい方
であるが、金属と比べ非常に小さい。従つて、ヘ
リウムガス層の熱抵抗を小さく押え、集積回路チ
ツプ1の冷却効果を高めるためには、ピストン1
1とシリンダ10との間隙20を小さく、かつピ
ストン11を長くする必要がある。しかし、この
ため、ピストン11は、シリンダ10内でほとん
ど傾くことが出来なくなる。接続部9によつて基
板2にボンデイングされた集積回路チツプ1は、
通常基板2の平面と平行に実装されず、ある程度
傾いて基板2に塔載されるが、ピストン11は、
この傾きに追随しにくくなり、集積回路チツプ2
の面とピストン11の端面との接触面にすき間が
生じる。その結果、ピストン11とシリンダ10
間のヘリウムガスの熱抵抗を小さくしても、ピス
トン11と集積回路チツプ2との接触熱抵抗が大
きくなり、全体の熱抵抗を小さくするのに限度が
生じる。
The thermal conductivity of helium gas is one of the highest among gases, but it is much lower than that of metals. Therefore, in order to keep the thermal resistance of the helium gas layer low and increase the cooling effect of the integrated circuit chip 1, it is necessary to
It is necessary to make the gap 20 between the piston 1 and the cylinder 10 small and to make the piston 11 long. However, for this reason, the piston 11 can hardly tilt within the cylinder 10. The integrated circuit chip 1 is bonded to the substrate 2 through the connections 9.
Usually, the piston 11 is not mounted parallel to the plane of the board 2, but is mounted on the board 2 at a certain angle.
It becomes difficult to follow this slope, and the integrated circuit chip 2
A gap is created between the contact surface of the surface and the end surface of the piston 11. As a result, the piston 11 and cylinder 10
Even if the thermal resistance of the helium gas between them is reduced, the contact thermal resistance between the piston 11 and the integrated circuit chip 2 becomes large, and there is a limit to how much the overall thermal resistance can be reduced.

更に、先願の特開昭56−110249号公報には、第
3図示すような冷却構造が記載されている。集積
回路チツプ1と対向するキヤツプ4内に設けられ
た多数の平行溝13内に、各々分離された薄い長
方形状の熱伝導板14が挿入され、ばね15によ
つて多数の熱伝導板14が集積回路チツプ1の背
面に押し付けられている。第3図の冷却構造は、
第2図の冷却構造に比べ、熱伝導板14と平行溝
13の側壁との熱交換面積を容易に大きくとれ、
また、熱伝導板14と集積回路チツプ1との接触
状態が各熱伝導板14の板厚端面との面接触に改
善されている。しかし、第3図の場合でも、冷却
性能向上に限度がある。
Further, the earlier application, Japanese Patent Laid-Open No. 56-110249, describes a cooling structure as shown in FIG. Separate thin rectangular heat conductive plates 14 are inserted into a number of parallel grooves 13 provided in the cap 4 facing the integrated circuit chip 1, and the multiple heat conductive plates 14 are inserted by springs 15. It is pressed against the back side of the integrated circuit chip 1. The cooling structure in Figure 3 is
Compared to the cooling structure shown in FIG. 2, the heat exchange area between the heat conductive plate 14 and the side wall of the parallel groove 13 can be easily increased.
Further, the contact state between the heat conductive plates 14 and the integrated circuit chip 1 has been improved to surface contact with the thickness end faces of each heat conductive plate 14. However, even in the case of FIG. 3, there is a limit to the improvement in cooling performance.

多数の熱伝導板14が各々切り離され独立して
平行溝13の中に挿入されているので、各熱伝導
板14間相互の熱交換がほとんど行われない。集
積回路チツプ1は多数の電気回路から構成されて
いるため、一般に一様に発熱することが極めてま
れである。集積回路チツプ1内の発熱分布は時間
と共に変動する。従つて、集積回路チツプ1の端
の方で発熱している場合は、発熱部分に近い熱伝
導板14しか熱を奪い去ることができず、遠くの
熱伝導板からは非常に薄い集積回路チツプ1を介
して伝わつて来た熱しか持ち去ることができな
い。すなわち、多数の熱伝導板14を集積回路チ
ツプ1の上に置いても、熱伝導板14間の熱移動
がほとんど行われないため、各熱伝導板14の熱
移動効率が低下してしまう。また、熱伝導板14
の設置面積が集積回路チツプ1の幅によつて制限
される。従つて、冷却性能向上には、限度が生じ
る。
Since a large number of heat conductive plates 14 are each separated and independently inserted into the parallel grooves 13, there is almost no mutual heat exchange between the heat conductive plates 14. Since the integrated circuit chip 1 is composed of a large number of electric circuits, it is generally extremely rare for it to generate heat uniformly. The heat distribution within the integrated circuit chip 1 varies over time. Therefore, when heat is generated at the edge of the integrated circuit chip 1, only the heat conductive plate 14 near the heat generating part can remove the heat, and the heat can be removed from the far thin integrated circuit chip from the far away heat conductive plate. Only the heat transmitted through 1 can be carried away. That is, even if a large number of heat conductive plates 14 are placed on the integrated circuit chip 1, almost no heat transfer occurs between the heat conductive plates 14, so that the heat transfer efficiency of each heat conductive plate 14 decreases. In addition, the heat conductive plate 14
The footprint of the integrated circuit chip 1 is limited by the width of the integrated circuit chip 1. Therefore, there is a limit to the improvement in cooling performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記にかんがみ集積回路の接続部に必
要以上の荷重を加えることなく、かつ熱膨張、振
動および集積回路の装着精度の影響を受けること
なく、集積回路を効果的に冷却する集積回路用冷
却装置を提供することを目的とするものである。
In view of the above, the present invention provides an integrated circuit for effectively cooling an integrated circuit without applying an unnecessarily large load to the connection parts of the integrated circuit, and without being affected by thermal expansion, vibration, or mounting accuracy of the integrated circuit. The purpose is to provide a cooling device.

〔発明の概要〕[Summary of the invention]

本発明は、フインを複数個有する一対の熱伝導
体をそれぞれ集積回路およびこの集積回路をおお
うキヤツプに装着し、一対の熱伝導体の各フイン
が互に微小間隙をもつてかみ合うように配置した
ことを特徴とするものである。
In the present invention, a pair of heat conductors each having a plurality of fins is attached to an integrated circuit and a cap covering the integrated circuit, and each fin of the pair of heat conductors is arranged so as to engage with each other with a small gap. It is characterized by this.

〔発明の実施例〕 以下本発明の一実施例を図面について説明す
る。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第4図および第5図において、16,17は銅
あるいはアルミニウムのような熱伝導性の良好な
材料により作られたベース16a,17aおよび
このベース16a,17aとそれぞれ一体に成形
または結合された同材料の任意数のフイン16
b,17bからなり、かつくし状に形成された熱
伝導体である。前記ベース16a,17aは接着
剤または低融点金属例えばはんだ材12を介して
集積回路チツプ1の表面およびキヤツプ4の内面
に固着されている。また、装着方法として、固着
の代りにベース16a,17aの少なくとも一方
を集積回路チツプ1あるいはキヤツプ4内面に、
必要以上の荷重を加えることなくばね力で接触さ
せるようにしてもよい。
In FIGS. 4 and 5, reference numerals 16 and 17 refer to bases 16a and 17a made of a material with good thermal conductivity such as copper or aluminum, and bases 16a and 17a made of a material with good thermal conductivity such as copper or aluminum, and bases 16a and 17a that are integrally molded or bonded to the bases 16a and 17a, respectively. Any number of fins 16 of material
It is a heat conductor formed in the shape of a horsetail. The bases 16a, 17a are fixed to the surface of the integrated circuit chip 1 and the inner surface of the cap 4 via an adhesive or a low melting point metal such as a solder material 12. In addition, as a mounting method, at least one of the bases 16a and 17a may be attached to the inner surface of the integrated circuit chip 1 or the cap 4 instead of being fixed.
The contact may be made using a spring force without applying more load than necessary.

上記フイン16b,17bは微小間隙19を保
つて互に対向するように組合わされている。また
前記キヤツプ4内の空間および微小間隙19内に
は、熱伝導率の良好な気体例えばヘリウムガス、
水素ガスが充満されている。または微小間隙19
内にだけ熱伝導性グリースなどの液体を充てんし
てもよい。その他の構造は従来例と同一であるか
ら説明を省略する。
The fins 16b and 17b are combined so as to face each other with a minute gap 19 maintained therebetween. Further, in the space inside the cap 4 and the minute gap 19, a gas having good thermal conductivity such as helium gas,
Filled with hydrogen gas. or minute gap 19
Only the inside may be filled with a liquid such as thermally conductive grease. The rest of the structure is the same as the conventional example, so a description thereof will be omitted.

本実施例は上記のように構成したので、集積回
路チツプ1で発生する熱はその背面より一対の熱
伝導体16,17およびキヤツプ4を経て冷却器
8に伝達されるから、集積回路チツプ1は冷却さ
れる。また一対の熱伝導体16,17は微小間隙
19を保つて設置されているため、チツプ1には
一方の熱電導体10の自重、あるいは、ばねによ
る制御された荷重が加わるだけであるので、集積
回路チツプ1の接続部9は熱膨張および振動によ
る影響をほとんど受けない。また、通常、フイン
16b,17bの対向面積は、集積回路チツプ1
の背面面積よりもはるかに大きく、さらにキヤツ
プ4内の空間およびフイン16b,17b間の微
小間隙19内に熱伝導率の良好な気体を、または
前記微小間隙19内にだけ熱伝導率の良好な流体
をそれぞれ充満させたので、一対の熱伝導体1
6,17間の熱抵抗を大幅に低減させることがで
きる。更に、ベース16a,17aとフイン16
b,17bが一体化されているため、ベース16
a,17aの面積を集積回路チツプ1の背面面積
よりも大きくすることも可能であり、伝熱面積の
拡大効果を最大限に利用することが可能である。
Since this embodiment is configured as described above, the heat generated in the integrated circuit chip 1 is transmitted from the back side of the integrated circuit chip 1 to the cooler 8 via the pair of thermal conductors 16 and 17 and the cap 4. is cooled. In addition, since the pair of thermal conductors 16 and 17 are installed with a small gap 19 maintained, the chip 1 is only subjected to the weight of one of the thermal conductors 10 or a controlled load from a spring. The connections 9 of the circuit chip 1 are substantially unaffected by thermal expansion and vibrations. Further, the opposing area of the fins 16b and 17b is usually the same as that of the integrated circuit chip 1.
In addition, a gas with good thermal conductivity is provided in the space inside the cap 4 and the small gap 19 between the fins 16b and 17b, or a gas with good thermal conductivity is provided only in the small gap 19. Since each is filled with fluid, a pair of thermal conductors 1
The thermal resistance between 6 and 17 can be significantly reduced. Furthermore, the bases 16a, 17a and the fins 16
b, 17b are integrated, so the base 16
It is also possible to make the area of a, 17a larger than the back surface area of the integrated circuit chip 1, and it is possible to make maximum use of the effect of enlarging the heat transfer area.

上記実施例では熱伝導体16,17のフイン1
6b,17bは薄い平板状に形成されているた
め、その両フイン16b,17bを組合わせた場
合、フイン10b,11bは左右に振動しやすい
から、熱伝導体10,11の設置精度が低下する
恐れがある。
In the above embodiment, the fins 1 of the heat conductors 16 and 17
Since the fins 6b and 17b are formed in a thin flat plate shape, when both the fins 16b and 17b are combined, the fins 10b and 11b tend to vibrate from side to side, which reduces the installation accuracy of the heat conductors 10 and 11. There is a fear.

第6図ないし第7図に示す他の実施例は上記欠
点を解消するためになされたもので、第6図のフ
イン16c,17cは波形状に、第7図のフイン
10d,11dは屈折状に、第8図のフイン10
e,11eは同心円状に、第9図のフイン10
f,11fはスパイラル状にそれぞれ形成されて
いる。
Other embodiments shown in FIGS. 6 and 7 have been made to eliminate the above-mentioned drawbacks, and the fins 16c and 17c in FIG. 6 have a wave shape, and the fins 10d and 11d in FIG. 7 have a bent shape. In Fig. 8, Finn 10
e and 11e are arranged concentrically with the fins 10 in FIG.
f and 11f are each formed in a spiral shape.

次に第4図に示す実施例について行つた実験に
ついて述べる。
Next, an experiment conducted on the embodiment shown in FIG. 4 will be described.

厚さ1mm、5mm角の銅板製のベース16a,1
7a上に厚さ0.2mm、長さ10mm、幅5mmの銅製フ
イン16b,17bを0.8mmピツチで取付けて一
対の熱伝導体16,17をそれぞれ構成し、しか
もフイン16b,17bを約9mmの長さにわたつ
て0.2mmの微小間隙19を保つて互に対向するよ
うに組合わせて設置した。このような熱伝導体1
6,17を接着剤18を介して集積回路チツプ1
およびキヤツプ4にそれぞれ固着した。
Base 16a, 1 made of copper plate, 1 mm thick and 5 mm square
Copper fins 16b and 17b with a thickness of 0.2 mm, a length of 10 mm, and a width of 5 mm are attached on the top of the heat conductor 7a with a pitch of 0.8 mm to form a pair of thermal conductors 16 and 17, respectively. They were installed in combination so as to face each other with a minute gap 19 of 0.2 mm maintained across the length. Such a thermal conductor 1
6, 17 to integrated circuit chip 1 via adhesive 18.
and cap 4, respectively.

上記熱伝導体16,17のベース16a,17
aの中央部の温度および集積回路チツプ1の発熱
量を測定し、その両ベース16a,17aの温度
差を集積回路チツプ1の発熱量で割つた熱抵抗R
(℃/W)により、実験結果を整理して図示する
と第10図のようになる。同図の曲線Aはキヤツ
プ4内に空気を充満した場合の結果を示し、曲線
Bはキヤツプ4内の空気を排出し、これに代つて
ヘリウムガスを充満した場合の結果を示す。この
図から空気に比べて熱伝導率の良好なヘリウムガ
スを封入すると、冷却効果は増大することが明白
である。
Bases 16a, 17 of the thermal conductors 16, 17
The temperature at the center of a and the amount of heat generated by the integrated circuit chip 1 are measured, and the thermal resistance R is calculated by dividing the temperature difference between the two bases 16a and 17a by the amount of heat generated by the integrated circuit chip 1.
The experimental results are organized and illustrated using (°C/W) as shown in Fig. 10. Curve A in the figure shows the result when the cap 4 is filled with air, and curve B shows the result when the air in the cap 4 is exhausted and helium gas is filled instead. From this figure, it is clear that the cooling effect increases when helium gas, which has better thermal conductivity than air, is sealed.

次に本発明に係わる熱伝導接続装置の製造法の
一実施態様について説明するに、まず熱伝導体1
6,17のフイン16b,17bを微小間隙19
を保つて対向するように互に組合わせ、一方の熱
伝導体16のベース16aを集積回路チツプ1の
背面上にコーテイング層18を介して固着する。
ついで両熱伝導体16,17および集積回路チツ
プ1を一緒に反転させて、熱伝導体17をキヤツ
プ4の内面上に自由落下させる。そして熱伝導体
17のベース17aおよびキヤツプ4の内面に予
めコーテイングされたはんだ層18を溶解して互
に接合させる。その後にキヤツプ4内の空間およ
びフイン16b,17b間の微小間隙19内に熱
伝導率の良好な流体例えばヘリウムガス、水素ガ
スを充満させる。
Next, an embodiment of the method for manufacturing a heat conductive connection device according to the present invention will be described. First, the heat conductor 1
The fins 16b and 17b of 6 and 17 are arranged in a minute gap 19.
The base 16a of one of the thermal conductors 16 is fixed onto the back surface of the integrated circuit chip 1 via a coating layer 18.
Both heat conductors 16, 17 and the integrated circuit chip 1 are then inverted together, allowing the heat conductor 17 to fall freely onto the inner surface of the cap 4. Then, the solder layer 18 previously coated on the base 17a of the heat conductor 17 and the inner surface of the cap 4 is melted and bonded to each other. Thereafter, the space inside the cap 4 and the minute gap 19 between the fins 16b and 17b are filled with a fluid having good thermal conductivity, such as helium gas or hydrogen gas.

〔発明の効果〕〔Effect of the invention〕

上述した本発明によれば、集積回路チツプの接
続部に必要以上の荷重を加えることなく、また集
積回路チツプの装着精度の影響を受けることな
く、集積回路チツプを効果的に冷却する熱伝導性
の良好な熱伝達接続装置を提供することができ
る。なお、本発明は上述の実施例に限るものでな
く集積回路パツケージなど各種の集積回路発熱体
にも同様に適用できることは言うまでもない。
According to the present invention described above, thermal conductivity is achieved to effectively cool an integrated circuit chip without applying an undue load to the connection portion of the integrated circuit chip, and without being affected by the mounting accuracy of the integrated circuit chip. can provide a good heat transfer connection device. It goes without saying that the present invention is not limited to the above-described embodiments, but can be similarly applied to various types of integrated circuit heating elements such as integrated circuit packages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は夫々従来の熱伝達接続装置の
側断面図、第4図は本発明の熱伝達接続装置の一
実施例を示す側断面図、第5図は同実施例の熱伝
導体の斜視図、第6図ないし第9図は本発明に係
わる熱伝導体の他の実施例を示す斜視図、第10
図は本発明に係わる実施例の発熱量と熱抵抗との
関係を示す線図である。 1……集積回路チツプ、4……キヤツプ、1
6,17……熱伝導体、16a,17a……フイ
ン、18……はんだ層、19……微小間隙。
1 to 3 are side sectional views of conventional heat transfer connecting devices, FIG. 4 is a side sectional view showing an embodiment of the heat transfer connecting device of the present invention, and FIG. 5 is a side sectional view of a conventional heat transfer connecting device. FIGS. 6 to 9 are perspective views of the conductor, and FIGS.
The figure is a diagram showing the relationship between the amount of heat generated and the thermal resistance of the embodiment according to the present invention. 1...Integrated circuit chip, 4...Cap, 1
6, 17... Heat conductor, 16a, 17a... Fin, 18... Solder layer, 19... Minute gap.

Claims (1)

【特許請求の範囲】 1 基板と、基板上にボンデイングされた1個ま
たは複数個の集積回路と、前記集積回路をおおう
キヤツプとから成り、集積回路で発生した熱を前
記キヤツプに伝える集積回路用冷却装置におい
て、ベースと一体化されたフインを前記集積回路
に装着し、前記フインと微小間隙をもつてかみ合
うように配置されるフインを、前記キヤツプ内壁
面に装着してなる集積回路用冷却装置。 2 一対のフイン間に形成された微小間隙に熱伝
導の良好な流体を充満させたことを特徴とする特
許請求の範囲第1項記載の集積回路用冷却装置。
[Scope of Claims] 1. An integrated circuit comprising a substrate, one or more integrated circuits bonded on the substrate, and a cap covering the integrated circuit, and transmitting heat generated in the integrated circuit to the cap. A cooling device for an integrated circuit comprising: a fin integrated with a base mounted on the integrated circuit, and a fin disposed to engage with the fin with a minute gap mounted on the inner wall surface of the cap. . 2. A cooling device for an integrated circuit according to claim 1, characterized in that a minute gap formed between a pair of fins is filled with a fluid having good heat conduction.
JP17888580A 1980-12-19 1980-12-19 Heat transfer connecting device and manufacture thereof Granted JPS57103337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17888580A JPS57103337A (en) 1980-12-19 1980-12-19 Heat transfer connecting device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17888580A JPS57103337A (en) 1980-12-19 1980-12-19 Heat transfer connecting device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57103337A JPS57103337A (en) 1982-06-26
JPS6132819B2 true JPS6132819B2 (en) 1986-07-29

Family

ID=16056393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17888580A Granted JPS57103337A (en) 1980-12-19 1980-12-19 Heat transfer connecting device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57103337A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448240A (en) * 1982-12-20 1984-05-15 International Business Machines Corporation Telescoping thermal conduction element for cooling semiconductor devices
JPS59144153A (en) * 1983-02-07 1984-08-18 Nec Corp Cooling structure for integrated circuit package
US4535841A (en) * 1983-10-24 1985-08-20 International Business Machines Corporation High power chip cooling device and method of manufacturing same
JPS60126853A (en) * 1983-12-14 1985-07-06 Hitachi Ltd Cooling device for semiconductor chip
US4714953A (en) * 1986-05-12 1987-12-22 International Business Machines Corporation Welded wire cooling
JP2507561B2 (en) * 1988-10-19 1996-06-12 株式会社日立製作所 Semiconductor cooling system
DE69126686T2 (en) * 1990-08-14 1997-10-23 Texas Instruments Inc Heat transfer module for ultra high density and silicon applications on silicon packages
US5239200A (en) * 1991-08-21 1993-08-24 International Business Machines Corporation Apparatus for cooling integrated circuit chips
US5177667A (en) * 1991-10-25 1993-01-05 International Business Machines Corporation Thermal conduction module with integral impingement cooling
JPH0786471A (en) * 1993-09-20 1995-03-31 Hitachi Ltd Semiconductor module
EP0848469B1 (en) * 1996-12-10 2003-05-07 Barat S.A. Heat sink device for an electric distribution cabinet or similar, contained in an underground cavity
KR20050079962A (en) * 2005-06-22 2005-08-11 박재석 A cooling method and its apparatus of heating unit using the adiabatic expansion of compressed gas
JP5805838B1 (en) 2014-09-29 2015-11-10 株式会社日立製作所 Heating element cooling structure, power converter unit and power converter
CN105118811B (en) * 2015-07-27 2018-10-23 电子科技大学 A kind of temperature equalization system to be radiated to multi-heat source device using soaking plate and microchannel
JP6533755B2 (en) * 2016-03-22 2019-06-19 株式会社日立製作所 Cooling structure of heating element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524479A (en) * 1968-07-19 1970-08-18 Scovill Manufacturing Co Woven zipper stringer and method of making the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524479A (en) * 1968-07-19 1970-08-18 Scovill Manufacturing Co Woven zipper stringer and method of making the same

Also Published As

Publication number Publication date
JPS57103337A (en) 1982-06-26

Similar Documents

Publication Publication Date Title
US4156458A (en) Flexible thermal connector for enhancing conduction cooling
US7839643B1 (en) Heat spreader for memory modules
JP2926537B2 (en) Multi-chip module cooling system
CA1228173A (en) Cooling system for electronic circuit device
JPS60126853A (en) Cooling device for semiconductor chip
US6670699B2 (en) Semiconductor device packaging structure
US4442450A (en) Cooling element for solder bonded semiconductor devices
JPS6132819B2 (en)
KR101017452B1 (en) Semiconductor package
US20020015288A1 (en) High performance thermal/mechanical interface for fixed-gap references for high heat flux and power semiconductor applications
JPS596565A (en) Heat conductive structure
JPH0786471A (en) Semiconductor module
JPH02398A (en) Cooling structure of integrated circuit
US6081428A (en) Cooling apparatus for electric devices
US11495519B2 (en) Apparatus for thermal management of electronic components
JPS5893264A (en) Cooler for device
JP3175177B2 (en) Semiconductor cooling device
JPH0864731A (en) Heat conducting member and cooler and electronic apparatus employing the same
JPH08204072A (en) Device for cooling electronic parts
JP2506885B2 (en) Semiconductor device
JP2007073668A (en) Heat-transfer device for heat conduction, and electronic equipment mounted therewith
JP3395409B2 (en) Semiconductor module
JPH0573061B2 (en)
JPH04139752A (en) Cooler
JP4085342B2 (en) Thermal conductive component and thermal connection structure using the same