JPS61295205A - Reactor for reforming methanol - Google Patents

Reactor for reforming methanol

Info

Publication number
JPS61295205A
JPS61295205A JP60135014A JP13501485A JPS61295205A JP S61295205 A JPS61295205 A JP S61295205A JP 60135014 A JP60135014 A JP 60135014A JP 13501485 A JP13501485 A JP 13501485A JP S61295205 A JPS61295205 A JP S61295205A
Authority
JP
Japan
Prior art keywords
methanol
combustion
catalyst
reforming
combustion catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60135014A
Other languages
Japanese (ja)
Other versions
JPH0450244B2 (en
Inventor
Hayamizu Ito
伊東 速水
Yukio Kubo
幸雄 久保
Seiji Terada
誠二 寺田
Yoshiaki Takatani
高谷 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60135014A priority Critical patent/JPS61295205A/en
Publication of JPS61295205A publication Critical patent/JPS61295205A/en
Publication of JPH0450244B2 publication Critical patent/JPH0450244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To supply necessary heat for reforming with high efficiency and to make a device portable by arranging catalyst layers for reforming methanol and catalyst layers for the combustion of fuel gas alternately and by using a three dimensional reticular metal for the carrier of the combustion catalyst. CONSTITUTION:Catalyst layers 2 for the combustion of fuel gas and catalyst layers 3 for the reforming of methanol are arranged alternately in a reactor main body 1 interposing partition walls 4. The combustion catalyst layers 2 are formed by packing the combustion catalyst supported on a three-dimensional reticular metal such as sponge metal, etc. The combustion catalyst layers 2 are allowed to contact closely to partition walls 4 separating combustion reaction chamber 9 from reforming reaction chambers 10 or to the main body 1. Decomposing zones are held by this mechanism at high temp., and conversion of methanol is improved. Further, the concentration of CO in the produced gas is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メタノールをスチームとともに改質し、水素
を発生させるメタノール改質用反応器、詳しくは、燃料
電池発電用または一般産業用の水素供給源として、メタ
ノールとスチームとによる改質反応を効率よく促進させ
、しかも水素供給装置としてコンパクト化が可能で可搬
型に適したメタノール改質用反応器に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a methanol reforming reactor that reformes methanol together with steam to generate hydrogen, and more specifically, a methanol reforming reactor for generating hydrogen for fuel cell power generation or general industrial use. The present invention relates to a methanol reforming reactor which efficiently promotes the reforming reaction between methanol and steam as a supply source, and which can be made compact and portable as a hydrogen supply device.

〔従来の技術〕[Conventional technology]

従来、メタノール改質用反応器として、加熱源としてバ
ーナーを備えたバーナ一方式の反応器、改質用触媒層と
燃焼用触媒層とを有する触媒方式の反応器が知られてい
る。触媒方式の反応器としては、二重管構造で内側に改
質用触媒を、外側に燃焼用触媒を充填した構造のもの、
および改質用触媒と燃焼用触媒とを交互に平板状に配置
した構造のものが知られている。
BACKGROUND ART Conventionally, as methanol reforming reactors, there have been known a one-burner type reactor equipped with a burner as a heat source, and a catalytic type reactor having a reforming catalyst layer and a combustion catalyst layer. Catalytic type reactors have a double-tube structure with a reforming catalyst packed inside and a combustion catalyst packed outside.
Also known are structures in which reforming catalysts and combustion catalysts are alternately arranged in a flat plate shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしバーナ一方式の反応器は、加熱源としてバーナー
を有しているので、コンパクトな可搬型としては不適で
あり、また触媒方式の反応器は、使用触媒としてベレッ
ト状セラミック担体のものが主であるので、改質反応に
必要な熱を効率よく供給できないという問題点があった
However, single-burner type reactors have a burner as a heating source, so they are not suitable as compact and portable types, and catalytic type reactors mainly use a pellet-shaped ceramic carrier as the catalyst. Therefore, there was a problem that the heat required for the reforming reaction could not be efficiently supplied.

本発明は上記の点に鑑みなされたもので、改質反応に必
要な熱を効率よく供給することができ、かつコンパクト
で可搬型に適したメタノール改質用反応器の提供を目的
とするものである。
The present invention was made in view of the above points, and an object of the present invention is to provide a methanol reforming reactor that can efficiently supply the heat necessary for the reforming reaction, and is compact and suitable for transport. It is.

〔問題点を解決するだめの手段および作用〕第1の発明
のメタノール改質用反応器は、図面を参照して説明すれ
ば、メタノール改質用触媒層3と燃料ガス燃焼用触媒層
2とを交互に配置して、メタノールをスチームとともに
改質し水素を発生させるメタノール改質用反応器におい
て、燃料ガス燃焼用触媒層2を、三次元網目状金属を担
体とした燃焼用触媒を充填して形成したことを特徴とし
ている。
[Means and operations for solving the problems] The methanol reforming reactor of the first invention will be described with reference to the drawings. In a methanol reforming reactor in which methanol is reformed with steam to generate hydrogen, the fuel gas combustion catalyst layer 2 is filled with a combustion catalyst having a three-dimensional network metal as a carrier. It is characterized by being formed by

また第2の発明のメタノール改質用反応器は、図面を参
照して説明すれば、メタノール改質用触媒層3と燃料ガ
ス燃焼用触媒層2とを交互に配置して、メタノールをス
チームとともに改質し水素を発生させるメタノール改質
用反応器において、メタノ−〜改質用触媒層13および
燃料ガス燃焼用触媒層2を、三次元網目状金属を担体と
した触媒を充填して形成したことを特徴としている。
Further, in the methanol reforming reactor of the second invention, if explained with reference to the drawings, methanol reforming catalyst layers 3 and fuel gas combustion catalyst layers 2 are arranged alternately, and methanol is mixed with steam. In a methanol reforming reactor for reforming and generating hydrogen, a methanol reforming catalyst layer 13 and a fuel gas combustion catalyst layer 2 were formed by filling a catalyst with a three-dimensional network metal as a carrier. It is characterized by

本発明において、燃料ガス燃焼用触媒層2の入口部のみ
に触媒として白金を用いる場合があり、また燃料ガス燃
焼用触媒として、メタノール燃焼用触媒と水素燃焼用触
媒との二元系触媒を用いる場合があり、この場合、メタ
ノール燃焼用触媒として白金を、水素燃焼用触媒として
パラジウムを同一担体に担持するのが望ましい。
In the present invention, platinum may be used as a catalyst only at the inlet of the fuel gas combustion catalyst layer 2, and a binary catalyst of a methanol combustion catalyst and a hydrogen combustion catalyst is used as the fuel gas combustion catalyst. In this case, it is desirable to support platinum as a methanol combustion catalyst and palladium as a hydrogen combustion catalyst on the same carrier.

以下、本発明の詳細な説明する。第1図は本発明のメタ
ノール改質用反応器の一例を示している。
The present invention will be explained in detail below. FIG. 1 shows an example of the methanol reforming reactor of the present invention.

反応器本体1内に燃料ガス燃焼用触媒層2とメタノール
改質用触媒層3とが隔壁4を介して交互に配置されてメ
タノール改質用反応器が構成される。
A catalyst layer 2 for fuel gas combustion and a catalyst layer 3 for methanol reforming are alternately arranged within the reactor main body 1 with partition walls 4 interposed therebetween, thereby configuring a reactor for methanol reforming.

燃焼用触媒層2は海綿状金属、ワイヤウールなどの三次
元網目状金属を担体とした燃焼用触媒が充填されて形成
され、燃焼反応室9と改質反応室lOとを仕切る隔壁4
または本体1と密着している。
The combustion catalyst layer 2 is formed by being filled with a combustion catalyst using a three-dimensional mesh metal carrier such as a spongy metal or wire wool, and a partition wall 4 partitions the combustion reaction chamber 9 and the reforming reaction chamber IO.
Or it is in close contact with main body 1.

5は燃料ガスおよび酸素含有ガスが導入される燃料ガス
導管、6は改質原料(メタノールおよび水素)が導入さ
れる改質原料導管、7は燃焼排ガス管、8は改質ガス管
である。
5 is a fuel gas conduit into which fuel gas and oxygen-containing gas are introduced, 6 is a reforming material conduit into which reforming materials (methanol and hydrogen) are introduced, 7 is a combustion exhaust gas pipe, and 8 is a reformed gas pipe.

燃料ガス導管5から導入された燃料ガス、すなわち燃料
電池水素極からの廃ガス中の水素またはメタノールおよ
び燃料電池酸素極からの廃ガス中の酸素が反応して下記
のような発熱反応(燃焼)が起こり、伝熱壁としての隔
壁4を通じて改質反応室に熱の供給が行われる。
The fuel gas introduced from the fuel gas pipe 5, that is, hydrogen or methanol in the waste gas from the fuel cell hydrogen electrode, and oxygen in the waste gas from the fuel cell oxygen electrode react to cause the following exothermic reaction (combustion). occurs, and heat is supplied to the reforming reaction chamber through the partition wall 4 as a heat transfer wall.

H2+ 1/202→H20△H=−68,31ad/
mol (1)CH30H+3/20□−2H20+O
○2△H=−17771cal/mol (2)ここで
使用される触媒種としては、水素、メタノールの燃焼用
触媒として一般によく知られているPt、 Pd%Ru
○2、Co3O4、Nip、 MnO2などならばいず
れでもよいが、メタノールの低温着火において有効なP
t、比較的低コストで水素燃焼に有効なPdの二元系触
媒が望ましい。ただ二元系と言えども、触媒の担持形態
としては、担体としての三次元網目状金属全体にわたシ
、PtおよびPdの二元系触媒から構成される必要はな
く、燃料ガスおよび酸素含有ガス入口部のみにptが単
独で、あるいはPdとの二元系として担持しておれば良
い。その理由は、 (1)  メタノールの低温着火性においてptが優れ
ており、改質反応器の起動に際しての昇温が、メタノー
ルおよび空気の燃焼反応室への供給のみで可能となる。
H2+ 1/202→H20△H=-68,31ad/
mol (1) CH30H+3/20□-2H20+O
○2ΔH=-17771 cal/mol (2) The catalyst species used here include Pt, Pd%Ru, which is generally well known as a catalyst for combustion of hydrogen and methanol.
○2, Co3O4, Nip, MnO2, etc. may be used, but P is effective in low-temperature ignition of methanol.
A Pd binary catalyst is desirable because it is relatively low cost and effective for hydrogen combustion. However, even though it is a binary catalyst, the supported form of the catalyst does not need to be composed of a binary catalyst of Pt and Pd all over the three-dimensional network metal as a carrier; It is sufficient if pt is supported only in the inlet portion alone or as a binary system with Pd. The reasons for this are: (1) PT is excellent in low-temperature ignitability of methanol, and the temperature can be raised at the time of startup of the reforming reactor only by supplying methanol and air to the combustion reaction chamber.

(2)水素の燃焼用触媒としてptも有効であるが、P
dO方がより有効であり、かつPtに比べてPdの価格
は1/2〜1/3であり、低コスト化につながる。
(2) Although PT is also effective as a hydrogen combustion catalyst, P
dO is more effective, and the price of Pd is 1/2 to 1/3 that of Pt, leading to cost reduction.

などの利点を有していることによる。This is because it has the following advantages.

また燃焼用触媒の担体として、N1、N1−0r。Also, N1 and N1-0r as carriers for combustion catalysts.

Cuなどからなる海綿状金属は一般に知られているが、
とくに三次元網目状金属に限定する理由として、 (1)水素あるいはメタノ−pの燃焼により得られる熱
を、より有効にメタノールの改質反応に利用することが
できる。すなわ、ち、触媒担体としての海綿状金属など
の三次元網目状金属が伝熱媒体として改質反応室との隔
壁に熱を伝える役目をなす。そのためにも触媒と隔壁と
がよシ密着していることが望ましく、ろう付などにより
隔壁と三次元網目状金属を密着させるとより有効となる
Spongy metals such as Cu are generally known,
In particular, the reasons for limiting the metal to a three-dimensional network are as follows: (1) Heat obtained by combustion of hydrogen or methanol can be used more effectively for the methanol reforming reaction. In other words, the three-dimensional mesh metal such as a spongy metal serving as a catalyst carrier serves as a heat transfer medium to transfer heat to the partition wall between the reforming reaction chamber and the reforming reaction chamber. For this purpose, it is desirable that the catalyst and the partition wall are in close contact with each other, and it is more effective to make the partition wall and the three-dimensional mesh metal come into close contact with each other by brazing or the like.

(2)燃焼室での燃焼反応が、通常のベレット触媒など
に比べてより均一に行われ、ホットスポットが形成され
ず、温度の均一化が可能となり、触媒の劣化防止につな
がる。
(2) The combustion reaction in the combustion chamber is performed more uniformly than with normal pellet catalysts, no hot spots are formed, and the temperature can be made uniform, leading to prevention of deterioration of the catalyst.

(3)また改質反応室においても温度の均一化が可能と
なり、改質反応を促進すると同時に、C0(−酸化炭素
)の生成が抑制される。
(3) It is also possible to equalize the temperature in the reforming reaction chamber, promoting the reforming reaction and at the same time suppressing the production of CO (-carbon oxide).

(4)改質反応器の振動に対しても、触媒が破壊される
ことなく、用途の拡大につながる。
(4) The catalyst is not destroyed even by the vibrations of the reforming reactor, leading to expanded applications.

などを挙げることができる。etc. can be mentioned.

一方、改質用触媒はメタノールとスチームによる改質反
応に有効なCuO,Al2O3、ZnO、Cr2o3の
単独、あるいはこれらを組み合わせたベレット状触媒ま
たは海綿状金属などの三次元網目状金属への担持触媒が
充填され、還元した後メタノールとスチームの反応によ
り水素リッチなガスが生成される。
On the other hand, the reforming catalyst is a pellet-shaped catalyst of CuO, Al2O3, ZnO, Cr2O3, which is effective for the reforming reaction between methanol and steam, or a combination thereof, or a catalyst supported on a three-dimensional network metal such as a spongy metal. is charged, and after reduction, a hydrogen-rich gas is produced by the reaction of methanol and steam.

メタノールを上記改質用触媒の存在下で、水蒸気ととも
に200’C以上の温度で反応させると水素と炭酸ガス
を主成分とした燃料ガスが得られる。
When methanol is reacted with water vapor at a temperature of 200'C or higher in the presence of the reforming catalyst, a fuel gas containing hydrogen and carbon dioxide as main components is obtained.

この反応は(3)式のような吸熱反応として進む。This reaction proceeds as an endothermic reaction as shown in equation (3).

OH,OH+H20→CO2+ 3H2ΔH=+11.
81al/mol (3)この反応は下記のメタノール
の分解反応(4)式と、それによって生成したCoの水
性ガスシフト反応(5)式の二段反応と考えられている
OH, OH+H20→CO2+ 3H2ΔH=+11.
81 al/mol (3) This reaction is considered to be a two-stage reaction of the following methanol decomposition reaction (4) and the resulting Co water gas shift reaction (5).

0H30H−+CO+2H2ΔH=+21.61a+l
/mol  (4)00+H2O−,00□+H2,d
=−9,8騙/mol  (5)ここでメタノールの分
解反応は吸熱、COのシフト反応は発熱であるため、メ
タノール分解反応の(4)式は高温はど有利であり、逆
に(5)式は高温はど不利となる。ところが燃料電池の
水素源としては、生成ガス中の水素濃度ができるだけ高
いことが望ましいのは言うまでもなく、また生成ガス中
のC0が燃料電池で使われている電極の被毒物質となる
ため、できる限り低減させることが望まれる。したがっ
て改質反応器の温度としては、原料ガス入口付近(分解
反応ゾーン)をできるだけ高く、生成ガス出口付近(シ
フト反応ゾーン)をできるだけ低くすることが望ましい
0H30H-+CO+2H2ΔH=+21.61a+l
/mol (4)00+H2O-,00□+H2,d
= -9,8 mol/mol (5) Here, the decomposition reaction of methanol is endothermic, and the shift reaction of CO is exothermic. ) formula is disadvantageous at high temperatures. However, as a hydrogen source for fuel cells, it goes without saying that it is desirable for the hydrogen concentration in the produced gas to be as high as possible, and since CO in the produced gas can poison the electrodes used in fuel cells, It is desirable to reduce this as much as possible. Therefore, it is desirable that the temperature of the reforming reactor be as high as possible near the source gas inlet (decomposition reaction zone) and as low as possible near the product gas outlet (shift reaction zone).

上記の観点から、燃料ガス燃焼用触媒層20入口部のみ
に、触媒として白金を用いることがあり、また第2図に
示すように、燃焼用触媒層2を燃焼反応室9の入口部の
み(燃焼反応室9の1/3〜l/2)に設ける場合があ
る。11は多孔支持体である。
From the above point of view, platinum may be used as a catalyst only at the inlet of the fuel gas combustion catalyst layer 20, and as shown in FIG. It may be provided in 1/3 to 1/2 of the combustion reaction chamber 9. 11 is a porous support.

さらに改質用触媒層3および燃焼用触媒層2を、三次元
網目状金属を担体とした触媒を充填して形成することも
ある。この場合は、熱効率がさらによくなるという利点
がある。
Furthermore, the reforming catalyst layer 3 and the combustion catalyst layer 2 may be formed by filling a catalyst with a three-dimensional network metal as a carrier. In this case, there is an advantage that thermal efficiency is further improved.

第3図は上記のように構成した本発明の改質用反応器1
2を燃料電池13の水素供給装置として用いる場合を示
している。14は純水供給ポンプ、15はメタノ−p供
給ポンプ、16は原料気化器、17は原料予熱器、18
は空気供給プロワ、19は冷却空気循環プロワ、20は
混合器、21は冷却部、22は酸素極、23は水素極で
ある。
Figure 3 shows the reforming reactor 1 of the present invention configured as described above.
2 is used as a hydrogen supply device for the fuel cell 13. 14 is a pure water supply pump, 15 is a methanol-p supply pump, 16 is a raw material vaporizer, 17 is a raw material preheater, 18
19 is an air supply blower, 19 is a cooling air circulation blower, 20 is a mixer, 21 is a cooling section, 22 is an oxygen electrode, and 23 is a hydrogen electrode.

起動時はメタノールをライン24により混合器20を介
して燃焼用触媒層2に送って燃焼し昇温させ、ついで燃
料電池13の水′;X極23からのオフガスをライン2
5により混合器20を介して燃焼用触媒層2に切り換え
供給して、定常運転を行う。
At startup, methanol is sent to the combustion catalyst layer 2 through the mixer 20 through the line 24, where it is combusted and heated, and then water' from the fuel cell 13; off-gas from the X electrode 23 is sent through the line 24.
5, the fuel is switched and supplied to the combustion catalyst layer 2 via the mixer 20, and steady operation is performed.

〔実施例〕〔Example〕

つぎに本発明の実施例および本発明のメタノール改質用
反応器を用いて実験した結果について説明する。
Next, Examples of the present invention and the results of experiments using the methanol reforming reactor of the present invention will be explained.

実施例 メタノール改質用触媒としてCuO:80モル%、zn
o : l Q モlk%、Al2O3: 10モtL
t%の組成から成る粒径5朋ベレツト触媒11を改質反
応室に充填した。一方、燃焼室には海綿状金属基材(住
友電工製セルメット)にPtを担持した燃焼用触媒を充
填し、改質反応室:3層、燃焼室:4層を交互に並べた
第1図のような積層型メタノール改質用反応器を構成し
た。
Example methanol reforming catalyst: CuO: 80 mol%, zn
o: l Q Molk%, Al2O3: 10 motL
A reforming reaction chamber was filled with Berett catalyst 11 having a particle size of 5 mm and having a composition of 1.5 t%. On the other hand, the combustion chamber is filled with a combustion catalyst supporting Pt in a spongy metal base material (Celmet manufactured by Sumitomo Electric), and the reforming reaction chamber: 3 layers and the combustion chamber: 4 layers are arranged alternately as shown in Figure 1. A stacked methanol reforming reactor was constructed.

この改質用反応器を用い、スチームおよびメタノールに
よる改質反応を開始するに当り、改質反応室K N2:
 10 vo1%−N2: 9 Q vo1%からなる
還元ガス気流中で室温から250 ’Cまで徐々に昇温
し還元した。次に改質器を室温(約20°C)まで降温
した後、燃焼反応室側に充填触媒量ベースでSV= 5
0,0001/Aになるように空気を流し、この空気気
流中にメ′タノールを供給し、燃焼用触媒層の昇温を確
認した。その後、メタノール濃度5 vo1%以下の範
囲で徐々にメタノール供給量を増やし、燃焼反応室温度
を約250°Cに設定した。同時にメタノールおよびス
チームの混合ガスを、N20/CH30Hの条件で、別
途設けた蒸発器経由で改質反応室に供給し、ガスフロマ
ドグラフィおよび湿式ガスメーターによりN2:約73
%のH 2 リッチなガスが発生したのを確認した後、
燃焼反応室側02濃度:18VOI%になるようにN2
−空気混合ガスにより調整し、燃料ガスをメタノールか
らN2ガヌに切り換えた。なおこのときN2は別途設け
たボンベから供給し、SV = 50.000 1/H
に調整した。
When starting a reforming reaction using steam and methanol using this reforming reactor, the reforming reaction chamber KN2:
10 vol%-N2: Reduction was carried out by gradually increasing the temperature from room temperature to 250'C in a reducing gas stream consisting of 9 Q vol%. Next, after cooling the reformer to room temperature (approximately 20°C), SV = 5 based on the amount of catalyst packed in the combustion reaction chamber side.
Air was flowed at a rate of 0,0001/A, methanol was supplied into the air flow, and the temperature rise of the combustion catalyst layer was confirmed. Thereafter, the amount of methanol supplied was gradually increased within a range of methanol concentration of 5 vol % or less, and the temperature of the combustion reaction chamber was set at about 250°C. At the same time, a mixed gas of methanol and steam was supplied to the reforming reaction chamber under N20/CH30H conditions via a separately installed evaporator, and N2: approx.
After confirming that %H2-rich gas was generated,
Combustion reaction chamber side 02 concentration: N2 so that it becomes 18 VOI%
- The fuel gas was switched from methanol to N2 Ganu, adjusted by an air mixture. At this time, N2 is supplied from a separately provided cylinder, and SV = 50.000 1/H
Adjusted to.

さらにボンベからの水素ガス供給量により、改質反応器
の改質反応室出口温度が200〜220’Cになるよう
に設定し、ガスフロマドグラフィにより生成ガス組成を
、湿式ガスメーターで生成ガヌ量を測定し、メタノール
転化率ならびに生成ガス中CO濃度を求め、以下のよう
な結果を得た。なおこのとき同時に燃焼反応室入口部、
出口部温度ならびに改質反応室入口部、出口部温度を測
定した。
Furthermore, depending on the amount of hydrogen gas supplied from the cylinder, the temperature at the exit of the reforming reaction chamber of the reforming reactor is set to 200 to 220'C, and the composition of the produced gas is measured using a wet gas meter using a wet gas meter. The methanol conversion rate and CO concentration in the produced gas were determined, and the following results were obtained. At this time, at the same time, the inlet of the combustion reaction chamber,
The temperature at the outlet and the temperature at the inlet and outlet of the reforming reaction chamber were measured.

1回目 2回目 改質反応室入口温度(’C)   260   270
改質反応室出ロ温度(°C)   205   215
燃焼反応室入口温度(’C)  860   880燃
焼反応室出口温度(’C)   210   220メ
タノール転化率 (%)  100   100生成ガ
ス中C○濃度(%)  0.5   0.9ト反応から
求めた平衡計算値にほぼ近い値である。
1st time 2nd time reforming reaction chamber inlet temperature ('C) 260 270
Reforming reaction chamber outlet temperature (°C) 205 215
Combustion reaction chamber inlet temperature ('C) 860 880 Combustion reaction chamber outlet temperature ('C) 210 220 Methanol conversion rate (%) 100 100 C○ concentration in produced gas (%) 0.5 0.9 Determined from the reaction This value is almost close to the equilibrium calculated value.

〔発明の効果〕〔Effect of the invention〕

本発明のメタノール改質用反応器は上記のように、燃焼
用触媒、または燃焼用触媒と改質用触媒を熱伝導性に富
んだ海綿状金属、ワイヤウールなどの三次元網目状金属
を基材とした触媒を用いることにより、メタノール分解
ゾーンに燃焼熱を集中的に供給し、高温度を維持するこ
とにより、メタノールの分解反応を促進させることがで
きる。
As described above, the methanol reforming reactor of the present invention uses a combustion catalyst, or a combustion catalyst and a reforming catalyst, based on a three-dimensional mesh metal such as a spongy metal with high thermal conductivity or wire wool. By using a catalyst as a material, the methanol decomposition reaction can be accelerated by intensively supplying combustion heat to the methanol decomposition zone and maintaining a high temperature.

一方、反応器下流部(生成ガス出口付近)では、燃料ガ
スの燃焼に伴う熱量の大部分がメタノールの分解に必要
な熱として消費されるため、比較的低い温度(約200
°C)に設定され、C○のシフト反応(5)式を促進さ
せることにより、生成ガス中のCO濃度を(5)式の平
衡値まで下げることが可能となる。
On the other hand, in the downstream part of the reactor (near the produced gas outlet), most of the heat accompanying the combustion of fuel gas is consumed as the heat necessary for decomposing methanol, so the temperature is relatively low (approximately 200 m
°C) to promote the C○ shift reaction equation (5), it becomes possible to lower the CO concentration in the generated gas to the equilibrium value of equation (5).

なお改質反応室での入口部と出口部との温度差を、原料
供給量などの条件によっても異なるが、100°C前後
とることが可能であり、さらに反応器入口部での燃焼反
応室側と改質反応室側の温度差として、150°C前後
が反応器出口側では数°C以内に納まることからも、改
質反応器の熱伝達が優れていると言える。これらの本発
明の特徴を要約すると以下のようになる。
Although the temperature difference between the inlet and outlet of the reforming reaction chamber varies depending on conditions such as the amount of raw material supplied, it is possible to maintain a temperature difference of around 100°C. It can be said that the reforming reactor has excellent heat transfer because the temperature difference between the side and the reforming reaction chamber side is around 150°C, but it is within several degrees Celsius on the reactor outlet side. These features of the present invention can be summarized as follows.

(1)分解ゾーンを高温度に維持することが可能となり
、メタノール転化率の大幅な向上が可能となる。
(1) It becomes possible to maintain the decomposition zone at a high temperature, and it becomes possible to significantly improve the methanol conversion rate.

(2)  00シフト反応ゾーンを低温にすることによ
り、シフト反応のほぼ平衡値まで到達し、生成ガス中の
CO濃度の低減が可能となる。
(2) By lowering the temperature of the 00 shift reaction zone, the shift reaction almost reaches an equilibrium value, making it possible to reduce the CO concentration in the produced gas.

(3)燃焼に伴う生成熱が効率良く改質反応に利用され
、発電システムとしての熱効率が向上する。
(3) The heat produced during combustion is efficiently used in the reforming reaction, improving the thermal efficiency of the power generation system.

(4)改質器のコンパクト化が可能となり、可搬性の向
上、低コスト化につながる。
(4) The reformer can be made more compact, leading to improved portability and lower costs.

また本発明のもう一つの特徴として、Pt−Pdから構
成される二元系触媒を採用する場合には、メタノール改
質用反応器さらには、燃料電池の起動時間を大幅に短縮
し、燃料電池発電システムの簡略化を可能とすることが
できる。すなわち従来方式の改質用反応器および燃料電
池は、起動に際して、別途起動用バーナーを設け、メタ
ノールの燃焼ガスにより昇温する方式である。ところが
本発明の反応器でPt−Pdからなる二元系触媒を用い
る場合には、起動時に改質用反応器の燃焼反応室側にメ
タノール蒸気を含む空気を供給するだけで、燃焼用触媒
による酸化反応が起こり、改質用反応器の昇温か容易と
なり、さらには、改質用反応器で生成した燃焼ガスを燃
料電池に供給することにより、燃料電池の昇温か可能と
なる。すなわち特別の起動用バーナーを必要とせず容易
に起動が可能となる。ただそのためには、燃焼用触媒と
して、Hβ安定燃焼と同時に、常温でしかも希薄なメタ
ノールを含む空気でも着火する触媒が必要であり、pt
触謀がとくに有効である。ただPtは高価であり、また
H2燃焼としてはむしろPdが有効であることから、P
t−Pdの二元系触媒の採用が有利である。すなわち海
綿状金属基材の一部にptを担持し、残部をPdとする
ことにより、起動に際してのメタノールの常温での着火
と、H2の燃焼の両性質を備えた比較的低コストの触媒
を得ることができる。ただしここでPd触媒は、ある程
度昇温するとメタノールの燃焼として有効に働くため、
pt触謀愈としては、改質用反応器の入口で起動時のメ
タノール着火源になりさえすれば良く、はんの少量で良
い。
Another feature of the present invention is that when a binary catalyst composed of Pt-Pd is employed, the startup time of the methanol reforming reactor and even the fuel cell can be significantly shortened, and the fuel cell It is possible to simplify the power generation system. That is, when starting up the conventional reforming reactor and fuel cell, a separate starting burner is provided and the temperature is raised by methanol combustion gas. However, when a binary catalyst consisting of Pt-Pd is used in the reactor of the present invention, air containing methanol vapor is simply supplied to the combustion reaction chamber side of the reforming reactor at startup, and the combustion catalyst is activated. An oxidation reaction occurs, making it easier to raise the temperature of the reforming reactor, and further, by supplying the combustion gas generated in the reforming reactor to the fuel cell, it becomes possible to raise the temperature of the fuel cell. In other words, it can be started easily without the need for a special starting burner. However, in order to achieve this, a combustion catalyst is required that simultaneously ignites stable Hβ combustion and ignites even in air containing dilute methanol at room temperature.
Teasing is especially effective. However, Pt is expensive and Pd is more effective for H2 combustion.
It is advantageous to employ a binary t-Pd catalyst. In other words, by supporting a portion of the spongy metal base material with PT and the remaining portion with Pd, a relatively low-cost catalyst that has both the properties of igniting methanol at room temperature and combusting H2 during startup can be created. Obtainable. However, the Pd catalyst works effectively as a methanol combustor when the temperature rises to a certain degree, so
As a PT catalyst, it is sufficient that the inlet of the reforming reactor serves as a methanol ignition source at startup, and a small amount of fuel is sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のメタノール改質用反応器の一例を示す
説明図、第2図は本発明の反応器の他の例を示す説明図
、第3図は本発明の反応器を燃料電池の水素供給装置と
して用いる場合のフローシートである。 l・・・反応器本体、2・・・燃料ガス燃焼用触媒層、
3・・・メタノール改質用触媒層、4・・・隔壁、5・
・・燃料ガス導管、6・・・改質原料導管、7・・・燃
焼排ガス管、8・・・改質ガス管、9・・・燃焼反応室
、10・・・改質反応室、11・・・多孔支持体、12
・・・改質用反応器、13・・・燃料電池、14・・・
純水供給ポンプ、15・・・メタノール供給ポンプ、1
6・・・原料気化器、17・・・原料予熱器、18・・
・空気供給プロワ、19・・・冷却空気循環プロワ、2
0・・・混合器、21・・・冷却部、22・・・酸素極
、23・・・水素極、24・・・ライン、25・・・ラ
イン
Fig. 1 is an explanatory diagram showing an example of the methanol reforming reactor of the present invention, Fig. 2 is an explanatory diagram showing another example of the reactor of the present invention, and Fig. 3 is an explanatory diagram showing an example of the reactor for methanol reforming of the present invention. This is a flow sheet when used as a hydrogen supply device. l...Reactor main body, 2...Catalyst layer for fuel gas combustion,
3... Catalyst layer for methanol reforming, 4... Partition wall, 5...
... Fuel gas conduit, 6... Reforming raw material conduit, 7... Combustion exhaust gas pipe, 8... Reformed gas pipe, 9... Combustion reaction chamber, 10... Reforming reaction chamber, 11 ...Porous support, 12
... Reforming reactor, 13... Fuel cell, 14...
Pure water supply pump, 15...methanol supply pump, 1
6... Raw material vaporizer, 17... Raw material preheater, 18...
・Air supply blower, 19... Cooling air circulation blower, 2
0... Mixer, 21... Cooling section, 22... Oxygen electrode, 23... Hydrogen electrode, 24... Line, 25... Line

Claims (1)

【特許請求の範囲】 1 メタノール改質用触媒層と燃料ガス燃焼用触媒層と
を交互に配置して、メタノールをスチームとともに改質
し水素を発生させるメタノール改質用反応器において、
燃料ガス燃焼用触媒層を、三次元網目状金属を担体とし
た燃焼用触媒を充填して形成したことを特徴とするメタ
ノール改質用反応器。 2 メタノール改質用触媒層と燃料ガス燃焼用触媒層と
を交互に配置して、メタノールをスチームとともに改質
し水素を発生させるメタノール改質用反応器において、
メタノール改質用触媒層および燃料ガス燃焼用触媒層を
、三次元網目状金属を担体とした触媒を充填して形成し
たことを特徴とするメタノール改質用反応器。 3 燃料ガス燃焼用触媒層の入口部のみに、触媒として
白金を用いる特許請求の範囲第1項または第2項記載の
メタノール改質用反応器。 4 燃料ガス燃焼用触媒として、メタノール燃焼用触媒
と水素燃焼用触媒との二元系触媒を用いる特許請求の範
囲第1項または第2項記載のメタノール改質用反応器。 5 メタノール燃焼用触媒として白金を、水素燃焼用触
媒としてパラジウムを同一担体に担持した特許請求の範
囲第4項記載のメタノール改質用反応器。
[Scope of Claims] 1. A methanol reforming reactor in which methanol reforming catalyst layers and fuel gas combustion catalyst layers are arranged alternately to reform methanol together with steam and generate hydrogen,
A reactor for methanol reforming, characterized in that a fuel gas combustion catalyst layer is formed by filling a combustion catalyst with a three-dimensional network metal as a carrier. 2. A methanol reforming reactor in which methanol reforming catalyst layers and fuel gas combustion catalyst layers are arranged alternately to reform methanol together with steam and generate hydrogen,
A methanol reforming reactor, characterized in that a methanol reforming catalyst layer and a fuel gas combustion catalyst layer are formed by filling a catalyst with a three-dimensional network metal as a carrier. 3. The methanol reforming reactor according to claim 1 or 2, wherein platinum is used as a catalyst only at the inlet of the fuel gas combustion catalyst layer. 4. The methanol reforming reactor according to claim 1 or 2, which uses a binary catalyst of a methanol combustion catalyst and a hydrogen combustion catalyst as the fuel gas combustion catalyst. 5. The methanol reforming reactor according to claim 4, wherein platinum is supported as a methanol combustion catalyst and palladium is supported as a hydrogen combustion catalyst on the same carrier.
JP60135014A 1985-06-20 1985-06-20 Reactor for reforming methanol Granted JPS61295205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60135014A JPS61295205A (en) 1985-06-20 1985-06-20 Reactor for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135014A JPS61295205A (en) 1985-06-20 1985-06-20 Reactor for reforming methanol

Publications (2)

Publication Number Publication Date
JPS61295205A true JPS61295205A (en) 1986-12-26
JPH0450244B2 JPH0450244B2 (en) 1992-08-13

Family

ID=15141912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135014A Granted JPS61295205A (en) 1985-06-20 1985-06-20 Reactor for reforming methanol

Country Status (1)

Country Link
JP (1) JPS61295205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292757A (en) * 1988-05-18 1989-11-27 Sanyo Electric Co Ltd Fuel cell power generating system
EP0911897A1 (en) * 1997-10-20 1999-04-28 dbb fuel cell engines GmbH Apparatus for steam reforming of a hydrocarbon fuel, in particular methanol, and for carbon monoxide reduction, and process therefor
JP2004502623A (en) * 2000-06-29 2004-01-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー Power generation by heat exchange membrane reactor
JP2005206398A (en) * 2004-01-21 2005-08-04 Toyota Central Res & Dev Lab Inc Reformer and method of operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292757A (en) * 1988-05-18 1989-11-27 Sanyo Electric Co Ltd Fuel cell power generating system
EP0911897A1 (en) * 1997-10-20 1999-04-28 dbb fuel cell engines GmbH Apparatus for steam reforming of a hydrocarbon fuel, in particular methanol, and for carbon monoxide reduction, and process therefor
JP2004502623A (en) * 2000-06-29 2004-01-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー Power generation by heat exchange membrane reactor
JP2005206398A (en) * 2004-01-21 2005-08-04 Toyota Central Res & Dev Lab Inc Reformer and method of operating the same

Also Published As

Publication number Publication date
JPH0450244B2 (en) 1992-08-13

Similar Documents

Publication Publication Date Title
US8211387B2 (en) Anode tailgas oxidizer
US7150866B2 (en) Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity
TWI392543B (en) Method and apparatus for rapid heating of fuel reforming reactants
JP2003506306A (en) Compact reactor
JP2004171989A (en) Hydrogen generator for fuel cell
JPH06239601A (en) Combined reformer and conversion reactor
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
EP1494806B1 (en) Catalyst for removing carbon monoxide in hydrogen rich gas according to water gas shift reaction
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
US20070072019A1 (en) Catalyst for partial oxidation reforming of fuel and fuel reforming apparatus and method using the catalyst
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
JPS61295205A (en) Reactor for reforming methanol
JP2001089104A (en) Methanol reformer
JP2001089108A (en) Fuel reformer and method for operating the reformer
JP2646101B2 (en) Fuel reformer
JP2002293510A (en) Carbon monoxide converter
JP3943606B2 (en) Method for selective removal of carbon monoxide
JPS62246802A (en) Methanol reformer
JPH0380102A (en) Fuel reformer
JP2003277018A (en) Hydrogen purification apparatus and method of manufacturing co removing catalyst
JPH01122902A (en) Fuel reformer for fuel cell
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP2004067454A (en) Fuel reforming apparatus and hydrogen generation method
JP2001089102A (en) Fuel-reforming apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term