JP2005206398A - Reformer and method of operating the same - Google Patents

Reformer and method of operating the same Download PDF

Info

Publication number
JP2005206398A
JP2005206398A JP2004012818A JP2004012818A JP2005206398A JP 2005206398 A JP2005206398 A JP 2005206398A JP 2004012818 A JP2004012818 A JP 2004012818A JP 2004012818 A JP2004012818 A JP 2004012818A JP 2005206398 A JP2005206398 A JP 2005206398A
Authority
JP
Japan
Prior art keywords
reformer
gas
fuel
reforming
circulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004012818A
Other languages
Japanese (ja)
Inventor
Takashi Yamauchi
崇史 山内
Shuichi Kubo
修一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004012818A priority Critical patent/JP2005206398A/en
Publication of JP2005206398A publication Critical patent/JP2005206398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer in which equipment in the downstream side of the reformer is miniaturized and durability or the like is improved by lowering the temperature of a reformed gas at the outlet of the reformer while suppressing the production of methane to improve the reforming efficiency in the production of a hydrogen enriched gas by reforming a hydrocarbon-based fuel, and a method of operating the same. <P>SOLUTION: In the reformer and the method of operating the same, the reformer is constructed by alternately stacking a reforming gas passing layer 10 to which a hydrocarbon-based fuel is supplied and a combustion gas passing layer 12 to which a fuel gas is supplied. An oxidation catalyst layer 14 is provided in the middle of the gas flow direction in the combustion gas passing layer 12 to locally heat the reforming gas passing layer 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭化水素系原料から、水素燃料電池、各種有機化合物の水素化、あるいは各種工業用等に用いられる水素ガスを製造するための改質器とその運転方法に関する。   The present invention relates to a reformer for producing hydrogen gas used for hydrogen fuel cells, hydrogenation of various organic compounds, various industrial applications, and the like, from a hydrocarbon-based raw material, and an operation method thereof.

近年,水素と酸素の電気化学反応によって発電する燃料電池がエネルギ源として注目されている。燃料電池に供給される水素は、例えば、炭化水素系燃料からの改質によって生成される。改質反応としては、水蒸気を酸化剤として用いる水蒸気改質反応、酸素を酸化剤として用いる部分酸化反応などが挙げられる。   In recent years, fuel cells that generate electricity by electrochemical reaction between hydrogen and oxygen have attracted attention as energy sources. Hydrogen supplied to the fuel cell is generated, for example, by reforming from a hydrocarbon fuel. Examples of the reforming reaction include a steam reforming reaction using steam as an oxidizing agent, and a partial oxidation reaction using oxygen as an oxidizing agent.

水蒸気改質反応によって生成された水素リッチガスは、図6に示すように熱交換器によって熱交換されて所定の温度に調整された後、水素分離膜、COシフト反応器等を備えたCO低減部において、200℃〜600℃の温度条件で水素リッチガス中から水素ガスが選択的に取り出され、この水素ガスが燃料電池に供給される。   The hydrogen-rich gas produced by the steam reforming reaction is heat-exchanged by a heat exchanger as shown in FIG. 6 and adjusted to a predetermined temperature, and then a CO reduction unit equipped with a hydrogen separation membrane, a CO shift reactor, etc. The hydrogen gas is selectively extracted from the hydrogen-rich gas under a temperature condition of 200 ° C. to 600 ° C., and this hydrogen gas is supplied to the fuel cell.

従来、このような炭化水素改質器においては、改質触媒による改質ガスを効率的に製造するためには、改質触媒を長期間にわたって高活性状態に維持することが要求されている。このための1つの手段として、改質触媒が所定の設定劣化度に達したときに改質触媒に対して空気を供給し、その再生を図る再生操作を行い、その後、再び,改質反応操作を行い、この改質反応と再生操作を繰り返す方法等が提案されている。(特許文献1)   Conventionally, in such a hydrocarbon reformer, it has been required to maintain the reforming catalyst in a highly active state for a long period of time in order to efficiently produce reformed gas by the reforming catalyst. As one means for this, when the reforming catalyst reaches a predetermined set deterioration level, air is supplied to the reforming catalyst, and a regeneration operation for regenerating the reformed catalyst is performed, and then the reforming reaction operation is performed again. A method has been proposed in which the reforming reaction and the regeneration operation are repeated. (Patent Document 1)

しかしながら、炭化水素改質器における改質効率は、改質触媒の劣化の問題と共に改質器の運転状態にも大きく影響し、また、改質器の運転状態によって改質システム全体の構造的な問題も派生する。   However, the reforming efficiency in the hydrocarbon reformer greatly affects the operation state of the reformer as well as the problem of deterioration of the reforming catalyst, and the structural state of the entire reforming system depends on the operation state of the reformer. Problems also derive.

すなわち、従来の改質器として炭化水素系燃料が供給される改質ガス流通層と燃料ガスが供給される燃焼ガス流通層とが交互に積層された改質器にあっては、改質器の改質効率を上げると、改質器出口の改質ガスの温度が高くなり、改質器の後流側に設置される機器の大型化、耐久性等の種々の問題が生じ、一方、これらの問題が解決するために、改質器出口の改質ガスの温度を低くすると、改質器出口の改質ガス中のメタン量が多くなり、改質ガス中の水素量が減少して改質効率が低下する。
特開平11−79702
That is, as a conventional reformer, in a reformer in which a reformed gas circulation layer to which a hydrocarbon-based fuel is supplied and a combustion gas circulation layer to which a fuel gas is supplied are alternately laminated, Increasing the reforming efficiency of the reformer increases the temperature of the reformed gas at the outlet of the reformer, which causes various problems such as an increase in the size and durability of equipment installed on the downstream side of the reformer, In order to solve these problems, when the temperature of the reformed gas at the reformer outlet is lowered, the amount of methane in the reformed gas at the reformer outlet increases and the amount of hydrogen in the reformed gas decreases. The reforming efficiency decreases.
JP-A-11-79702

本発明は、上記問題点を解決することを課題とする。すなわち、本発明の目的は、炭化水素系燃料を改質して水素リッチガスを生成する際に、メタンの発生を抑制して改質効率を高めながら、改質器出口の改質ガスの温度を低下させ、改質器の後流側の機器の小型化を図り、耐久性等を高めることができる改質器及びその運転方法を提供することにある。   An object of the present invention is to solve the above problems. That is, the object of the present invention is to reduce the temperature of the reformed gas at the reformer outlet while suppressing the generation of methane and increasing the reforming efficiency when reforming hydrocarbon fuel to produce hydrogen rich gas. An object of the present invention is to provide a reformer that can be reduced, downsize equipment on the downstream side of the reformer, and improve durability and the operation method thereof.

すなわち、本発明は、
<1> 炭化水素系燃料が供給される改質ガス流通層と燃料ガスが供給される燃焼ガス流通層とが交互に積層された改質器であって、前記改質ガス流通層におけるガス流れ方向の途中に局所的に加熱する部位を設けた改質器である。
この改質器によれば、局所的に加熱する領域で水蒸気改質(SR)反応や部分酸化反応を生じて改質効率が向上し、改質ガスの熱量は,改質器出口までの間で燃焼前の低温の燃料ガスとの熱交換等により小さくなり、改質器出口のガス温度が低くなる。
<2>前記改質ガス流通層におけるガス流れ方向の途中に局所的に加熱する部位が、燃料ガスが供給される燃焼ガス流通層のガス流れ方向の途中に酸化触媒層を設けたことを特徴とする<1>に記載の改質器である。
この改質器によれば、燃料ガスが酸化触媒によって燃焼し、この燃焼熱により改質ガス流通層が局所的に加熱される。
<3> 炭化水素系燃料が供給される改質ガス流通層と燃料ガスが供給される燃焼ガス流通層とが交互に積層された改質器の運転方法であって、前記改質ガス流通層におけるガス流れ方向の途中を局所的に加熱することを特徴とする改質器の運転方法である。
この改質器の運転方法によれば、局所的に加熱する領域で水蒸気改質(SR)反応や部分酸化反応を生じて改質効率が向上し、改質ガスの熱量は,改質器出口までの間で熱交換等により小さくなり、改質器出口のガス温度が低くなる。
<4> 前記燃料ガスが供給される燃焼ガス流通層のガス流れ方向の途中に酸化触媒層を設けて、前記改質ガス流通層におけるガス流れ方向の途中を局所的に加熱することを特徴とする<3>に記載の改質器の運転方法である。
この改質器の運転方法によれば、燃料ガスが酸化触媒によって燃焼し、この燃焼熱により改質ガス流通層が局所的に加熱される。
That is, the present invention
<1> A reformer in which a reformed gas circulation layer to which a hydrocarbon-based fuel is supplied and a combustion gas circulation layer to which a fuel gas is supplied are alternately stacked, and the gas flow in the reformed gas circulation layer It is the reformer which provided the site | part heated locally in the middle of a direction.
According to this reformer, steam reforming (SR) reaction or partial oxidation reaction occurs in the locally heated region to improve reforming efficiency. Thus, it becomes smaller due to heat exchange with the low-temperature fuel gas before combustion, and the gas temperature at the reformer outlet becomes lower.
<2> The portion that is locally heated in the gas flow direction in the reformed gas circulation layer is provided with an oxidation catalyst layer in the gas flow direction of the combustion gas circulation layer to which fuel gas is supplied. The reformer according to <1>.
According to this reformer, the fuel gas is combusted by the oxidation catalyst, and the reformed gas circulation layer is locally heated by this combustion heat.
<3> A method of operating a reformer in which a reformed gas circulation layer to which a hydrocarbon-based fuel is supplied and a combustion gas circulation layer to which a fuel gas is supplied are alternately stacked, the reformed gas circulation layer The operation method of the reformer characterized by heating locally in the middle of the gas flow direction.
According to this reformer operation method, steam reforming (SR) reaction or partial oxidation reaction occurs in the locally heated region to improve reforming efficiency. Until the gas temperature at the reformer outlet becomes low.
<4> An oxidation catalyst layer is provided in the middle of the gas flow direction of the combustion gas circulation layer to which the fuel gas is supplied, and the middle of the gas flow direction in the reformed gas circulation layer is locally heated. The reformer operating method according to <3>.
According to this reformer operation method, the fuel gas is combusted by the oxidation catalyst, and the reformed gas circulation layer is locally heated by this combustion heat.

本発明の炭化水素系改質器によれば、低温でのメタン生成を抑制し、高い改質効率を保ったまま低温での炭化水素系燃料の改質が可能な改質器を提供することができる。また、本発明の炭化水素系燃料の改質方法によれば、低温でのメタン生成を抑制し、高い改質効率を保ったまま低温での炭化水素系燃料の改質が可能となり、改質後の熱交換器を不要ないしは小型化することができ、この結果、改質器における熱容量が小さくなり、改質器の始動や応答性が向上し、改質部分や熱交換器器の耐久性が向上する。   According to the hydrocarbon reformer of the present invention, there is provided a reformer capable of reforming hydrocarbon fuel at low temperature while suppressing methane production at low temperature and maintaining high reforming efficiency. Can do. Further, according to the hydrocarbon fuel reforming method of the present invention, it is possible to reform the hydrocarbon fuel at a low temperature while suppressing methane production at a low temperature and maintaining a high reforming efficiency. The later heat exchanger can be unnecessary or downsized, resulting in a smaller heat capacity in the reformer, improved reformer start-up and responsiveness, and improved durability of the reformer and heat exchanger Will improve.

本発明者は炭化水系燃料の改質反応において、反応系における投入熱量と反応速度との関係を鋭意探求した結果、図1に示すような関係を有することが判明した。すなわち、水蒸気改質(SR)反応速度及びメタン生成(メタネーション)反応と反応系への投入熱量との関係は、図に示すように、SR反応は、反応系への投入熱量の増加に応じて増大しており、熱量小の領域(1)と熱量中の領域(2)と熱量大の領域(3)につれて次第に増加している。一方、メタネーション反応は、熱量小の領域(1)と熱量大の領域(3)においては、比較的抑制されているが、熱量中の領域(2)において、メタネーション反応が進みやすい。   As a result of earnestly searching for the relationship between the amount of heat input and the reaction rate in the reforming reaction of the hydrocarbon fuel, the present inventor has found that there is a relationship as shown in FIG. That is, the relationship between the steam reforming (SR) reaction rate and the methane production (methanation) reaction and the amount of heat input to the reaction system is shown in FIG. It gradually increases with the region (1) with a small amount of heat, the region (2) in the amount of heat and the region (3) with a large amount of heat. On the other hand, the methanation reaction is relatively suppressed in the region (1) with a small amount of heat and the region (3) with a large amount of heat, but the methanation reaction easily proceeds in the region (2) in the amount of heat.

したがって、上記したSR反応とメタネーション反応との関係から、領域(2)の部分をなるべく少なくなるように熱量を投入すれば、メタネーション反応を抑制することができる。一方、領域(1)の部分のみではSR反応が進まず、また、領域(3)の部分のみでは、改質系の温度が高くなり、改質部分の耐久性、触媒の熱劣化等の弊害が生じ、また改質器の出口温度が高くなる結果、改質器の後流側に設置される熱交換器等に付与される熱量が大きくなり、熱交換器の耐久性が問題なる他、熱交換器の容量が大きくなる問題が生じる。   Therefore, from the relationship between the SR reaction and the methanation reaction, the methanation reaction can be suppressed if the amount of heat is input so as to minimize the region (2). On the other hand, the SR reaction does not proceed only in the region (1), and only in the region (3), the temperature of the reforming system becomes high, resulting in problems such as durability of the reforming portion and thermal deterioration of the catalyst. As a result of the increase in the outlet temperature of the reformer, the amount of heat applied to the heat exchanger installed on the downstream side of the reformer increases, and the durability of the heat exchanger becomes a problem. The problem that the capacity | capacitance of a heat exchanger becomes large arises.

そこで、本発明者らは、領域(1)と領域(3)とをバランスよく分布させることによってより低温で、高効率的に炭化水素系燃料の改質を行い、しかもメタンの生成を抑制する方法としては、図2に示す方法が適切であることが判明した。
すなわち、改質器のガス流れ方向の反応器の途中に局所的に加熱領域を設ける。この加熱領域は、図1における領域(3)に相当する投入熱量を付与することになる。加熱領域は、改質器の反応器長さ(ガス長さ方向)の途中に設定されていればよいが、改質器の出口付近であると、改質器の出口温度が高くなるおそれがあるので、加熱領域は改質器の出口付近を除く、改質器内に設定することが望ましい。
Therefore, the present inventors perform reforming of the hydrocarbon-based fuel at a lower temperature and higher efficiency by distributing the region (1) and the region (3) in a well-balanced manner, and further suppress the production of methane. As a method, it has been found that the method shown in FIG. 2 is appropriate.
That is, a heating region is locally provided in the middle of the reactor in the gas flow direction of the reformer. This heating region gives an input heat amount corresponding to the region (3) in FIG. The heating region may be set in the middle of the reactor length (gas length direction) of the reformer, but if it is in the vicinity of the outlet of the reformer, the outlet temperature of the reformer may increase. Therefore, it is desirable to set the heating region inside the reformer except for the vicinity of the outlet of the reformer.

図3は、本発明の炭化水素改質器の好ましい実施の形態を示す概念的斜視図である。図3において、改質すべき炭化水素系燃料が供給される改質ガス流通層10と改質ガスを加熱するための燃料ガスが供給される燃焼ガス流通層12が交互に積層された構造となっている。改質ガス流通層10にはガソリン等の炭化水素と水蒸気が供給される。それぞれの改質ガス流通層10に隣接する燃焼ガス流通層12には、燃料ガスとこのガスを燃焼させるための空気が導入される。   FIG. 3 is a conceptual perspective view showing a preferred embodiment of the hydrocarbon reformer of the present invention. In FIG. 3, the reformed gas circulation layer 10 to which the hydrocarbon-based fuel to be reformed is supplied and the combustion gas circulation layer 12 to which the fuel gas for heating the reformed gas is supplied are alternately stacked. ing. A hydrocarbon such as gasoline and steam are supplied to the reformed gas circulation layer 10. Fuel gas and air for burning the gas are introduced into the combustion gas circulation layer 12 adjacent to each reformed gas circulation layer 10.

燃焼ガス流通層12の途中には、改質ガス流通層10内における改質ガス流れとほぼ直交する方向に酸化触媒層14が設けられている。改質ガス流通層10には、改質反応を促進するための触媒が担持されている。このような触媒としては、銅−亜鉛系の卑金属系触媒、白金系触媒等を用いることができる。これらの触媒を担持する担体としては、アルミナ、チタニア等のセラミックス多孔体等を用いることができる.   In the middle of the combustion gas circulation layer 12, an oxidation catalyst layer 14 is provided in a direction substantially orthogonal to the reformed gas flow in the reformed gas circulation layer 10. A catalyst for promoting the reforming reaction is supported on the reformed gas circulation layer 10. As such a catalyst, a copper-zinc base metal catalyst, a platinum catalyst, or the like can be used. As the carrier for supporting these catalysts, porous ceramics such as alumina and titania can be used.

燃料ガス流通層12には、燃料ガスの燃焼酸化を促進するための酸化触媒が担体に担持されている。この担体としては、アルミナ、チタニア等のセラミックス多孔体が挙げられる。また、酸化触媒としては、Pt、Pd等の貴金属触媒、銅−亜鉛系の卑貴金属触媒を挙げることができるが、局所的に酸化させるという観点からは特に反応性の高いPt、Pd等の貴金属触媒が好適である。   In the fuel gas circulation layer 12, an oxidation catalyst for promoting combustion oxidation of the fuel gas is supported on the carrier. Examples of the carrier include porous ceramics such as alumina and titania. Examples of the oxidation catalyst include noble metal catalysts such as Pt and Pd, and copper-zinc base noble metal catalysts. From the viewpoint of local oxidation, noble metals such as Pt and Pd are particularly highly reactive. A catalyst is preferred.

図4は、本発明における改質ガス流通層10と燃焼ガス流通層12とにおける熱の授受の関係を示す説明図である。図4において、燃焼ガス流通層12の途中に設けられた酸化触媒層14に外部から燃料ガスと空気が導入されると、酸化触媒層14において、燃料ガスが燃焼し、この部分で急激に熱が発生する。この熱は、燃焼ガス流通層12に隣接する改質ガス流通層10に伝達される。水蒸気改質反応は、燃料と水蒸気から水素を生成する吸熱反応である。したがって、改質ガス流通層10では、酸化触媒層14から受熱して水蒸気改質反応が進行し、その吸熱反応によって改質ガス流れの上流側は次第にガスの温度が低下する。   FIG. 4 is an explanatory diagram showing a heat transfer relationship between the reformed gas circulation layer 10 and the combustion gas circulation layer 12 in the present invention. In FIG. 4, when fuel gas and air are introduced from the outside into the oxidation catalyst layer 14 provided in the middle of the combustion gas circulation layer 12, the fuel gas burns in the oxidation catalyst layer 14, and heat is rapidly generated in this portion. Will occur. This heat is transferred to the reformed gas circulation layer 10 adjacent to the combustion gas circulation layer 12. The steam reforming reaction is an endothermic reaction that generates hydrogen from fuel and steam. Therefore, in the reformed gas circulation layer 10, the steam reforming reaction proceeds by receiving heat from the oxidation catalyst layer 14, and the gas temperature gradually decreases on the upstream side of the reformed gas flow due to the endothermic reaction.

このように、酸化触媒層14の部位に隣接する改質ガス流通層の付近は、局所的に加熱される結果、図1における熱量大の領域(3)に相当する領域となり、SR反応が進行するとともにメタネーション反応は抑制される。したがって、メタンの発生を抑制しつつ、改質反応の高効率化を図ることができる。そして、水蒸気改質反応の吸熱反応及び改質ガスと燃焼ガス流通層12に導入され、触媒燃焼前の低温の燃料ガスと空気との熱交換によって、改質ガスは、温度が低下した状態で改質器から後流側の機器に導入される。   As described above, the vicinity of the reformed gas circulation layer adjacent to the site of the oxidation catalyst layer 14 is locally heated, so that it becomes a region corresponding to the region (3) having a large amount of heat in FIG. 1, and the SR reaction proceeds. In addition, the methanation reaction is suppressed. Therefore, it is possible to increase the efficiency of the reforming reaction while suppressing the generation of methane. Then, the reformed gas is introduced into the endothermic reaction of the steam reforming reaction and the reformed gas and the combustion gas circulation layer 12 and heat exchange between the low-temperature fuel gas and the air before catalytic combustion is performed in a state where the temperature is lowered It is introduced from the reformer to the downstream equipment.

改質ガス流通層12を経て得られた水素リッチガスは、熱交換器で熱交換された後、CO分離部に導入される。CO分離部は、シフト反応部と水素分離部とを備えている。シフト反応部は、水素リッチガス中に含まれる一酸化炭素とシフト反応部の外部から供給される水蒸気とから水素を生成する。これらの水素を含むガスは、水素分離膜を備えた水素分離部で水素のみが選択的に分離され、この水素が燃料電池等に供給される。また、得られた水素は燃料電池以外の水素消費系に供給することもできる。なお、水素リッチガスの成分比、水素リッチガスが供給される機器によっては、CO分離部を省略することができる。   The hydrogen rich gas obtained through the reformed gas circulation layer 12 is heat-exchanged by a heat exchanger and then introduced into the CO separation unit. The CO separation unit includes a shift reaction unit and a hydrogen separation unit. The shift reaction unit generates hydrogen from carbon monoxide contained in the hydrogen-rich gas and water vapor supplied from the outside of the shift reaction unit. Of these hydrogen-containing gases, only hydrogen is selectively separated in a hydrogen separation section having a hydrogen separation membrane, and this hydrogen is supplied to a fuel cell or the like. Further, the obtained hydrogen can be supplied to a hydrogen consumption system other than the fuel cell. Note that the CO separation unit can be omitted depending on the component ratio of the hydrogen-rich gas and the equipment to which the hydrogen-rich gas is supplied.

改質器の後流側に設置される機器としては、例えば、熱交換器、水素分離膜、COシフト反応器等が挙げられるが、これらの機器においては、運転温度として200℃〜600℃が好ましく、より好ましくは500℃付近である。上記した本発明における局所的な加熱領域を設けた改質器の運転方法によれば、(1)改質器から排出される改質ガスは概ね500℃程度と温度が低く、改質器後流側の機器の動作温度とほぼ等しいため、熱交換器を不要とするかあるいは熱交換器の小型化することができる、(2)改質器及び熱交換器に使用できる金属の耐熱限界温度は約650℃であり、改質器とその後流側の機器の温度差が小さくなるため、改質器及びその後流側の機器の耐久性が向上する、(3)改質器における触媒全体の温度が低下し、貴金属等の触媒成分のシンタリング(焼結)等が抑制できるため、触媒の熱劣化が抑制できる、(4)改質器の温度低下と熱交換器を不要とすることができる結果、改質部の容量が小さくなり、改質部における始動、応答性が向上する。   Examples of equipment installed on the downstream side of the reformer include a heat exchanger, a hydrogen separation membrane, and a CO shift reactor. In these equipment, the operating temperature is 200 ° C. to 600 ° C. Preferably, it is around 500 ° C. According to the operation method of the reformer provided with the local heating region in the present invention described above, (1) the reformed gas discharged from the reformer has a low temperature of about 500 ° C. Since it is almost equal to the operating temperature of the flow-side equipment, it is possible to eliminate the need for a heat exchanger or to reduce the size of the heat exchanger. Is about 650 ° C., and the temperature difference between the reformer and the downstream apparatus is reduced, so that the durability of the reformer and the downstream apparatus is improved. (3) Overall catalyst in the reformer The temperature can be reduced and sintering of the catalyst components such as precious metals can be suppressed, so that the thermal deterioration of the catalyst can be suppressed. (4) The temperature drop of the reformer and the need for a heat exchanger can be eliminated. As a result, the capacity of the reforming unit is reduced, and the start-up and response in the reforming unit are improved. To.

前記した実施の形態においては、炭化水素系燃料として、ガソリンを例に説明したが、この他にアルコールなどの含酸素系炭化水素系燃料やLPG、LNG等の気体状炭化水素を用いることができる。また、改質ガス流通層には、前記の炭化水素系燃料と水蒸気とを供給して水蒸気改質反応を行う例を示したが、改質ガス流通層に炭化水素系燃料と酸化剤としては空気及び水蒸気とを供給して部分酸化反応と水蒸気改質反応を同時に行う場合であってもよい。   In the above-described embodiment, gasoline has been described as an example of the hydrocarbon fuel, but oxygen-containing hydrocarbon fuels such as alcohol, and gaseous hydrocarbons such as LPG and LNG can also be used. . In addition, an example in which the hydrocarbon-based fuel and steam are supplied to the reformed gas circulation layer to perform a steam reforming reaction has been shown. It may be a case where air and steam are supplied to perform the partial oxidation reaction and the steam reforming reaction at the same time.

改質器における酸化触媒層の配置状態は、改質ガス流通層の改質ガス流れ方向の途中であれば、少なくともこの酸化触媒層に隣接する改質ガス流通層における熱量が大きくなり、改質反応(SR反応)が進行する。しかし、改質器出口の改質ガスの温度を所定の範囲に保持するためには、水蒸気改質反応の場合と,水蒸気改質反応と部分酸化反応とを同時に行う場合によって、改質ガスの温度が異なるが、酸化触媒層の配置部位は、改質器の出口側から離間した位置が望ましい。また、酸化触媒層の大きさは、酸化触媒の種類、炭化水素系燃料等により異なるが、水蒸気改質反応が十分に進行するに足りる大きさであればよい。   If the arrangement state of the oxidation catalyst layer in the reformer is in the middle of the reformed gas flow direction of the reformed gas circulation layer, at least the amount of heat in the reformed gas circulation layer adjacent to the oxidation catalyst layer increases, The reaction (SR reaction) proceeds. However, in order to maintain the temperature of the reformed gas at the outlet of the reformer within a predetermined range, the reformed gas may be changed depending on whether the steam reforming reaction or the steam reforming reaction and the partial oxidation reaction are performed simultaneously. Although the temperature is different, the position where the oxidation catalyst layer is arranged is preferably a position away from the outlet side of the reformer. The size of the oxidation catalyst layer varies depending on the type of the oxidation catalyst, the hydrocarbon-based fuel, and the like, but may be a size sufficient for the steam reforming reaction to proceed sufficiently.

以下、本発明の実施例について説明する。
(実施例)
酸化触媒(Pt)を担体(アルミナ)に担持した酸化触媒を燃焼ガス流通層(厚み10mm,縦100mm、横100mm)のガス流れ方向に直交する方向のほぼ中心部に設けた燃焼ガス流通層と、この燃焼ガス流通層とほぼ同じ大きさであって、改質触媒を有する改質ガス流通層とを交互に積層して図3に示すような改質器を製造した
(比較例)
酸化触媒(Pt)を担体(アルミナ)に担持した酸化触媒を層全面に均一に設けた燃焼ガス流通層(厚み10mm,縦100mm、横100mm)と、この燃焼ガス流通層とほぼ同じ大きさであって、改質触媒を有する改質ガス流通層とを交互に積層した改質器を製造した
Examples of the present invention will be described below.
(Example)
A combustion gas circulation layer in which an oxidation catalyst having an oxidation catalyst (Pt) supported on a carrier (alumina) is provided at substantially the center in a direction perpendicular to the gas flow direction of the combustion gas circulation layer (thickness 10 mm, length 100 mm, width 100 mm); A reformer as shown in FIG. 3 was manufactured by alternately laminating reformed gas circulation layers having a reforming catalyst, which are approximately the same size as the combustion gas circulation layer (comparative example).
A combustion gas circulation layer (thickness 10 mm, length 100 mm, width 100 mm) in which an oxidation catalyst having an oxidation catalyst (Pt) supported on a carrier (alumina) is uniformly provided on the entire surface, and approximately the same size as this combustion gas circulation layer A reformer was produced in which reformed gas circulation layers having reforming catalysts were alternately stacked.

これらの改質器の改質ガス流通層にガソリンと水蒸気を供給し、燃焼ガス流通層に燃料ガスとしてガソリンと空気を供給した。
これらの改質器における加熱分布を調べた結果、図5に示すように、比較例(均一加熱方式)の場合、加熱分布が触媒長さ方向に均一であるのに対し、実施例(局所的過熱方式)の場合、加熱分布が触媒長さ方向のほぼ中間部でピーク状となっていた。
Gasoline and water vapor were supplied to the reformed gas circulation layer of these reformers, and gasoline and air were supplied as fuel gas to the combustion gas circulation layer.
As a result of examining the heating distribution in these reformers, as shown in FIG. 5, in the case of the comparative example (uniform heating method), the heating distribution is uniform in the catalyst length direction. In the case of the superheating method), the heating distribution had a peak shape in the middle of the catalyst length direction.

また、実施例及び比較例について、改質器出口の改質ガスの温度、COX、CH4への転化率、CH4濃度、改質効率をを測定した結果、表1に示す。表1において、
<COX、CH4への転化率>
X-FUEL:投入したガス中の燃料のモル数(mol/s)
C-FUEL:燃料のカーボン数
X-CO :改質後ガス中のCOモル数(mol/s)
X-CO2:改質後ガス中のCO2 モル数(mol/s)
X-CH4:改質後ガス中のCH4 モル数(mol/s)
X-2:改質後ガス中のH2 モル数(mol/s)
LHV-FUEL:燃料の低位発熱量(J/mol)
LHV-2:H2の低位発熱量(J/mol)
としたとき、下記の式に基づいて転化率と改質効率を計算した。
転化率=(X-CO+X-CO2X-CH4)/(X-FUEL×C-FUEL)×100%
改質効率=(X-CO+X-2)×LHV-2/(X-FUEL×LHV-FUEL)×100%
なお、COシフト部でCO→H2に転化するとして、ここでは、COも水素として効率に付加した。
Further, the examples and comparative examples, the temperature of the reformed gas in the reformer outlet, CO X, conversion to CH 4, CH 4 concentration, the results of measurement of the reforming efficiency, shown in Table 1. In Table 1,
<CO X, conversion to CH 4>
X- FUEL: Number of moles of fuel in the input gas (mol / s)
C- FUEL: Carbon number of fuel
X- CO: Number of moles of CO in reformed gas (mol / s)
X- CO 2 : Number of moles of CO 2 in the reformed gas (mol / s)
X- CH 4 : CH 4 moles in the reformed gas (mol / s)
X- H 2 : Number of moles of H 2 in reformed gas (mol / s)
LHV - FUEL: Lower heating value of fuel (J / mol)
LHV - H 2 : Lower heating value of H 2 (J / mol)
The conversion and reforming efficiency were calculated based on the following formula.
Conversion = (X- CO + X- CO 2 + X- CH 4) / (X- FUEL × C- FUEL) × 100%
Reforming efficiency = ( X− CO + X− H 2 ) × LHV H 2 / ( X− FUEL × LHV FUEL) × 100%
Note that CO is also efficiently added as hydrogen here, assuming that the CO shift unit converts CO to H 2 .

Figure 2005206398
Figure 2005206398

表1の結果から、実施例(局所加熱方式)は、比較例(均一加熱方式)に比べて改質器出口の改質ガスの温度が低く、改質ガス中のメタンの濃度が低く、かつ改質効率は高いことを示している。   From the results of Table 1, in the example (local heating method), the temperature of the reformed gas at the outlet of the reformer is lower than that of the comparative example (uniform heating method), the concentration of methane in the reformed gas is low, and It shows that the reforming efficiency is high.

改質器における反応系への投入熱量と反応速度との関係を示すグラフである。It is a graph which shows the relationship between the heat input to the reaction system in a reformer, and reaction rate. 本発明の炭化水素系改質反応方法を原理的に示すための改質器における反応器の長さと反応系内への投入熱量との関係を示すグラフである。It is a graph which shows the relationship between the length of the reactor in the reformer for showing in principle the hydrocarbon reforming reaction method of this invention, and the amount of heat input into the reaction system. 本発明の改質器の一実施の形態を示す要部の概略的構成図である。It is a schematic block diagram of the principal part which shows one Embodiment of the reformer of this invention. 図3の改質器における改質ガス流通層と燃料ガス流通層における温度関係を示すグラフである。It is a graph which shows the temperature relationship in the reformed gas distribution layer and fuel gas distribution layer in the reformer of FIG. 改質器における本発明(局所加熱型)と従来(均一加熱型)の加熱分布を対比して示すグラフである。It is a graph which compares and shows the heating distribution of this invention (local heating type) and the conventional (uniform heating type) in a reformer. 改質器からの水素リッチガスの流れを示す説明図である。It is explanatory drawing which shows the flow of the hydrogen rich gas from a reformer.

符号の説明Explanation of symbols

10 改質ガス流通層
12 燃焼ガス流通層
14 酸化触媒層
10 Reformed Gas Flow Layer 12 Combustion Gas Flow Layer 14 Oxidation Catalyst Layer

Claims (4)

炭化水素系燃料が供給される改質ガス流通層と燃料ガスが供給される燃焼ガス流通層とが交互に積層された改質器であって、前記改質ガス流通層におけるガス流れ方向の途中に局所的に加熱する部位を設けたことを特徴とする改質器。   A reformer in which a reformed gas circulation layer to which a hydrocarbon-based fuel is supplied and a combustion gas circulation layer to which a fuel gas is supplied are alternately stacked, in the middle of the gas flow direction in the reformed gas circulation layer A reformer characterized in that a portion to be locally heated is provided. 前記改質ガス流通層におけるガス流れ方向の途中に局所的に加熱する部位が、燃料ガスが供給される燃焼ガス流通層のガス流れ方向の途中に酸化触媒層を設けたことを特徴とする請求項1に記載の改質器。   The site of locally heating in the middle of the gas flow direction in the reformed gas circulation layer is provided with an oxidation catalyst layer in the middle of the gas flow direction of the combustion gas circulation layer to which fuel gas is supplied. Item 2. The reformer according to Item 1. 炭化水素系燃料が供給される改質ガス流通層と燃料ガスが供給される燃焼ガス流通層とが交互に積層された改質器の運転方法であって、前記改質ガス流通層におけるガス流れ方向の途中を局所的に加熱することを特徴とする改質器の運転方法。   An operation method of a reformer in which a reformed gas circulation layer to which a hydrocarbon-based fuel is supplied and a combustion gas circulation layer to which a fuel gas is supplied are alternately stacked, the gas flow in the reformed gas circulation layer An operation method of a reformer characterized by locally heating in the middle of a direction. 前記燃料ガスが供給される燃焼ガス流通層のガス流れ方向の途中に酸化触媒層を設けて、前記改質ガス流通層におけるガス流れ方向の途中を局所的に加熱することを特徴とする請求項3に記載の改質器の運転方法。





The oxidation catalyst layer is provided in the middle of the gas flow direction of the combustion gas circulation layer to which the fuel gas is supplied, and the middle of the gas flow direction in the reformed gas circulation layer is locally heated. The operation method of the reformer according to 3.





JP2004012818A 2004-01-21 2004-01-21 Reformer and method of operating the same Pending JP2005206398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012818A JP2005206398A (en) 2004-01-21 2004-01-21 Reformer and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012818A JP2005206398A (en) 2004-01-21 2004-01-21 Reformer and method of operating the same

Publications (1)

Publication Number Publication Date
JP2005206398A true JP2005206398A (en) 2005-08-04

Family

ID=34899083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012818A Pending JP2005206398A (en) 2004-01-21 2004-01-21 Reformer and method of operating the same

Country Status (1)

Country Link
JP (1) JP2005206398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204064A1 (en) * 2019-04-03 2020-10-08 Jxtgエネルギー株式会社 Hydrogen producing device and hydrogen producing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295205A (en) * 1985-06-20 1986-12-26 Kawasaki Heavy Ind Ltd Reactor for reforming methanol
JPH04134658U (en) * 1991-06-04 1992-12-15 石川島播磨重工業株式会社 plate rifoma
JPH0812303A (en) * 1994-07-05 1996-01-16 Ishikawajima Harima Heavy Ind Co Ltd Plate reformer
JPH08301601A (en) * 1995-05-08 1996-11-19 Ishikawajima Harima Heavy Ind Co Ltd Methanol reformer
JPH09227102A (en) * 1996-02-22 1997-09-02 Ishikawajima Harima Heavy Ind Co Ltd Two-stage combustion type plate reformer
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295205A (en) * 1985-06-20 1986-12-26 Kawasaki Heavy Ind Ltd Reactor for reforming methanol
JPH04134658U (en) * 1991-06-04 1992-12-15 石川島播磨重工業株式会社 plate rifoma
JPH0812303A (en) * 1994-07-05 1996-01-16 Ishikawajima Harima Heavy Ind Co Ltd Plate reformer
JPH08301601A (en) * 1995-05-08 1996-11-19 Ishikawajima Harima Heavy Ind Co Ltd Methanol reformer
JPH09227102A (en) * 1996-02-22 1997-09-02 Ishikawajima Harima Heavy Ind Co Ltd Two-stage combustion type plate reformer
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204064A1 (en) * 2019-04-03 2020-10-08 Jxtgエネルギー株式会社 Hydrogen producing device and hydrogen producing method
AU2020254025B2 (en) * 2019-04-03 2023-10-05 Eneos Corporation Hydrogen producing device and hydrogen producing method

Similar Documents

Publication Publication Date Title
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP5154001B2 (en) Method for processing reformed gas from reformer and fuel cell system
KR100733582B1 (en) Hydrogen generating apparatus and Hydrogen generating method using the hydrogen generating apparatus
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
CN113474282A (en) Syngas production by steam methane reforming
US20220081291A1 (en) Parallel reforming in chemical plant
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP2005213133A (en) Reforming device and fuel cell system
JP4545118B2 (en) Fuel reforming system and fuel cell system including fuel reforming system
JP2005203266A (en) Hydrogen production method and hydrogen production system
JP2005336003A (en) High purity hydrogen producing device
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP2005206398A (en) Reformer and method of operating the same
JP2004051428A (en) Membrane reaction apparatus
JP5369656B2 (en) Hydrogen generator
JP2008247735A (en) Fuel reforming system
JP2002246055A (en) Device for removing carbon monoxide and fuel cell
JP5496504B2 (en) Fuel cell system having hydrogen generators in multiple stages
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP5301265B2 (en) Fuel cell system comprising an oxygen generator and a hydrogen generator
US8100994B2 (en) Process for generating electricity and hydrogen that comprises a hybrid reformer
KR100859940B1 (en) Reformer of fuel cell system
JP2005089210A (en) Reforming equipment, operation method therefor, and fuel cell system
JP2014196208A (en) Fuel reforming apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A02