JP2003277018A - Hydrogen purification apparatus and method of manufacturing co removing catalyst - Google Patents

Hydrogen purification apparatus and method of manufacturing co removing catalyst

Info

Publication number
JP2003277018A
JP2003277018A JP2002086621A JP2002086621A JP2003277018A JP 2003277018 A JP2003277018 A JP 2003277018A JP 2002086621 A JP2002086621 A JP 2002086621A JP 2002086621 A JP2002086621 A JP 2002086621A JP 2003277018 A JP2003277018 A JP 2003277018A
Authority
JP
Japan
Prior art keywords
catalyst body
catalyst
diameter
hydrogen
reformed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002086621A
Other languages
Japanese (ja)
Other versions
JP4190782B2 (en
JP2003277018A5 (en
Inventor
Kiyoshi Taguchi
清 田口
Kunihiro Ukai
邦弘 鵜飼
Hidenobu Wakita
英延 脇田
Seiji Fujiwara
誠二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002086621A priority Critical patent/JP4190782B2/en
Publication of JP2003277018A publication Critical patent/JP2003277018A/en
Publication of JP2003277018A5 publication Critical patent/JP2003277018A5/ja
Application granted granted Critical
Publication of JP4190782B2 publication Critical patent/JP4190782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen purification apparatus or the like having high CO removing efficiency through a long period. <P>SOLUTION: The hydrogen removing catalyst is manufactured by supporting at least one kind of a noble metal selected from Pt, Ru and Pd on a catalyst support formed from an oxide or a compound oxide contaning at least one kind of an element selected from Al, Si, Ti, Zr and Ce into a spherical form so that the difference between maximum and minimum diameters is ≤20% of the average diameter. The catalyst body 1 is a spherical structural body and the difference between the maximum diameter and the minimum diameter is controlled to ≤20% of the average diameter. Further the difference between the maximum diameter and the minimum diameter is controlled to ≥2% of the diameter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素を主成分とし
一酸化炭素(以下COと記す)を含有する改質ガスを精
製し、高純度の水素ガスを提供する水素精製装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen purifier for purifying a reformed gas containing hydrogen as a main component and containing carbon monoxide (hereinafter referred to as CO) to provide high purity hydrogen gas.

【0002】[0002]

【従来の技術】燃料電池などの水素源として、炭化水素
もしくはアルコール、エーテルなどの改質によって得ら
れる改質ガスを用いるが、100℃以下の低温で動作す
る固体高分子型燃料電池の場合には、燃料電池の電極に
用いるPt触媒が改質ガスに含まれるCOによって被毒
される恐れがある。Pt触媒の被毒が起こると、水素の
反応が阻害され、燃料電池の発電効率が著しく低下す
る。そのため、水素精製装置を利用して、COを100
ppm以下、好ましくは10ppm以下に除去する必要
がある。
2. Description of the Related Art As a hydrogen source for a fuel cell or the like, a reformed gas obtained by reforming a hydrocarbon or alcohol or ether is used. In the case of a polymer electrolyte fuel cell operating at a low temperature of 100 ° C. or lower, The Pt catalyst used for the fuel cell electrode may be poisoned by CO contained in the reformed gas. When the Pt catalyst is poisoned, the reaction of hydrogen is hindered and the power generation efficiency of the fuel cell is significantly reduced. Therefore, using a hydrogen purification device, CO
It is necessary to remove to below ppm, preferably below 10 ppm.

【0003】通常、COを除去するためには、水素精製
装置における、CO変成触媒体を設置したCO変成部で
COと水蒸気とをシフト反応させ、二酸化炭素と水素と
に転換し、数千ppm〜1体積%程度の濃度までCO濃
度を低減させる。
[0003] Usually, in order to remove CO, CO and steam are shifted in a CO shift section in which a CO shift catalyst is installed in a hydrogen purifier to convert them into carbon dioxide and hydrogen, and then several thousand ppm. CO concentration is reduced to a concentration of about 1% by volume.

【0004】その後、微量の空気を利用して酸素を加
え、CO選択酸化触媒体によって、燃料電池に悪影響を
およぼさない数ppmレベルまでCOを除去する。
Then, a small amount of air is used to add oxygen, and the CO selective oxidation catalyst removes CO to a level of several ppm which does not adversely affect the fuel cell.

【0005】従来、上記のCO変成触媒として、鉄−ク
ロム触媒や銅−亜鉛触媒を円柱ペレット形状に成形した
ものや、コージェライトハニカムの表面に変成反応に活
性を有する触媒をコーティングしたものを用いていた。
Conventionally, as the CO conversion catalyst, an iron-chromium catalyst or a copper-zinc catalyst formed into a cylindrical pellet shape or a cordierite honeycomb surface coated with a catalyst having an activity for a conversion reaction is used. Was there.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、装置の
起動時、触媒体が充分に昇温する前に改質ガスが供給さ
れると、改質ガス中の水蒸気が触媒体に凝縮し、この凝
縮水が再度蒸発する時に触媒体の割れや粉化を誘発する
場合があった。また、温度上昇によるヒートショック
や、用途によっては反応器に振動が加わり、同様に割れ
や粉化が生じる場合があった。触媒体に割れが生じるこ
とによって、改質ガスの流路が閉塞したり、装置の圧力
損失が大きくなって原料を供給するポンプ等の負荷が大
きくなるなどの課題があった。
However, when the reforming gas is supplied before the catalyst body is sufficiently heated at the time of starting the apparatus, the steam in the reforming gas is condensed on the catalyst body, and this condensation occurs. Occasionally, when the water was evaporated again, cracking or pulverization of the catalyst body was sometimes induced. In addition, heat shock due to temperature rise and vibration may be applied to the reactor depending on the application, and similarly cracking or pulverization may occur. Due to the cracks in the catalyst body, the reformed gas flow path is blocked, and the pressure loss of the apparatus is increased to increase the load of the pump or the like for supplying the raw material.

【0007】このため、触媒体の昇温を緩やかにおこな
ったり、改質ガスを水素精製装置に供給する前に加熱し
た窒素等の不活性ガスを供給して充分に触媒体や反応室
を昇温してから水蒸気を含む改質ガスを供給するなどの
方法が採られていた。またコージェライト等のハニカム
を用いた場合には強度が高く熱膨張率が小さいため、割
れ等の可能性は低くなるが、改質ガスの流れや触媒体温
度の均一化が困難であり、充分に高いCO除去特性を得
るためには反応器の容積を大きくする必要があった。こ
のため、反応器の昇温に時間を要したり、触媒量が多く
なってコストがかかるなどの難点があった。
For this reason, the temperature of the catalyst body is gradually raised, or an inert gas such as nitrogen heated before the reformed gas is supplied to the hydrogen purifier is supplied to sufficiently raise the temperature of the catalyst body and the reaction chamber. The method of supplying the reformed gas containing steam after warming was adopted. When a honeycomb such as cordierite is used, the strength is high and the coefficient of thermal expansion is small, so the possibility of cracking is reduced, but it is difficult to make the reforming gas flow and the temperature of the catalyst uniform, and In order to obtain very high CO removal characteristics, it was necessary to increase the volume of the reactor. For this reason, there have been problems that it takes time to raise the temperature of the reactor, and the amount of catalyst increases and the cost increases.

【0008】このように、従来の技術においては、たと
えば、水素精製装置の起動に時間を要したり、頻繁に起
動停止を繰り返す用途には、充分には適用できないとい
う課題があった。
As described above, the conventional technique has a problem that it cannot be sufficiently applied to, for example, a time-consuming start-up of the hydrogen purifier or a frequent use of repeated start-stop.

【0009】本発明は、上記従来の課題を考慮し、長期
間にわたって高いCO浄化効率を有する水素精製装置等
を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a hydrogen purifier having a high CO purification efficiency for a long period of time.

【0010】[0010]

【課題を解決するための手段】第1の本発明は、水素、
一酸化炭素および水蒸気を含む改質ガスから一酸化炭素
をCO変成反応によって除去する触媒体を備えた水素精
製装置であって、前記触媒体は、球状の構造体であり、
前記触媒体における最大径と最小径の差が直径の20%
以下であることを特徴とするものである。
The first aspect of the present invention relates to hydrogen,
A hydrogen purifying apparatus comprising a catalyst body for removing carbon monoxide from a reformed gas containing carbon monoxide and steam by a CO shift conversion reaction, wherein the catalyst body is a spherical structure,
The difference between the maximum diameter and the minimum diameter in the catalyst body is 20% of the diameter.
It is characterized by the following.

【0011】第2の本発明は、触媒体における最大径と
最小径の差が直径の3%以上であることを特徴とするも
のである。
The second aspect of the present invention is characterized in that the difference between the maximum diameter and the minimum diameter in the catalyst body is 3% or more of the diameter.

【0012】第3の本発明は、触媒体は反応器に充填さ
れており、前記反応器内に充填された前記触媒体が占め
る体積1立方センチメートル当たりの前記触媒体の幾何
学的表面積が7〜45平方センチメートルであることを
特徴とするものである。
According to a third aspect of the present invention, the catalyst body is packed in a reactor, and the geometric surface area of the catalyst body per cubic centimeter of volume occupied by the catalyst body packed in the reactor is 7 to 7. It is characterized by being 45 square centimeters.

【0013】第4の本発明は、改質ガスの流れ方向に対
して上流部に充填された触媒体の粒径が下流部の粒径よ
り大きいことを特徴とするものである。
A fourth aspect of the present invention is characterized in that the particle size of the catalyst filled in the upstream part in the flow direction of the reformed gas is larger than the particle size in the downstream part.

【0014】第5の本発明は、触媒体の破壊強度は、1
5〜180Nであることを特徴とするものである。
In the fifth aspect of the present invention, the breaking strength of the catalyst body is 1
It is characterized by being 5 to 180 N.

【0015】第6の本発明は、Al、Si、Ti、Z
r、Ceから選択される少なくとも一種の元素を含む酸
化物または複合酸化物を、最大径と最小径の差が平均直
径の20%以下である球状に成形した触媒担体に対し
て、前記触媒担体にPt、Ru、Rh、Pdから選択さ
れる少なくとも一種の貴金属を担持させることによって
製造することを特徴とする水素除去触媒の製造方法であ
る。
A sixth aspect of the present invention is Al, Si, Ti, Z.
For a catalyst carrier in which an oxide or a composite oxide containing at least one element selected from r and Ce is formed into a spherical shape in which the difference between the maximum diameter and the minimum diameter is 20% or less of the average diameter, The method for producing a hydrogen removal catalyst is characterized in that it is produced by supporting at least one noble metal selected from Pt, Ru, Rh, and Pd on.

【0016】[0016]

【発明の実施の形態】以下に、本発明にかかる実施の形
態について、図面を参照しつつ説明を行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施の形態1)はじめに、図1を参照し
ながら、本実施の形態における水素精製装置の構成につ
いて説明する。なお、図1は、本実施の形態における水
素精製装置の構成を示す概略縦断面図である。
(Embodiment 1) First, with reference to FIG. 1, the structure of the hydrogen purifier according to the present embodiment will be described. Note that FIG. 1 is a schematic vertical cross-sectional view showing the configuration of the hydrogen purifier according to the present embodiment.

【0018】図1において、1は触媒体であり、反応室
2の内部に設置されている。触媒体1は、直径3mmの
真球に成形したジルコニア−セリア複合酸化物にPtを
担持したものである。
In FIG. 1, reference numeral 1 is a catalyst body, which is installed inside the reaction chamber 2. The catalyst body 1 is obtained by supporting Pt on a zirconia-ceria composite oxide formed into a true sphere having a diameter of 3 mm.

【0019】3は改質ガス入口であり、ここから改質ガ
スを導入する。触媒体1で反応した改質ガスは、改質ガ
ス出口4より排出される。
Reference numeral 3 is a reformed gas inlet from which reformed gas is introduced. The reformed gas reacted with the catalyst body 1 is discharged from the reformed gas outlet 4.

【0020】なお、触媒体1の上流側には、改質ガスが
均一に流れるように拡散板5を設置してある。また、反
応室2を一定温度に保つために、必要箇所は、外周をセ
ラミックウールからなる断熱材6で覆ってある。
A diffusion plate 5 is installed on the upstream side of the catalyst body 1 so that the reformed gas flows uniformly. Further, in order to keep the reaction chamber 2 at a constant temperature, the outer periphery of a necessary portion is covered with a heat insulating material 6 made of ceramic wool.

【0021】つぎに、本実施の形態における水素精製装
置の動作について説明する。
Next, the operation of the hydrogen purifier according to this embodiment will be described.

【0022】水素精製装置に供給する改質ガスを発生さ
せるために用いる燃料としては、天然ガス、メタノー
ル、ガソリンなどがあり、改質方法も、水蒸気を加える
水蒸気改質、空気を加えておこなう部分改質などがある
が、ここでは、メタンを主成分とする天然ガスを水蒸気
改質して改質ガスを得る場合について述べる。
As the fuel used to generate the reformed gas to be supplied to the hydrogen purifier, there are natural gas, methanol, gasoline and the like, and the reforming method is also a steam reforming in which steam is added, or a portion in which air is added. There is reforming and the like, but here, a case where a reformed gas is obtained by steam reforming natural gas containing methane as a main component will be described.

【0023】天然ガスを水蒸気改質した場合の改質ガス
の組成は、改質触媒体の温度によって多少変化するが、
水蒸気を除いた平均的な値として、水素が約80%、二
酸化炭素、一酸化炭素がそれぞれ約10%含まれる。
The composition of the reformed gas when steam is reformed from natural gas varies somewhat depending on the temperature of the reforming catalyst,
About 80% of hydrogen, about 10% of carbon dioxide and about 10% of carbon monoxide are contained as an average value excluding water vapor.

【0024】天然ガスの水蒸気改質反応は、天然ガス中
の炭素原子数に対して2.5〜3.5倍の水蒸気を混合
し、500〜800℃程度でおこなうのに対し、COと
水蒸気が反応する変成反応は、150〜400℃程度で
おこなうため、改質ガスを改質ガス入口3の手前で冷却
してから供給する。
The steam reforming reaction of natural gas is carried out at about 500 to 800 ° C. by mixing 2.5 to 3.5 times as many steams as the number of carbon atoms in natural gas, whereas CO and steam are carried out. Since the transformation reaction in which the reaction is performed is performed at about 150 to 400 ° C., the reformed gas is supplied after being cooled before the reformed gas inlet 3.

【0025】CO変成触媒体1通過後のCO濃度は、約
0.5%まで低減され、改質ガス出口4より排出され
る。なお、本実施例では改質ガス温度を400℃にして
水素精製装置に供給した。
The CO concentration after passing through the CO conversion catalyst body 1 is reduced to about 0.5% and discharged from the reformed gas outlet 4. In this example, the reformed gas temperature was adjusted to 400 ° C. and the reformed gas was supplied to the hydrogen purifier.

【0026】水素精製装置の起動時には、改質ガスの顕
熱によって触媒体1や反応室2が常温から所定の動作温
度になるまで加熱される。装置の起動時に供給される改
質ガスまたは未反応ガス中(本例ではメタン)には10
〜80%の水蒸気が含まれるため、触媒体1や反応室2
が充分に昇温していない場合には改質ガス中の水蒸気が
凝縮する。より具体的には、室温状態の反応室2に水蒸
気を含む改質ガスを供給した場合、触媒体1は反応室2
の壁面にまず水が凝縮し、その後温度上昇とともに凝縮
した水が蒸発するが、このときに触媒体に含浸した水は
蒸気になるときの体積膨張によって触媒体を破壊する場
合がある。また触媒表面を水が覆うことによって触媒反
応を妨げる場合もある。
When the hydrogen purifier is started, the catalytic body 1 and the reaction chamber 2 are heated from room temperature to a predetermined operating temperature by the sensible heat of the reformed gas. 10 in the reformed gas or unreacted gas (methane in this example) supplied at the time of starting the apparatus.
~ 80% water vapor is included, so catalyst body 1 and reaction chamber 2
If the temperature is not sufficiently raised, the steam in the reformed gas is condensed. More specifically, when the reformed gas containing steam is supplied to the reaction chamber 2 at room temperature, the catalyst body 1 is
First, water is condensed on the wall surface of the catalyst, and then the condensed water is evaporated as the temperature rises. At this time, the water impregnated in the catalyst body may destroy the catalyst body due to volume expansion when becoming water vapor. Further, the catalytic reaction may be hindered by covering the surface of the catalyst with water.

【0027】このため、触媒体1や反応室2を電気ヒー
ターやバーナー等を用いて加熱したり、改質ガスを供給
する前に加熱した窒素等の不活性ガスを供給し、充分に
触媒体や反応室を昇温してから改質ガスを供給する必要
が従来ではあった。
Therefore, the catalyst body 1 and the reaction chamber 2 are heated by using an electric heater, a burner, or the like, or an inert gas such as heated nitrogen is supplied before the reformed gas is supplied, and the catalyst body is sufficiently supplied. In the past, it was necessary to supply the reformed gas after raising the temperature of the reaction chamber.

【0028】一方、本発明の実施の形態の水素精製装置
では、触媒体1が球状であるため、外力が均等に加わる
ため、ペレットの角が削れたり、割れたりすることが少
ない。また円柱状ペレットに比べて触媒体間の接触点数
も多いため、熱伝導が良くなって、ヒートショックが緩
和される。
On the other hand, in the hydrogen purifying apparatus according to the embodiment of the present invention, since the catalyst body 1 has a spherical shape, an external force is evenly applied, so that the corners of the pellet are less likely to be chipped or cracked. Further, since the number of contact points between the catalyst bodies is larger than that of the cylindrical pellet, heat conduction is improved and heat shock is alleviated.

【0029】なお、触媒体1の形状は真球に近いほど良
く、平均直径に対する最大径と最小径の差(以下、歪み
度合いと記す)が20%以下であることが好ましい。歪
み度合いが20%よりも大きくなって、CO変成触媒体
の形状が真球から大きくはずれた場合、上記の効果が大
きく低下する(表1参照)。
The shape of the catalyst body 1 is preferably closer to a true sphere, and the difference between the maximum diameter and the minimum diameter (hereinafter referred to as the degree of strain) with respect to the average diameter is preferably 20% or less. When the degree of strain becomes larger than 20% and the shape of the CO shift catalyst body deviates greatly from the true sphere, the above effect is significantly reduced (see Table 1).

【0030】ここで、平均直径は1個の触媒体の直径を
数カ所を測定した平均値を示し、最大径、最小径は1個
の触媒体の最大直径と最小直径を示したもので、触媒体
1の真球からの歪み度合いを表したものである。なお、
反応室2には多数の触媒体1を充填するため、歪み度合
いは分布を持つが、通常90%以上の割合の触媒体が2
0%以下の歪み度合いであれば、上記の効果は得られ
る。
Here, the average diameter is the average value of the diameter of one catalyst body measured at several points, and the maximum and minimum diameters are the maximum and minimum diameters of one catalyst body. It shows the degree of distortion of the medium 1 from a true sphere. In addition,
Since the reaction chamber 2 is filled with a large number of catalyst bodies 1, the degree of strain has a distribution, but usually 90% or more of the catalyst bodies 2
If the strain degree is 0% or less, the above effect can be obtained.

【0031】しかしながら他方、触媒体1の形状は、真
球自体ではなく、歪み度合い(平均直径に対する最大径
と最小径の差)が2%以上であることが好ましい。触媒
体の形状が真球から歪ませることによって、改質ガスの
流れに乱れを生じさせ、触媒体の表面において効率よく
改質ガスを反応性させることができ、同量の触媒でもC
O濃度を低い濃度まで低減できるからである(表1参
照)。
On the other hand, however, the shape of the catalyst body 1 is not a true sphere itself, but the degree of strain (difference between the maximum diameter and the minimum diameter with respect to the average diameter) is preferably 2% or more. When the shape of the catalyst body is distorted from a true sphere, the flow of the reformed gas is disturbed, and the reformed gas can be made to react efficiently on the surface of the catalyst body.
This is because the O concentration can be reduced to a low concentration (see Table 1).

【0032】この場合も反応室には多数の触媒体が充填
されているが、これら多数の触媒体の歪み度合いの平均
値が3%以上であれば、前述の効果は得られる。
In this case as well, the reaction chamber is filled with a large number of catalyst bodies, but if the average value of the strain degree of these many catalyst bodies is 3% or more, the above-mentioned effect can be obtained.

【0033】また、触媒体が占める体積1立方センチメ
ートル当たりの触媒体の幾何学的表面積が7〜45平方
センチメートルであることが好ましい。触媒体の直径が
分布を持たずほぼ均一である場合、例えば触媒体を10
00立方センチメートルの立方体に入れ、中の触媒体個
数と平均直径から、触媒体の体積当たり幾何学的表面積
は容易に計算できる。このとき触媒体の直径は1〜6m
mの範囲となる。
The geometric surface area of the catalyst body per cubic centimeter of volume occupied by the catalyst body is preferably 7 to 45 square centimeters. When the diameter of the catalyst body is almost uniform without distribution, for example, 10
The geometric surface area per volume of the catalyst body can be easily calculated from the number of the catalyst bodies and the average diameter in a cube of 00 cubic centimeter. At this time, the diameter of the catalyst body is 1 to 6 m
It becomes the range of m.

【0034】触媒体の直径が小さくなるほど、触媒体と
改質ガスの接触効率は上昇し反応性は増すが、改質ガス
中に含まれる水蒸気が装置の起動時に触媒体表面へ凝縮
する頻度も増す。このため、触媒体の直径が1mmより
も小さくなると、装置の起動時に凝縮した水が触媒を被
毒(水が触媒表面を覆って反応ガスが吸着できなくな
る)して反応を阻害するとともに、触媒体の中まで含浸
した水が触媒体の割れを誘発する可能性が高くなる。
The smaller the diameter of the catalyst body, the higher the contact efficiency between the catalyst body and the reformed gas and the higher the reactivity, but the frequency with which the steam contained in the reformed gas condenses on the surface of the catalyst body when the apparatus is started. Increase. For this reason, when the diameter of the catalyst body becomes smaller than 1 mm, the water condensed at the time of starting the device poisons the catalyst (water covers the catalyst surface and the reaction gas cannot be adsorbed) and inhibits the reaction. Water impregnated into the medium is more likely to induce cracking of the catalyst body.

【0035】また、反応室を改質ガスが通過するときの
圧力損失も大きくなり、原料を供給するためのポンプの
消費電力が大きくなる。一方、触媒体の直径が5mmよ
り大きい場合、反応性は多少低下するが、触媒体表面に
凝縮した水が速やかに蒸発し、触媒体への水の被毒や触
媒体の割れが少なくなる。
Further, the pressure loss when the reformed gas passes through the reaction chamber also becomes large, and the power consumption of the pump for supplying the raw material becomes large. On the other hand, when the diameter of the catalyst body is larger than 5 mm, the reactivity is slightly lowered, but the water condensed on the surface of the catalyst body is quickly evaporated, and the poisoning of the water on the catalyst body and the cracking of the catalyst body are reduced.

【0036】なお、本実施の形態では平均直径がほぼ均
一な触媒体を用いたが、例えば触媒体の直径に2〜4m
mの分布を持たせても同様の効果が得られる。
In the present embodiment, a catalyst body having a substantially uniform average diameter is used, but the diameter of the catalyst body is, for example, 2 to 4 m.
The same effect can be obtained by providing a distribution of m.

【0037】また、本実施の形態では、ジルコニア−セ
リア複合酸化物にPtを担持した触媒体を用いたが、C
O変成反応に活性な触媒成分であれば、アルミナ、ジル
コニア、チタン、シリカアルミナ等の酸化物からなる球
状ペレットにPtや他の貴金属を担持したものでもかま
わない。これらのペレットの表面にのみセリウム等の活
性成分を担持してもかまわない。
Further, in the present embodiment, the catalyst body in which Pt is supported on the zirconia-ceria composite oxide is used.
As long as it is a catalyst component which is active in the O conversion reaction, spherical pellets made of oxides such as alumina, zirconia, titanium, and silica-alumina carrying Pt or other noble metal may be used. An active ingredient such as cerium may be carried only on the surface of these pellets.

【0038】また、触媒体の破壊強度が15〜180N
であることが好ましい。触媒体の破壊強度は一般的にチ
ャティロン式硬度計を用い、触媒体に上方から徐々に加
重を加えて触媒体が破壊に至る力を測定するものであ
る。円柱状の触媒体であれば、底面の断面積当たりの強
度(N/cm)で表記する場合もある。
Further, the breaking strength of the catalyst body is 15 to 180 N.
Is preferred. The breaking strength of the catalyst body is generally measured by using a Chatillon type hardness meter, and gradually applying a load from above to the catalyst body to measure the force at which the catalyst body breaks. In the case of a columnar catalyst body, it may be expressed by the strength per cross-sectional area of the bottom surface (N / cm 2 ).

【0039】触媒体の破壊強度が15Nより小さい場
合、Ptを担持する工程において触媒体に割れが生じる
確率が増大し、歩留まりが低下する。また破壊強度が1
80Nよりも大きい場合、貴金属を担持する段階で貴金
属粒子の粒径が大きくなり、触媒活性が低下する。触媒
体の破壊強度は触媒体を焼成する温度で変化させること
ができ、高温で焼成するほど強度を高くすることができ
る。また、成形に使用するアルミナやジルコニア、シリ
カ等の無機バインダーの種類や添加量によっても変える
ことができる。また、触媒体の直径が大きいほど破壊強
度が高くなる。
When the breaking strength of the catalyst body is less than 15 N, the probability of cracking of the catalyst body in the step of supporting Pt increases, and the yield decreases. The breaking strength is 1
When it is larger than 80 N, the particle size of the noble metal particles becomes large at the stage of supporting the noble metal, and the catalytic activity decreases. The breaking strength of the catalyst body can be changed by the temperature at which the catalyst body is fired, and the higher the temperature at which the catalyst body is fired, the higher the strength can be. It can also be changed depending on the type and addition amount of an inorganic binder such as alumina, zirconia, or silica used for molding. Further, the larger the diameter of the catalyst body, the higher the fracture strength.

【0040】(実施の形態2)次に本発明の第2の実施
の形態について述べる。本実施の形態は、図2に示すよ
うに第一触媒体11と、その下流側に第二触媒体12を
設置している以外は実施の形態1と類似である。したが
って、異なる点を中心に本実施の形態を説明する。な
お、第一触媒体11には、直径3mmの真球に成形した
ジルコニア−セリア複合酸化物にPtを担持したものを
用い、第二触媒体12には、直径1mmの真球に成形し
たジルコニア−セリア複合酸化物にPtを担持したもの
を用いた。
(Second Embodiment) Next, a second embodiment of the present invention will be described. This embodiment is similar to the first embodiment except that the first catalyst body 11 and the second catalyst body 12 are installed on the downstream side as shown in FIG. Therefore, the present embodiment will be described focusing on different points. In addition, as the first catalyst body 11, a zirconia-ceria composite oxide formed into a spherical shape having a diameter of 3 mm and Pt supported thereon was used, and as the second catalyst body 12, a zirconia formed into a spherical shape having a diameter of 1 mm was used. -A ceria composite oxide supporting Pt was used.

【0041】図2は本実施の形態に係る水素精製装置の
構成を示す概略断面図である。改質ガス入口14から供
給された約400℃の改質ガスは第一触媒体11で反応
した後、第二触媒体12に供給される。
FIG. 2 is a schematic sectional view showing the structure of the hydrogen purifying apparatus according to this embodiment. The reformed gas of about 400 ° C. supplied from the reformed gas inlet 14 is reacted with the first catalyst body 11 and then supplied to the second catalyst body 12.

【0042】なお、第二触媒体12の温度は断熱材の厚
さを薄くし、放熱によって約250℃となるようにして
ある。CO変成反応は高温では反応速度が早くなるが、
平衡反応であるとともに発熱反応であるために温度が低
いほどCO濃度を低減することができる。このため、通
常は触媒体の温度を下流にいくにしたがって低くなる様
に中間に冷却部を設けるなどの方法がとられる。
The temperature of the second catalyst body 12 is set to about 250 ° C. by radiating heat by reducing the thickness of the heat insulating material. The CO conversion reaction has a high reaction rate at high temperatures,
Since it is an equilibrium reaction and an exothermic reaction, the lower the temperature, the more the CO concentration can be reduced. For this reason, a method such as providing a cooling unit in the middle is usually used so that the temperature of the catalyst body becomes lower as it goes downstream.

【0043】反応室2の上流部と下流部では100℃以
上の温度差があるため、上流部の方が下流部よりも改質
ガスの体積が大きい、変成反応の速度が速い、触媒体内
部のガス拡散が速い等の違いが生じる。さらに、CO変
成反応によって水蒸気が消費されるため、上流部の方が
水蒸気の比率が高くなるとともに、装置の起動時には上
流部で水が凝縮する可能性が高い。
Since there is a temperature difference of 100 ° C. or more between the upstream part and the downstream part of the reaction chamber 2, the volume of the reformed gas is larger in the upstream part than in the downstream part, the shift reaction speed is faster, and the inside of the catalyst body is higher. The gas diffusion rate is different. Further, since the CO conversion reaction consumes water vapor, the ratio of water vapor is higher in the upstream portion, and water is more likely to be condensed in the upstream portion when the apparatus is started.

【0044】したがって、上流部よりも下流部の触媒体
の直径を小さくすることにより、圧力損失を高くするこ
となく、反応性を高めることができる。また、水が凝縮
しやすい上流部の触媒体を大きくすることにより、水が
凝縮した場合の割れや被毒等の影響も小さくできる。ま
た、高温の上流部ではガス拡散速度が速く、触媒体の直
径が大きい場合でも触媒体内部まで有効に機能させるこ
とができる。
Therefore, by making the diameter of the catalyst body in the downstream portion smaller than that in the upstream portion, the reactivity can be enhanced without increasing the pressure loss. In addition, by increasing the size of the catalyst body on the upstream side where water easily condenses, it is possible to reduce the influence of cracking and poisoning when water condenses. Further, the gas diffusion rate is high in the upstream part of high temperature, and even if the diameter of the catalyst body is large, the inside of the catalyst body can be effectively functioned.

【0045】本実施の形態では単に放熱させて改質ガス
を冷却したが、改質ガスを作るために用いる水や原料ガ
スの予熱に熱を用いるなどの方法をとっても良い。この
場合、単に放熱させて熱を捨てる場合よりも装置の効率
を高めることができる。
In the present embodiment, the reformed gas is cooled by simply radiating heat, but a method of using heat to preheat the water or the raw material gas used for producing the reformed gas may be adopted. In this case, the efficiency of the device can be improved as compared with the case of simply dissipating heat and dissipating the heat.

【0046】[0046]

【実施例】(実施例1)ジルコニアとセリアの複合酸化
物からなる粉末に純水とメチルセルロースを加え混練し
た後、造粒機によって直径3mmの球状に成形し、触媒
担体を作製した。触媒担体の歪み度合い(平均直径に対
する最大径と最小径の割合)が0%〜40%のものを選
別し、それぞれジニトロジアミン白金錯体硝酸塩の硝酸
水溶液に含浸させ、500℃で焼成することによって、
触媒体を作製した。各歪み度合いの触媒体を、図1に示
す水素精製器の反応室2に触媒体1として充填した。
Example 1 Pure water and methylcellulose were added to a powder made of a complex oxide of zirconia and ceria, and the mixture was kneaded and then molded into a spherical shape having a diameter of 3 mm by a granulator to prepare a catalyst carrier. By selecting those having a degree of strain of the catalyst carrier (ratio of maximum diameter to minimum diameter to average diameter) of 0% to 40%, impregnating each with a nitric acid aqueous solution of dinitrodiamine platinum complex nitrate, and calcining at 500 ° C.,
A catalyst body was prepared. The catalyst body having each strain degree was filled as the catalyst body 1 in the reaction chamber 2 of the hydrogen purifier shown in FIG.

【0047】改質ガス入口3より、一酸化炭素8%、二
酸化炭素8%、水蒸気20%、残りが水素である改質ガ
スを、毎分10リットルの流量で導入した。触媒体1で
反応させた後に、改質ガス出口4より排出されるガス中
のCO濃度をCO測定器を用いて測定した。触媒体の温
度を変化させ、最もCO濃度が低くなった温度でのCO
濃度を測定して触媒体の活性を比較した。さらに、1時
間作動させた後、改質ガスを供給を停止させ、室温まで
冷却した後、同様の起動停止を50回繰り返し、触媒体
が割れた割合を測定した。結果をあわせて表1に示す。
From the reformed gas inlet 3, a reformed gas containing 8% of carbon monoxide, 8% of carbon dioxide, 20% of steam and the balance of hydrogen was introduced at a flow rate of 10 liters per minute. After reacting with the catalyst body 1, the CO concentration in the gas discharged from the reformed gas outlet 4 was measured using a CO measuring device. By changing the temperature of the catalyst body, CO at the temperature where the CO concentration becomes the lowest
The concentration was measured to compare the activities of the catalyst bodies. Further, after operating for 1 hour, the supply of the reformed gas was stopped, the temperature was cooled to room temperature, and the same starting and stopping was repeated 50 times, and the rate of cracking of the catalyst body was measured. The results are also shown in Table 1.

【0048】[0048]

【表1】 表1に示された実験結果より、前述したつぎのような事
実が裏付けられる。触媒体の歪み度合いが20%以下の
時、装置の起動停止によって触媒体の破壊する割合が減
少する。また、歪み度合いが3%以上の時、反応後のC
O濃度が低くなるが、それ以上ではあまり歪み度合いは
CO濃度に影響しない。
[Table 1] The experimental results shown in Table 1 support the following facts described above. When the degree of strain of the catalyst body is 20% or less, the rate at which the catalyst body is destroyed due to the start and stop of the device decreases. Also, when the degree of strain is 3% or more, C after the reaction
Although the O concentration becomes low, the strain degree does not affect the CO concentration more than that.

【0049】(実施例2)実施例1で触媒体の直径のみ
を変化させ、0.8mmから10mmのものを調製し
た。なお、歪み度合いは3%のものを用いた。調製した
触媒体を実施例1と同様に反応室2に触媒体1として充
填し、起動停止を繰り返して反応後のCO濃度と、割れ
た触媒体の割合を測定した。結果を表2に示す。
Example 2 In Example 1, only the diameter of the catalyst body was changed to prepare a catalyst body having a diameter of 0.8 mm to 10 mm. A strain having a degree of 3% was used. The prepared catalyst body was filled in the reaction chamber 2 as the catalyst body 1 in the same manner as in Example 1, and the start and stop were repeated to measure the CO concentration after the reaction and the ratio of the broken catalyst body. The results are shown in Table 2.

【0050】[0050]

【表2】 表2に示された実験結果より、前述したつぎのような事
実が裏付けられる。1立方センチメートル当たりの触媒
体の幾何学的表面積が7平方センチメートルより小さい
場合、反応後のCO濃度が高くなる。また、45平方セ
ンチメートルより大きい場合には、起動停止によって触
媒体が割れる割合が多くなる。
[Table 2] The experimental results shown in Table 2 support the following facts described above. If the geometric surface area of the catalyst body per cubic centimeter is smaller than 7 square centimeters, the CO concentration after the reaction is high. On the other hand, if it is larger than 45 square centimeters, the rate of cracking of the catalyst body due to start-up and stop increases.

【0051】(実施例3)実施例1で触媒担体の熱処理
温度を変え、破壊強度を10N〜250Nまで変化させ
た。なお、破壊強度の測定は通常のチャティロン式硬度
計を用い、25個の試料を測定して平均値をとった。ま
た、歪み度合いは3%のものを用いた。この触媒担体に
実施例1と同様にジニトロジアミン白金錯体の硝酸水溶
液を含浸し、500℃で焼成した。この後の割れた割合
を測定した。さらに実施例1と同様に反応室2に触媒体
1として充填し、起動停止を繰り返して反応後のCO濃
度を測定した。結果を表3に示す。
Example 3 In Example 1, the heat treatment temperature of the catalyst carrier was changed to change the breaking strength from 10N to 250N. The breaking strength was measured using an ordinary Chatillon type hardness meter, and 25 samples were measured and the average value was taken. Moreover, the strain degree used was 3%. This catalyst carrier was impregnated with an aqueous nitric acid solution of a dinitrodiamine platinum complex in the same manner as in Example 1 and calcined at 500 ° C. The rate of cracking after this was measured. Further, in the same manner as in Example 1, the reaction chamber 2 was filled with the catalyst body 1, and the start and stop was repeated to measure the CO concentration after the reaction. The results are shown in Table 3.

【0052】[0052]

【表3】 表3に示された結果より触媒体の破壊強度が15Nより
も小さい場合、Pt担持工程において触媒体の割れる割
合が多くなる。また、破壊強度が180Nよりも大きい
場合、反応後CO濃度が高くなる。
[Table 3] From the results shown in Table 3, when the breaking strength of the catalyst body is less than 15 N, the rate of cracking of the catalyst body in the Pt supporting step increases. Further, when the breaking strength is higher than 180 N, the CO concentration after the reaction becomes high.

【0053】(実施例4)実施例1で用いた直径3mm
の触媒体と同じく、直径1mmのものを作製し、図2に
示した第一触媒体11として直径3mmの触媒体を充填
し、その下流側に第二触媒体12として、直径1mmの
ものを充填した。実施例1と同様に起動停止を繰り返し
て反応後のCO濃度と、割れた触媒体の割合を測定し
た。この結果CO濃度は0.28%、割れた触媒体の割
合は0.16%であった。
(Example 4) The diameter used in Example 1 was 3 mm.
1 mm in diameter, the catalyst body having a diameter of 3 mm is filled as the first catalyst body 11 shown in FIG. 2, and the second catalyst body 12 having a diameter of 1 mm is provided downstream thereof. Filled. The start-up / shutdown was repeated in the same manner as in Example 1 to measure the CO concentration after the reaction and the ratio of cracked catalyst bodies. As a result, the CO concentration was 0.28%, and the proportion of cracked catalyst bodies was 0.16%.

【0054】(比較例1)実施例1で球状の触媒体の代
わりに直径3mm、高さ3mmの円柱状の触媒体を成形
し、実施例1と同様に起動停止を繰り返して、触媒体の
割れた割合を測定したところ、38%であった。
(Comparative Example 1) Instead of the spherical catalyst body in Example 1, a cylindrical catalyst body having a diameter of 3 mm and a height of 3 mm was molded, and starting and stopping were repeated in the same manner as in Example 1 to prepare a catalyst body. The cracking ratio was measured and found to be 38%.

【0055】[0055]

【発明の効果】以上の説明から明らかなように、本発明
は、水蒸気の比率が多い反応条件においても触媒体の割
れが少なく長期間安定に動作する水素精製装置を提供す
ることができる。
As is apparent from the above description, the present invention can provide a hydrogen purifying apparatus which has a small number of cracks in the catalyst body and operates stably for a long period of time even under reaction conditions in which the ratio of steam is large.

【0056】また、高いCO除去性能を得ることができ
る。
Further, high CO removal performance can be obtained.

【0057】さらに、触媒体の破壊強度を15N〜18
0Nにすることによって、触媒調製時の貴金属担持工程
における割れを低減して製造工程における歩留まりを向
上させるとともに、Ptを高分散に担持でき、貴金属の
使用量を低減することができる。
Further, the breaking strength of the catalyst body is set to 15N-18.
By setting it to 0 N, cracks in the noble metal supporting step at the time of catalyst preparation can be reduced to improve the yield in the manufacturing step, Pt can be supported in a highly dispersed manner, and the amount of the noble metal used can be reduced.

【0058】また、反応室の下流部に充填する触媒体の
直径を上流部よりも小さくすることによって、触媒体の
割れを増やすことなく、触媒体の反応性を向上させるこ
とができる。
Further, by making the diameter of the catalyst body filled in the downstream portion of the reaction chamber smaller than that in the upstream portion, it is possible to improve the reactivity of the catalyst body without increasing the number of cracks in the catalyst body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1に係る水素精製装置を含
む水素発生装置の構成を示す概略縦断面図
FIG. 1 is a schematic vertical cross-sectional view showing the configuration of a hydrogen generator including a hydrogen purifier according to a first embodiment of the present invention.

【図2】本発明の実施の形態2に係る水素精製装置を含
む水素発生装置の構成を示す概略縦断面図
FIG. 2 is a schematic vertical sectional view showing the configuration of a hydrogen generator including a hydrogen purifier according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 触媒体 2、13 反応室 3、14 改質ガス入口 4、15 改質ガス出口 5、16 拡散板 6、17 断熱材 11 第一触媒体 12 第二触媒体 1 catalyst 2, 13 Reaction chamber 3, 14 Reformed gas inlet 4,15 Reformed gas outlet 5, 16 Diffuser 6,17 insulation 11 First catalyst body 12 Second catalyst body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇田 英延 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤原 誠二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G069 AA03 AA08 BA01A BA02A BA04A BA05A BB04A BB06A BB06B BC43A BC43B BC51A BC51B BC70A BC71A BC72A BC75A BC75B CC26 DA06 EA04X EA04Y EB18X EB18Y EC01X ED03 FA01 FB14 FB30 FB61 4G140 EB34 5H027 AA02 BA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hidenobu Wakita             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Seiji Fujiwara             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4G069 AA03 AA08 BA01A BA02A                       BA04A BA05A BB04A BB06A                       BB06B BC43A BC43B BC51A                       BC51B BC70A BC71A BC72A                       BC75A BC75B CC26 DA06                       EA04X EA04Y EB18X EB18Y                       EC01X ED03 FA01 FB14                       FB30 FB61                 4G140 EB34                 5H027 AA02 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水素、一酸化炭素および水蒸
気を含む改質ガスから一酸化炭素をCO変成反応によっ
て除去する触媒体を備えた水素精製装置であって、 前記触媒体は、球状の構造体であり、前記触媒体におけ
る最大径と最小径の差が平均直径の20%以下である水
素精製装置。
1. A hydrogen purification apparatus comprising a catalyst body for removing carbon monoxide from a reformed gas containing at least hydrogen, carbon monoxide and steam by a CO shift reaction, wherein the catalyst body has a spherical structure. And a difference between the maximum diameter and the minimum diameter in the catalyst body is 20% or less of the average diameter.
【請求項2】 前記触媒体における最大径と最小径の差
が直径の2%以上である請求項1記載の水素精製装置。
2. The hydrogen purifier according to claim 1, wherein the difference between the maximum diameter and the minimum diameter in the catalyst body is 2% or more of the diameter.
【請求項3】 前記触媒体は反応室に充填されており、
前記反応室内に充填された前記触媒体が占める体積1立
方センチメートル当たりの前記触媒体の幾何学的表面積
が7〜45平方センチメートルである請求項1または2
記載の水素精製装置。
3. The reaction body is filled with the catalyst body,
The geometric surface area of the catalyst body per cubic centimeter volume occupied by the catalyst body filled in the reaction chamber is 7 to 45 square centimeters.
The hydrogen purification device described.
【請求項4】 前記改質ガスの流れ方向に対して上流部
に第一触媒体が、下流部に第二触媒体がそれぞれ充填さ
れ、前記第一触媒体の粒径が、前記第二触媒体の粒径よ
り大きい請求項1〜3のいずれかに記載の水素精製装
置。
4. A first catalyst body is filled in an upstream portion and a second catalyst body is filled in a downstream portion with respect to a flow direction of the reformed gas, and a particle diameter of the first catalyst body is equal to the second catalyst body. The hydrogen purifier according to any one of claims 1 to 3, which is larger than the particle size of the medium.
【請求項5】 前記触媒体の破壊強度は、15〜180
Nである請求項1〜4のいずれかに記載の水素精製装
置。
5. The breaking strength of the catalyst body is 15 to 180.
The hydrogen purifier according to any one of claims 1 to 4, which is N.
【請求項6】 Al、Si、Ti、Zr、Ceから選択
される少なくとも一種の元素を含む酸化物または複合酸
化物を、最大径と最小径の差が平均直径の20%以下で
ある球状に成形した触媒担体に対して、前記触媒担体に
Pt、Ru、Rh、Pdから選択される少なくとも一種
の貴金属を担持させることによって製造する水素除去触
媒の製造方法。
6. An oxide or composite oxide containing at least one element selected from Al, Si, Ti, Zr, and Ce is formed into a spherical shape having a difference between the maximum diameter and the minimum diameter of 20% or less of the average diameter. A method for producing a hydrogen-removing catalyst, which is produced by supporting at least one precious metal selected from Pt, Ru, Rh, and Pd on the formed catalyst support.
JP2002086621A 2002-03-26 2002-03-26 Hydrogen purification apparatus and method for producing CO shift catalyst Expired - Fee Related JP4190782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086621A JP4190782B2 (en) 2002-03-26 2002-03-26 Hydrogen purification apparatus and method for producing CO shift catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086621A JP4190782B2 (en) 2002-03-26 2002-03-26 Hydrogen purification apparatus and method for producing CO shift catalyst

Publications (3)

Publication Number Publication Date
JP2003277018A true JP2003277018A (en) 2003-10-02
JP2003277018A5 JP2003277018A5 (en) 2005-07-28
JP4190782B2 JP4190782B2 (en) 2008-12-03

Family

ID=29233158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086621A Expired - Fee Related JP4190782B2 (en) 2002-03-26 2002-03-26 Hydrogen purification apparatus and method for producing CO shift catalyst

Country Status (1)

Country Link
JP (1) JP4190782B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216369A (en) * 2002-12-26 2004-08-05 Matsushita Electric Ind Co Ltd Co removal catalyst body, production method of co removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP2009099491A (en) * 2007-10-19 2009-05-07 Sharp Corp Fuel cell system and electronic equipment
CN111370710A (en) * 2018-12-26 2020-07-03 现代自动车株式会社 Heat treatment method of carbon-supported metal catalyst of fuel cell and carbon-supported metal catalyst prepared by heat treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067995A2 (en) 2010-11-15 2012-05-24 Cornell University Optofluidic photobioreactor apparatus, method, and applications
KR101246795B1 (en) 2010-11-24 2013-03-26 에스티엑스중공업 주식회사 An exhaust gas combustor of fuel cell having two different catalyst layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216369A (en) * 2002-12-26 2004-08-05 Matsushita Electric Ind Co Ltd Co removal catalyst body, production method of co removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP2009099491A (en) * 2007-10-19 2009-05-07 Sharp Corp Fuel cell system and electronic equipment
CN111370710A (en) * 2018-12-26 2020-07-03 现代自动车株式会社 Heat treatment method of carbon-supported metal catalyst of fuel cell and carbon-supported metal catalyst prepared by heat treatment method

Also Published As

Publication number Publication date
JP4190782B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US7265076B2 (en) CO removal catalyst, method of producing CO removal catalyst, hydrogen purifying device and fuel cell system
JP5691098B2 (en) Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
EP1537046B1 (en) Article for carbon monoxide removal
JP3473898B2 (en) Hydrogen purification equipment
US20030003033A1 (en) Apparatus for forming hydrogen
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
JP2004530618A (en) Shift shifter with improved catalyst composition
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
TWI294413B (en) Method for converting co and hydrogen into methane and water
JP2005529824A (en) Suppression of methanation activity of platinum group metal catalysts for water-gas conversion
JP3473896B2 (en) Hydrogen purification equipment
JP2001180912A (en) Hydrogen refining equipment
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP4190782B2 (en) Hydrogen purification apparatus and method for producing CO shift catalyst
JP2007252991A (en) Honeycomb catalyst for carbon monoxide methanation, manufacturing method of the catalyst, and methanation method of carbon monoxide using the catalyst
WO2002016260A1 (en) Hydrogen purification apparatus
JP4328627B2 (en) Co-oxidation catalyst containing ruthenium and zinc oxide
JP4663095B2 (en) Hydrogen purification equipment
JP4759221B2 (en) CO removal catalyst body, method for producing CO removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP2003306310A (en) Autothermal reforming device and method of autothermal reforming using the same
JP2005067917A (en) Co removal catalyst system and method for selective removal of co
JP2006008434A (en) Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method
JP2002226204A (en) Hydrogen purification unit
JP4521970B2 (en) Carbon monoxide removal catalyst and carbon monoxide removal method using the same
JP2004067454A (en) Fuel reforming apparatus and hydrogen generation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees