JPH01122902A - Fuel reformer for fuel cell - Google Patents
Fuel reformer for fuel cellInfo
- Publication number
- JPH01122902A JPH01122902A JP62280122A JP28012287A JPH01122902A JP H01122902 A JPH01122902 A JP H01122902A JP 62280122 A JP62280122 A JP 62280122A JP 28012287 A JP28012287 A JP 28012287A JP H01122902 A JPH01122902 A JP H01122902A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- catalyst
- reforming reaction
- fuel cell
- reaction tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 37
- 239000003054 catalyst Substances 0.000 claims abstract description 46
- 238000006057 reforming reaction Methods 0.000 claims abstract description 28
- 239000002994 raw material Substances 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 2
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 229910052703 rhodium Inorganic materials 0.000 claims 1
- 239000010948 rhodium Substances 0.000 claims 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims 1
- 210000005056 cell body Anatomy 0.000 abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 12
- 238000010248 power generation Methods 0.000 description 5
- 239000000567 combustion gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002407 reforming Methods 0.000 description 3
- 239000011865 Pt-based catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
この発明は、アルコールなどを触媒により水蒸気と反応
させて水素リッチなガスに改質し、燃料電池のアノード
に供給する燃料電池用燃料改質装置に関する。
に従来の技術】
燃料電池発電装置は、比較的小型の装置でも効率が高く
、無公害の発電装置として近時注目されている。しかし
ながら、起動・停止や負荷変動時などの非定常時の応答
性が悪いという欠点がある。
これは主に、燃料電池本体で消費する水素リッチなガス
をアルコールなどの改質により供給する燃料改質装置の
応答性に起因している。
燃料改質装置の触媒層部では、例えば原料がメタノール
の場合、次の式(1)、(2)の反応を合わせた式(3
)の反応が、Cu系の触媒を用いて約200〜300°
Cの温度で行われている。
CHzOH−+CO+3Hz 21.68 kcal
(1)CO+ 820 →COz+ Hz +
9.84 kcal (2)CH30H+ )12
0 →COz+4Hz 11.84 kcal
(3)上記式(1)は吸熱反応、式(2)は発熱反応で
、式(3)では総括的に吸熱反応である。したがって、
触媒層部では吸熱反応を行わせるために、外部よりこの
触媒層部に熱エネルギを与えてやる必要がある。
このような要求に基づいて設計された従来の燃料改質装
置の構造の一例を第4図に示す。第4図において、装置
本体の内筒1と外筒2との間に設置された改質反応管6
内に触媒8がある。原料ガス入口10から供給された原
料ガスは、下部管板4で形成された原料ガスマニホルド
5を経由して矢印のように改質反応管6に入る。この原
料ガスは、改質反応管6内で上記反応式により改質され
て水素リッチなガスとなり、上部管板3で形成された改
質ガスマニホルド12を経由して改質ガス出口11から
燃料電池本体に供給される。
改質のための熱エネルギは、バーナ9で燃焼したガスが
内外筒1,2間を鎖線矢印のように上昇する過程で改質
反応管6に伝達される。改質反応管6を加熱した燃焼ガ
スは、燃焼ガス出ロアから排出される。The present invention relates to a fuel reforming device for a fuel cell, which reformes alcohol or the like with water vapor using a catalyst to reform it into a hydrogen-rich gas, and supplies the gas to the anode of the fuel cell. BACKGROUND OF THE INVENTION Fuel cell power generation devices have recently attracted attention as a relatively small-sized device with high efficiency and pollution-free power generation devices. However, it has the disadvantage of poor responsiveness during unsteady conditions such as startup, shutdown, and load fluctuations. This is mainly due to the responsiveness of a fuel reformer that supplies hydrogen-rich gas consumed by the fuel cell body by reforming alcohol or the like. In the catalyst layer section of a fuel reformer, for example, when the raw material is methanol, the following equation (3), which is a combination of the reactions of equations (1) and (2), is used.
) reaction is carried out at about 200 to 300° using a Cu-based catalyst.
It is carried out at a temperature of C. CHzOH-+CO+3Hz 21.68 kcal
(1) CO+ 820 → COz+ Hz +
9.84 kcal (2) CH30H+ )12
0 → COz+4Hz 11.84 kcal
(3) The above formula (1) is an endothermic reaction, the formula (2) is an exothermic reaction, and the formula (3) is an overall endothermic reaction. therefore,
In order to cause an endothermic reaction in the catalyst layer, it is necessary to apply thermal energy to the catalyst layer from the outside. An example of the structure of a conventional fuel reformer designed based on such requirements is shown in FIG. In FIG. 4, a reforming reaction tube 6 installed between the inner cylinder 1 and the outer cylinder 2 of the main body of the apparatus
There is a catalyst 8 inside. The raw material gas supplied from the raw material gas inlet 10 passes through the raw material gas manifold 5 formed by the lower tube plate 4 and enters the reforming reaction tube 6 as shown by the arrow. This raw material gas is reformed in the reforming reaction tube 6 according to the above reaction formula to become a hydrogen-rich gas, which is then fed to the reformed gas outlet 11 via the reformed gas manifold 12 formed by the upper tube plate 3. Supplied to the battery body. Thermal energy for reforming is transmitted to the reforming reaction tube 6 while the gas combusted in the burner 9 ascends between the inner and outer cylinders 1 and 2 as shown by the chain arrow. The combustion gas that has heated the reforming reaction tube 6 is discharged from the combustion gas output lower.
このような燃料改質装置において、改質反応管6内の触
媒層における軸方向の温度分布は、第5図のようになる
。ここで第5図の実線は軽負荷定常時、鎖線は重負荷定
常時の温度分布を示すものである。また、触媒層の温度
制御をする点、すなわち触媒層代表温度として第5図に
示す点を取っているが、この点の負荷変動時の温度変化
、すなわち負荷が軽負荷から重負荷になり、再び軽負荷
になる時の温度経時変化は第6図に示すようになり、著
しく変動する。
このように触媒層の温度が負荷により変動すると、改質
ガスの組成もまた変動する。すなわち、触媒層の温度が
低すぎると未改質のメタノールが ゛発生し、逆に高
すぎるとCOが増加して燃料電池本体の性能に悪影響を
及ぼす。改質ガス中のメタノール、COのいずれも燃料
電池本体の出力電圧を低下させるため、発電システムと
して定出力を得るためには燃料電池からの電流を多く取
ることになる。
このようなことから、とりわけ負荷が増加した時に、触
媒層の温度が下がって未改質のメタノールが増加し燃料
電池本体の出力電圧が低下すると、さらに燃料電池本体
から電流を多く取ることになり、その結果燃料電池本体
に過負荷を与え、場合によってはシステムの継続した運
転が不能になってしまうという問題点があった。
この発明はこのような問題点を解決しようとするもので
、触媒層の温度を一定にして改質ガスの組成変動を抑え
、負荷変動時にも燃料電池発電システムを安定して運転
できるようにした燃料電池用燃料改質装置を提供するこ
とを目的とするものである。In such a fuel reformer, the temperature distribution in the axial direction in the catalyst layer in the reforming reaction tube 6 is as shown in FIG. Here, the solid line in FIG. 5 shows the temperature distribution under steady light load, and the chain line shows the temperature distribution under steady heavy load. In addition, the point shown in Figure 5 is taken as the temperature control point of the catalyst layer, that is, the representative temperature of the catalyst layer, and the temperature change at this point when the load changes, that is, the load changes from light to heavy, The temperature change over time when the load becomes light again is as shown in FIG. 6, and it fluctuates significantly. When the temperature of the catalyst layer changes depending on the load in this way, the composition of the reformed gas also changes. That is, if the temperature of the catalyst layer is too low, unreformed methanol will be generated, whereas if it is too high, CO will increase, which will adversely affect the performance of the fuel cell main body. Both methanol and CO in the reformed gas lower the output voltage of the fuel cell main body, so in order to obtain a constant output as a power generation system, a large amount of current must be drawn from the fuel cell. For this reason, especially when the load increases, the temperature of the catalyst layer decreases, the amount of unreformed methanol increases, and the output voltage of the fuel cell body decreases, resulting in an even greater amount of current being drawn from the fuel cell body. As a result, there is a problem in that the fuel cell body is overloaded, and in some cases, the system cannot continue to operate. This invention aims to solve these problems by keeping the temperature of the catalyst layer constant to suppress compositional fluctuations in the reformed gas, thereby allowing the fuel cell power generation system to operate stably even during load fluctuations. The object of the present invention is to provide a fuel reformer for a fuel cell.
この発明は、触媒を充填した改質反応管を本体底部で折
り返された二重構造に形成し、原料ガスの入口側となる
一方の側を比較的高温で運転する高温部とし、また改質
ガスの出口側となる他方の、側を比較的低温で運転する
低温部として構成するのである。In this invention, a reforming reaction tube filled with a catalyst is formed into a double structure that is folded back at the bottom of the main body, and one side, which is the inlet side of the raw material gas, is a high temperature section that operates at a relatively high temperature. The other side, which is the gas outlet side, is constructed as a low-temperature section that operates at a relatively low temperature.
この発明によれば、改質反応管の高温部に高温で原料ガ
スの分解反応に触媒能を示す触媒を用い、また低温部に
低温でCO変成反応に触媒能を示す触媒を用いることが
でき、それにより触媒層の温度を一定にして改質ガスの
組成変動を抑えることができる。According to this invention, it is possible to use a catalyst that exhibits catalytic ability for the decomposition reaction of raw material gas at high temperatures in the high temperature section of the reforming reaction tube, and use a catalyst that exhibits catalytic ability for the CO conversion reaction at low temperatures in the low temperature section. , thereby making it possible to keep the temperature of the catalyst layer constant and suppressing variations in the composition of the reformed gas.
【実施例】
以下、図に基づいてこの発明の詳細な説明する。なお、
この発明の実施例を示す第1図において、第4図と同一
の部分には同一の符号を付は説明を省略する。
第1図において、改質反応管13は内筒1の内外に跨が
る二重構造になっている。すなわち、内筒1の内側のバ
ーナ9の直下には高温部14が配置され、内筒1の外側
には低温部15が配置されている。高温部14と低温部
15とは、連通管18と原料ガスマニホルド5を介して
接続され、改質反応管13は全体的に見れば、本体底部
で折り返された形となっている。高温部14は、バーナ
9の燃焼ガスによる加熱に加えてバーナ9の輻射熱を直
接受け、比較的高温で運転される。一方、低温部15は
内筒1でバーナ9から遮られており、高温部14を通過
した後の燃焼ガスで加熱されて比較的低温で運転される
。
改質反応管13の高温部14は外筒13aと内筒13b
との間に環状の空間が形成された二重円筒になっており
、その上端に改質ガス入口管10が接続されている。改
質反応管13の低温部15は、複数本の反応管15aを
環状に並べて構成されており、その下端はマニホルド5
に通じ、上端は改質ガスマニホルド12を介して改質ガ
ス出口11に通じている。
高温部14には、アルミナボールにptあるいはPdを
担持させた触媒16が充填されている。起動時にはバー
ナ9でメタノールを燃焼させるとともに、原料ガス入口
管10からメタノールと空気を供給し、高温触媒層16
で触媒燃焼させて高温触媒116を昇温する。昇温後の
定常運転時には、バーナ9から熱エネルギを受けながら
、高温触媒層16は約300〜400°Cで改質反応を
行う。
改質反応管13の低温部15には、Cu系の触媒17が
充填されている。上記定常運転時において、低温触媒1
i17は、約200〜300℃で改質反応を行う。Cu
系の触媒の触媒は300°C以上で運転すると寿命が短
くなるが、Pt系の触媒は300〜400°Cで運転し
ても寿命が短くなることはない。
高温部14を出た改質ガスは、燃料電池本体の触媒の触
媒毒となるCOを4〜5%含んでいる。このガスは本体
底部のマニホルド5で折り返し、低温部のCu系の触媒
層17を通過して、反応式(2)のCO変成反応により
COが200〜300°Cの平衡濃度まで下げられ、改
質ガス出口11から燃料電池本体へ供給される。
この時の低温部15内における触媒層の軸方向の温度分
布は、第2図に示すようになり、軽負荷(実線)の場合
も、重負荷(鎖線)の場合も温度分布にほとんど変化が
ない。また、軽負荷から重負荷、さらに軽負荷という非
定常的な負荷変動に対しても、第2図の触媒層温度制御
点における温度の経時変化は第3図に示すようになり、
温度変化は非常に小さくなっている。したがって、改質
ガスの組成も一定となり、燃料電池本体に過負荷を与え
ることなく運転を継続することが可能となる。[Example] Hereinafter, the present invention will be explained in detail based on the drawings. In addition,
In FIG. 1 showing an embodiment of the present invention, the same parts as in FIG. 4 are designated by the same reference numerals, and their explanation will be omitted. In FIG. 1, the reforming reaction tube 13 has a double structure spanning the inside and outside of the inner cylinder 1. That is, a high temperature section 14 is disposed inside the inner cylinder 1 directly below the burner 9, and a low temperature section 15 is disposed outside the inner cylinder 1. The high-temperature section 14 and the low-temperature section 15 are connected via a communication pipe 18 and a raw material gas manifold 5, and the reforming reaction tube 13 has a shape that is folded back at the bottom of the main body when viewed as a whole. The high temperature section 14 is heated by the combustion gas of the burner 9 and directly receives radiant heat from the burner 9, and is operated at a relatively high temperature. On the other hand, the low temperature section 15 is shielded from the burner 9 by the inner cylinder 1, is heated by the combustion gas that has passed through the high temperature section 14, and is operated at a relatively low temperature. The high temperature section 14 of the reforming reaction tube 13 has an outer cylinder 13a and an inner cylinder 13b.
It is a double cylinder with an annular space formed between the two cylinders, and the reformed gas inlet pipe 10 is connected to the upper end of the cylinder. The low temperature section 15 of the reforming reaction tube 13 is configured by arranging a plurality of reaction tubes 15a in an annular manner, and the lower end thereof is connected to the manifold 5.
The upper end communicates with the reformed gas outlet 11 via the reformed gas manifold 12 . The high temperature section 14 is filled with a catalyst 16 in which pt or Pd is supported on alumina balls. At startup, methanol is burned in the burner 9, and methanol and air are supplied from the raw material gas inlet pipe 10, and the high-temperature catalyst layer 16 is
The high temperature catalyst 116 is heated by catalytic combustion. During steady operation after increasing the temperature, the high temperature catalyst layer 16 performs a reforming reaction at about 300 to 400°C while receiving thermal energy from the burner 9. The low temperature section 15 of the reforming reaction tube 13 is filled with a Cu-based catalyst 17 . During the above steady operation, the low temperature catalyst 1
i17 performs the modification reaction at about 200 to 300°C. Cu
The life of a Pt-based catalyst will be shortened if it is operated at 300°C or higher, but the life of a Pt-based catalyst will not be shortened even if it is operated at a temperature of 300 to 400°C. The reformed gas leaving the high temperature section 14 contains 4 to 5% of CO, which is a catalyst poison for the catalyst in the fuel cell main body. This gas is turned back at the manifold 5 at the bottom of the main body, passes through the Cu-based catalyst layer 17 in the low-temperature part, and is lowered to an equilibrium concentration of 200 to 300°C by the CO transformation reaction of reaction formula (2), and is reformed. The quality gas is supplied to the fuel cell main body from the quality gas outlet 11. At this time, the temperature distribution in the axial direction of the catalyst layer in the low temperature section 15 is as shown in FIG. do not have. In addition, even with unsteady load fluctuations from light load to heavy load and then light load, the temperature change over time at the catalyst layer temperature control point in Figure 2 becomes as shown in Figure 3.
Temperature changes are very small. Therefore, the composition of the reformed gas remains constant, and operation can be continued without overloading the fuel cell main body.
この発明は、触媒を充填した改質反応管を本体底部で折
り返された二重構造に形成し、原料ガスの入口側となる
一方の側を比較的高温で運転する高温部とし、また改質
ガスの出口側となる他方の側を比較的低温で運転する低
温部として構成したので、触媒層の温度を一定にして改
質ガスの組成変動を抑え、特に負荷変動時の燃料電池発
電システムの運転を安定させることができる。また、高
温部のpt系触媒は、システム起動時に改質反応管を昇
温させるための燃焼触媒としても使用できるので、シス
テムの起動時間の短縮にも寄与することができる。In this invention, a reforming reaction tube filled with a catalyst is formed into a double structure that is folded back at the bottom of the main body, and one side, which is the inlet side of the raw material gas, is a high temperature section that operates at a relatively high temperature. Since the other side, which is the gas outlet side, is configured as a low-temperature section that operates at a relatively low temperature, it keeps the temperature of the catalyst layer constant and suppresses compositional fluctuations in the reformed gas, making it especially useful for fuel cell power generation systems during load fluctuations. It can stabilize driving. Further, the PT catalyst in the high temperature section can also be used as a combustion catalyst to raise the temperature of the reforming reaction tube when the system is started, and therefore can contribute to shortening the system start-up time.
第1図はこの発明の実施例の縦断面図、第2図は第1図
における改質反応管の低温部の軸方向の温度分布を示す
線図、第3図は第2図の触媒層温度制御点における触媒
層温度の経時変化を示す線図、第4図は従来の燃料改質
装置の縦断面図、第5図は第4図における改質反応管の
軸方向の温度分布を示す線図、第6図は第5図の触媒層
温度制御点における触媒層温度の経時変化を示す線図で
ある。
13:改質反応管、14:改質反応管の高温部、15:
改質反応管の低温部、16.17:触媒。
第2図
時間
第4図
第5図
B奇 閉
第6図FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a diagram showing the axial temperature distribution of the low temperature section of the reforming reaction tube in FIG. 1, and FIG. 3 is a diagram showing the catalyst layer in FIG. 2. A diagram showing the change over time in the catalyst layer temperature at the temperature control point, Fig. 4 is a longitudinal cross-sectional view of a conventional fuel reformer, and Fig. 5 shows the temperature distribution in the axial direction of the reforming reaction tube in Fig. 4. 6 is a diagram showing the change over time in the catalyst layer temperature at the catalyst layer temperature control point in FIG. 5. 13: Reforming reaction tube, 14: High temperature section of reforming reaction tube, 15:
Low temperature section of reforming reaction tube, 16.17: Catalyst. Figure 2 Time Figure 4 Figure 5 B odd Closed Figure 6
Claims (1)
素リッチなガスに改質し、燃料電池に供給する燃料電池
用燃料改質装置において、触媒を充填した改質反応管を
本体底部で折り返された二重構造に形成し、原料ガスの
入口側となる一方の側を比較的高温で運転する高温部と
し、また改質ガスの出口側となる他方の側を比較的低温
で運転する低温部として構成したことを特徴とする燃料
電池用燃料改質装置。 2)特許請求の範囲第1項記載の装置において、改質反
応管の高温部では主として原料ガスの分解反応を行わせ
、低温部では主としてCOの変成反応を行わせるように
した燃料電池用燃料改質装置。 3)特許請求の範囲第2項記載の装置において、改質反
応管の高温部の触媒は白金又はロジウム、パラジウムの
1種若しくはそれ以上を含む触媒である燃料電池用燃料
改質装置。4)特許請求の範囲第3項記載の装置におい
て、改質反応管の高温部の触媒を起動時には燃焼触媒と
して使用する燃料電池用燃料改質装置。[Claims] 1) A reforming reaction tube filled with a catalyst is used in a fuel reformer for a fuel cell in which alcohol or the like is reacted with water vapor using a catalyst to reform into a hydrogen-rich gas and then supplied to a fuel cell. It is formed into a double structure folded back at the bottom of the main body, with one side serving as the inlet side for raw material gas serving as a high-temperature part that operates at a relatively high temperature, and the other side serving as the exit side for reformed gas serving as a relatively low-temperature part. 1. A fuel reformer for a fuel cell, characterized in that it is configured as a low-temperature section that operates at a low temperature. 2) A fuel for a fuel cell in the apparatus according to claim 1, in which a decomposition reaction of raw material gas is mainly performed in the high temperature section of the reforming reaction tube, and a shift reaction of CO is mainly performed in the low temperature section. reformer. 3) A fuel reformer for a fuel cell according to claim 2, wherein the catalyst in the high temperature section of the reforming reaction tube is a catalyst containing one or more of platinum, rhodium, and palladium. 4) A fuel reformer for a fuel cell according to claim 3, wherein the catalyst in the high temperature section of the reforming reaction tube is used as a combustion catalyst at startup.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62280122A JPH0647441B2 (en) | 1987-11-05 | 1987-11-05 | Fuel reformer for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62280122A JPH0647441B2 (en) | 1987-11-05 | 1987-11-05 | Fuel reformer for fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01122902A true JPH01122902A (en) | 1989-05-16 |
JPH0647441B2 JPH0647441B2 (en) | 1994-06-22 |
Family
ID=17620640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62280122A Expired - Lifetime JPH0647441B2 (en) | 1987-11-05 | 1987-11-05 | Fuel reformer for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0647441B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0283028A (en) * | 1988-09-19 | 1990-03-23 | Kobe Steel Ltd | Reforming apparatus for hydrocarbon |
WO2002098790A1 (en) * | 2001-06-04 | 2002-12-12 | Tokyo Gas Company Limited | Cylindrical water vapor reforming unit |
JP2002362902A (en) * | 2001-06-12 | 2002-12-18 | Matsushita Electric Ind Co Ltd | Hydrogen producing apparatus |
WO2003000585A1 (en) * | 2001-06-12 | 2003-01-03 | Matsushita Electric Industrial Co., Ltd. | Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus |
JP2008266125A (en) * | 2007-04-24 | 2008-11-06 | Samsung Sdi Co Ltd | Fuel reforming apparatus, method of driving the apparatus and fuel cell system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246802A (en) * | 1986-04-21 | 1987-10-28 | Fuji Electric Co Ltd | Methanol reformer |
JPS63129002A (en) * | 1986-11-17 | 1988-06-01 | Hitachi Ltd | Internal heating fuel reformer |
-
1987
- 1987-11-05 JP JP62280122A patent/JPH0647441B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246802A (en) * | 1986-04-21 | 1987-10-28 | Fuji Electric Co Ltd | Methanol reformer |
JPS63129002A (en) * | 1986-11-17 | 1988-06-01 | Hitachi Ltd | Internal heating fuel reformer |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0283028A (en) * | 1988-09-19 | 1990-03-23 | Kobe Steel Ltd | Reforming apparatus for hydrocarbon |
JPH0688761B2 (en) * | 1988-09-19 | 1994-11-09 | 株式会社神戸製鋼所 | Hydrocarbon reformer |
WO2002098790A1 (en) * | 2001-06-04 | 2002-12-12 | Tokyo Gas Company Limited | Cylindrical water vapor reforming unit |
JP2002362902A (en) * | 2001-06-12 | 2002-12-18 | Matsushita Electric Ind Co Ltd | Hydrogen producing apparatus |
WO2003000585A1 (en) * | 2001-06-12 | 2003-01-03 | Matsushita Electric Industrial Co., Ltd. | Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus |
US7132178B2 (en) | 2001-06-12 | 2006-11-07 | Matsushita Electric Industrial Co., Ltd. | Hydrogen generator, fuel cell system and control method of hydrogen generator |
JP2008266125A (en) * | 2007-04-24 | 2008-11-06 | Samsung Sdi Co Ltd | Fuel reforming apparatus, method of driving the apparatus and fuel cell system |
US8003269B2 (en) | 2007-04-24 | 2011-08-23 | Samsung Sdi Co., Ltd. | Fuel reforming apparatus and its method of driving and fuel cell system including the apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0647441B2 (en) | 1994-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5100950B2 (en) | Integrated module for solid oxide fuel cell system | |
EP0600621B1 (en) | A combined reformer and shift reactor | |
KR100677016B1 (en) | Cylindrical steam reforming unit | |
US6299994B1 (en) | Process for providing a pure hydrogen stream for use with fuel cells | |
US6190623B1 (en) | Apparatus for providing a pure hydrogen stream for use with fuel cells | |
US6280864B1 (en) | Control system for providing hydrogen for use with fuel cells | |
US6793698B1 (en) | Fuel processor reactor with integrated pre-reforming zone | |
AU2001272281A1 (en) | Integrated module for solid oxide fuel cell systems | |
US20060143983A1 (en) | Apparatus for producing hydrogen gas and fuel cell system using the same | |
KR20050053770A (en) | Autooxidation internal heating type steam reforming system | |
JP3711577B2 (en) | Fuel reformer | |
JP2003529014A (en) | Multi-stage combustion for fuel processing for use with fuel cells | |
JP2002208426A (en) | Reforming device for fuel cell | |
JP2004323353A (en) | Single tube cylindrical reformer and operating method therefor | |
JPH01122902A (en) | Fuel reformer for fuel cell | |
JP2003321206A (en) | Single tubular cylinder type reforming apparatus | |
JPH0794322B2 (en) | Methanol reformer | |
JPS5826002A (en) | Steam reforming method and reaction tube for steam reforming | |
JPH11149931A (en) | Starting method of reforming equipment for fuel cell | |
JP2002104808A (en) | Method of reforming fuel | |
JP2001085039A (en) | Fuel cell system | |
JPH0335241B2 (en) | ||
JP2001106513A (en) | Fuel reforming device | |
JPS62246802A (en) | Methanol reformer | |
JP2002029705A (en) | Reforming device |