JPH01122902A - Fuel reformer for fuel cell - Google Patents

Fuel reformer for fuel cell

Info

Publication number
JPH01122902A
JPH01122902A JP62280122A JP28012287A JPH01122902A JP H01122902 A JPH01122902 A JP H01122902A JP 62280122 A JP62280122 A JP 62280122A JP 28012287 A JP28012287 A JP 28012287A JP H01122902 A JPH01122902 A JP H01122902A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
reforming reaction
fuel cell
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62280122A
Other languages
Japanese (ja)
Other versions
JPH0647441B2 (en
Inventor
Masatsuru Umemoto
梅本 真鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62280122A priority Critical patent/JPH0647441B2/en
Publication of JPH01122902A publication Critical patent/JPH01122902A/en
Publication of JPH0647441B2 publication Critical patent/JPH0647441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep a catalyst temperature constant, suppress fluctuation in composition of a reformed gas and stably carry out operation even in the case of fluctuated load, by keeping the raw material gas inlet side of a reforming reaction tube of a double structure turned back at the body bottom in a high temperature part and the reformed gas outlet side in a low temperature part. CONSTITUTION:A high-temperature part 14 arranged just under a burner 9 on the inside of an inner tube 1 and a low-temperature part 15 placed on the outside of the inner tube 1 are connected through a communicating tube 18 and a raw material gas manifold 5 to constitute a reforming reaction tube 13 of a double structure turned back at the body bottom. An alcohol is burned with the burner 9 and the alcohol and air are simultaneously fed from a raw material gas inlet pipe 10 to be catalytically burnt on a high-temperature catalyst layer 16 filled in the high-temperature part 14 and burn therein. Thereby reforming reaction is carried out at 300-400 deg.C. The resultant reformed gas emerging from the high-temperature part 14 is turned back at the manifold 5, passed through the catalyst layer 17 filled in the low-temperature layer 15 to reduce the CO concentration to an equilibrium one at 200-300 deg.C. The resultant gas is then fed from an outlet 11 to a fuel cell body.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、アルコールなどを触媒により水蒸気と反応
させて水素リッチなガスに改質し、燃料電池のアノード
に供給する燃料電池用燃料改質装置に関する。 に従来の技術】 燃料電池発電装置は、比較的小型の装置でも効率が高く
、無公害の発電装置として近時注目されている。しかし
ながら、起動・停止や負荷変動時などの非定常時の応答
性が悪いという欠点がある。 これは主に、燃料電池本体で消費する水素リッチなガス
をアルコールなどの改質により供給する燃料改質装置の
応答性に起因している。 燃料改質装置の触媒層部では、例えば原料がメタノール
の場合、次の式(1)、(2)の反応を合わせた式(3
)の反応が、Cu系の触媒を用いて約200〜300°
Cの温度で行われている。 CHzOH−+CO+3Hz  21.68 kcal
  (1)CO+ 820   →COz+ Hz +
 9.84 kcal  (2)CH30H+ )12
0  →COz+4Hz  11.84 kcal  
(3)上記式(1)は吸熱反応、式(2)は発熱反応で
、式(3)では総括的に吸熱反応である。したがって、
触媒層部では吸熱反応を行わせるために、外部よりこの
触媒層部に熱エネルギを与えてやる必要がある。 このような要求に基づいて設計された従来の燃料改質装
置の構造の一例を第4図に示す。第4図において、装置
本体の内筒1と外筒2との間に設置された改質反応管6
内に触媒8がある。原料ガス入口10から供給された原
料ガスは、下部管板4で形成された原料ガスマニホルド
5を経由して矢印のように改質反応管6に入る。この原
料ガスは、改質反応管6内で上記反応式により改質され
て水素リッチなガスとなり、上部管板3で形成された改
質ガスマニホルド12を経由して改質ガス出口11から
燃料電池本体に供給される。 改質のための熱エネルギは、バーナ9で燃焼したガスが
内外筒1,2間を鎖線矢印のように上昇する過程で改質
反応管6に伝達される。改質反応管6を加熱した燃焼ガ
スは、燃焼ガス出ロアから排出される。
The present invention relates to a fuel reforming device for a fuel cell, which reformes alcohol or the like with water vapor using a catalyst to reform it into a hydrogen-rich gas, and supplies the gas to the anode of the fuel cell. BACKGROUND OF THE INVENTION Fuel cell power generation devices have recently attracted attention as a relatively small-sized device with high efficiency and pollution-free power generation devices. However, it has the disadvantage of poor responsiveness during unsteady conditions such as startup, shutdown, and load fluctuations. This is mainly due to the responsiveness of a fuel reformer that supplies hydrogen-rich gas consumed by the fuel cell body by reforming alcohol or the like. In the catalyst layer section of a fuel reformer, for example, when the raw material is methanol, the following equation (3), which is a combination of the reactions of equations (1) and (2), is used.
) reaction is carried out at about 200 to 300° using a Cu-based catalyst.
It is carried out at a temperature of C. CHzOH-+CO+3Hz 21.68 kcal
(1) CO+ 820 → COz+ Hz +
9.84 kcal (2) CH30H+ )12
0 → COz+4Hz 11.84 kcal
(3) The above formula (1) is an endothermic reaction, the formula (2) is an exothermic reaction, and the formula (3) is an overall endothermic reaction. therefore,
In order to cause an endothermic reaction in the catalyst layer, it is necessary to apply thermal energy to the catalyst layer from the outside. An example of the structure of a conventional fuel reformer designed based on such requirements is shown in FIG. In FIG. 4, a reforming reaction tube 6 installed between the inner cylinder 1 and the outer cylinder 2 of the main body of the apparatus
There is a catalyst 8 inside. The raw material gas supplied from the raw material gas inlet 10 passes through the raw material gas manifold 5 formed by the lower tube plate 4 and enters the reforming reaction tube 6 as shown by the arrow. This raw material gas is reformed in the reforming reaction tube 6 according to the above reaction formula to become a hydrogen-rich gas, which is then fed to the reformed gas outlet 11 via the reformed gas manifold 12 formed by the upper tube plate 3. Supplied to the battery body. Thermal energy for reforming is transmitted to the reforming reaction tube 6 while the gas combusted in the burner 9 ascends between the inner and outer cylinders 1 and 2 as shown by the chain arrow. The combustion gas that has heated the reforming reaction tube 6 is discharged from the combustion gas output lower.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

このような燃料改質装置において、改質反応管6内の触
媒層における軸方向の温度分布は、第5図のようになる
。ここで第5図の実線は軽負荷定常時、鎖線は重負荷定
常時の温度分布を示すものである。また、触媒層の温度
制御をする点、すなわち触媒層代表温度として第5図に
示す点を取っているが、この点の負荷変動時の温度変化
、すなわち負荷が軽負荷から重負荷になり、再び軽負荷
になる時の温度経時変化は第6図に示すようになり、著
しく変動する。 このように触媒層の温度が負荷により変動すると、改質
ガスの組成もまた変動する。すなわち、触媒層の温度が
低すぎると未改質のメタノールが  ゛発生し、逆に高
すぎるとCOが増加して燃料電池本体の性能に悪影響を
及ぼす。改質ガス中のメタノール、COのいずれも燃料
電池本体の出力電圧を低下させるため、発電システムと
して定出力を得るためには燃料電池からの電流を多く取
ることになる。 このようなことから、とりわけ負荷が増加した時に、触
媒層の温度が下がって未改質のメタノールが増加し燃料
電池本体の出力電圧が低下すると、さらに燃料電池本体
から電流を多く取ることになり、その結果燃料電池本体
に過負荷を与え、場合によってはシステムの継続した運
転が不能になってしまうという問題点があった。 この発明はこのような問題点を解決しようとするもので
、触媒層の温度を一定にして改質ガスの組成変動を抑え
、負荷変動時にも燃料電池発電システムを安定して運転
できるようにした燃料電池用燃料改質装置を提供するこ
とを目的とするものである。
In such a fuel reformer, the temperature distribution in the axial direction in the catalyst layer in the reforming reaction tube 6 is as shown in FIG. Here, the solid line in FIG. 5 shows the temperature distribution under steady light load, and the chain line shows the temperature distribution under steady heavy load. In addition, the point shown in Figure 5 is taken as the temperature control point of the catalyst layer, that is, the representative temperature of the catalyst layer, and the temperature change at this point when the load changes, that is, the load changes from light to heavy, The temperature change over time when the load becomes light again is as shown in FIG. 6, and it fluctuates significantly. When the temperature of the catalyst layer changes depending on the load in this way, the composition of the reformed gas also changes. That is, if the temperature of the catalyst layer is too low, unreformed methanol will be generated, whereas if it is too high, CO will increase, which will adversely affect the performance of the fuel cell main body. Both methanol and CO in the reformed gas lower the output voltage of the fuel cell main body, so in order to obtain a constant output as a power generation system, a large amount of current must be drawn from the fuel cell. For this reason, especially when the load increases, the temperature of the catalyst layer decreases, the amount of unreformed methanol increases, and the output voltage of the fuel cell body decreases, resulting in an even greater amount of current being drawn from the fuel cell body. As a result, there is a problem in that the fuel cell body is overloaded, and in some cases, the system cannot continue to operate. This invention aims to solve these problems by keeping the temperature of the catalyst layer constant to suppress compositional fluctuations in the reformed gas, thereby allowing the fuel cell power generation system to operate stably even during load fluctuations. The object of the present invention is to provide a fuel reformer for a fuel cell.

【問題点を解決するための手段】[Means to solve the problem]

この発明は、触媒を充填した改質反応管を本体底部で折
り返された二重構造に形成し、原料ガスの入口側となる
一方の側を比較的高温で運転する高温部とし、また改質
ガスの出口側となる他方の、側を比較的低温で運転する
低温部として構成するのである。
In this invention, a reforming reaction tube filled with a catalyst is formed into a double structure that is folded back at the bottom of the main body, and one side, which is the inlet side of the raw material gas, is a high temperature section that operates at a relatively high temperature. The other side, which is the gas outlet side, is constructed as a low-temperature section that operates at a relatively low temperature.

【作 用】[For use]

この発明によれば、改質反応管の高温部に高温で原料ガ
スの分解反応に触媒能を示す触媒を用い、また低温部に
低温でCO変成反応に触媒能を示す触媒を用いることが
でき、それにより触媒層の温度を一定にして改質ガスの
組成変動を抑えることができる。
According to this invention, it is possible to use a catalyst that exhibits catalytic ability for the decomposition reaction of raw material gas at high temperatures in the high temperature section of the reforming reaction tube, and use a catalyst that exhibits catalytic ability for the CO conversion reaction at low temperatures in the low temperature section. , thereby making it possible to keep the temperature of the catalyst layer constant and suppressing variations in the composition of the reformed gas.

【実施例】 以下、図に基づいてこの発明の詳細な説明する。なお、
この発明の実施例を示す第1図において、第4図と同一
の部分には同一の符号を付は説明を省略する。 第1図において、改質反応管13は内筒1の内外に跨が
る二重構造になっている。すなわち、内筒1の内側のバ
ーナ9の直下には高温部14が配置され、内筒1の外側
には低温部15が配置されている。高温部14と低温部
15とは、連通管18と原料ガスマニホルド5を介して
接続され、改質反応管13は全体的に見れば、本体底部
で折り返された形となっている。高温部14は、バーナ
9の燃焼ガスによる加熱に加えてバーナ9の輻射熱を直
接受け、比較的高温で運転される。一方、低温部15は
内筒1でバーナ9から遮られており、高温部14を通過
した後の燃焼ガスで加熱されて比較的低温で運転される
。 改質反応管13の高温部14は外筒13aと内筒13b
との間に環状の空間が形成された二重円筒になっており
、その上端に改質ガス入口管10が接続されている。改
質反応管13の低温部15は、複数本の反応管15aを
環状に並べて構成されており、その下端はマニホルド5
に通じ、上端は改質ガスマニホルド12を介して改質ガ
ス出口11に通じている。 高温部14には、アルミナボールにptあるいはPdを
担持させた触媒16が充填されている。起動時にはバー
ナ9でメタノールを燃焼させるとともに、原料ガス入口
管10からメタノールと空気を供給し、高温触媒層16
で触媒燃焼させて高温触媒116を昇温する。昇温後の
定常運転時には、バーナ9から熱エネルギを受けながら
、高温触媒層16は約300〜400°Cで改質反応を
行う。 改質反応管13の低温部15には、Cu系の触媒17が
充填されている。上記定常運転時において、低温触媒1
i17は、約200〜300℃で改質反応を行う。Cu
系の触媒の触媒は300°C以上で運転すると寿命が短
くなるが、Pt系の触媒は300〜400°Cで運転し
ても寿命が短くなることはない。 高温部14を出た改質ガスは、燃料電池本体の触媒の触
媒毒となるCOを4〜5%含んでいる。このガスは本体
底部のマニホルド5で折り返し、低温部のCu系の触媒
層17を通過して、反応式(2)のCO変成反応により
COが200〜300°Cの平衡濃度まで下げられ、改
質ガス出口11から燃料電池本体へ供給される。 この時の低温部15内における触媒層の軸方向の温度分
布は、第2図に示すようになり、軽負荷(実線)の場合
も、重負荷(鎖線)の場合も温度分布にほとんど変化が
ない。また、軽負荷から重負荷、さらに軽負荷という非
定常的な負荷変動に対しても、第2図の触媒層温度制御
点における温度の経時変化は第3図に示すようになり、
温度変化は非常に小さくなっている。したがって、改質
ガスの組成も一定となり、燃料電池本体に過負荷を与え
ることなく運転を継続することが可能となる。
[Example] Hereinafter, the present invention will be explained in detail based on the drawings. In addition,
In FIG. 1 showing an embodiment of the present invention, the same parts as in FIG. 4 are designated by the same reference numerals, and their explanation will be omitted. In FIG. 1, the reforming reaction tube 13 has a double structure spanning the inside and outside of the inner cylinder 1. That is, a high temperature section 14 is disposed inside the inner cylinder 1 directly below the burner 9, and a low temperature section 15 is disposed outside the inner cylinder 1. The high-temperature section 14 and the low-temperature section 15 are connected via a communication pipe 18 and a raw material gas manifold 5, and the reforming reaction tube 13 has a shape that is folded back at the bottom of the main body when viewed as a whole. The high temperature section 14 is heated by the combustion gas of the burner 9 and directly receives radiant heat from the burner 9, and is operated at a relatively high temperature. On the other hand, the low temperature section 15 is shielded from the burner 9 by the inner cylinder 1, is heated by the combustion gas that has passed through the high temperature section 14, and is operated at a relatively low temperature. The high temperature section 14 of the reforming reaction tube 13 has an outer cylinder 13a and an inner cylinder 13b.
It is a double cylinder with an annular space formed between the two cylinders, and the reformed gas inlet pipe 10 is connected to the upper end of the cylinder. The low temperature section 15 of the reforming reaction tube 13 is configured by arranging a plurality of reaction tubes 15a in an annular manner, and the lower end thereof is connected to the manifold 5.
The upper end communicates with the reformed gas outlet 11 via the reformed gas manifold 12 . The high temperature section 14 is filled with a catalyst 16 in which pt or Pd is supported on alumina balls. At startup, methanol is burned in the burner 9, and methanol and air are supplied from the raw material gas inlet pipe 10, and the high-temperature catalyst layer 16 is
The high temperature catalyst 116 is heated by catalytic combustion. During steady operation after increasing the temperature, the high temperature catalyst layer 16 performs a reforming reaction at about 300 to 400°C while receiving thermal energy from the burner 9. The low temperature section 15 of the reforming reaction tube 13 is filled with a Cu-based catalyst 17 . During the above steady operation, the low temperature catalyst 1
i17 performs the modification reaction at about 200 to 300°C. Cu
The life of a Pt-based catalyst will be shortened if it is operated at 300°C or higher, but the life of a Pt-based catalyst will not be shortened even if it is operated at a temperature of 300 to 400°C. The reformed gas leaving the high temperature section 14 contains 4 to 5% of CO, which is a catalyst poison for the catalyst in the fuel cell main body. This gas is turned back at the manifold 5 at the bottom of the main body, passes through the Cu-based catalyst layer 17 in the low-temperature part, and is lowered to an equilibrium concentration of 200 to 300°C by the CO transformation reaction of reaction formula (2), and is reformed. The quality gas is supplied to the fuel cell main body from the quality gas outlet 11. At this time, the temperature distribution in the axial direction of the catalyst layer in the low temperature section 15 is as shown in FIG. do not have. In addition, even with unsteady load fluctuations from light load to heavy load and then light load, the temperature change over time at the catalyst layer temperature control point in Figure 2 becomes as shown in Figure 3.
Temperature changes are very small. Therefore, the composition of the reformed gas remains constant, and operation can be continued without overloading the fuel cell main body.

【発明の効果】【Effect of the invention】

この発明は、触媒を充填した改質反応管を本体底部で折
り返された二重構造に形成し、原料ガスの入口側となる
一方の側を比較的高温で運転する高温部とし、また改質
ガスの出口側となる他方の側を比較的低温で運転する低
温部として構成したので、触媒層の温度を一定にして改
質ガスの組成変動を抑え、特に負荷変動時の燃料電池発
電システムの運転を安定させることができる。また、高
温部のpt系触媒は、システム起動時に改質反応管を昇
温させるための燃焼触媒としても使用できるので、シス
テムの起動時間の短縮にも寄与することができる。
In this invention, a reforming reaction tube filled with a catalyst is formed into a double structure that is folded back at the bottom of the main body, and one side, which is the inlet side of the raw material gas, is a high temperature section that operates at a relatively high temperature. Since the other side, which is the gas outlet side, is configured as a low-temperature section that operates at a relatively low temperature, it keeps the temperature of the catalyst layer constant and suppresses compositional fluctuations in the reformed gas, making it especially useful for fuel cell power generation systems during load fluctuations. It can stabilize driving. Further, the PT catalyst in the high temperature section can also be used as a combustion catalyst to raise the temperature of the reforming reaction tube when the system is started, and therefore can contribute to shortening the system start-up time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の縦断面図、第2図は第1図
における改質反応管の低温部の軸方向の温度分布を示す
線図、第3図は第2図の触媒層温度制御点における触媒
層温度の経時変化を示す線図、第4図は従来の燃料改質
装置の縦断面図、第5図は第4図における改質反応管の
軸方向の温度分布を示す線図、第6図は第5図の触媒層
温度制御点における触媒層温度の経時変化を示す線図で
ある。 13:改質反応管、14:改質反応管の高温部、15:
改質反応管の低温部、16.17:触媒。 第2図 時間 第4図 第5図 B奇  閉 第6図
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a diagram showing the axial temperature distribution of the low temperature section of the reforming reaction tube in FIG. 1, and FIG. 3 is a diagram showing the catalyst layer in FIG. 2. A diagram showing the change over time in the catalyst layer temperature at the temperature control point, Fig. 4 is a longitudinal cross-sectional view of a conventional fuel reformer, and Fig. 5 shows the temperature distribution in the axial direction of the reforming reaction tube in Fig. 4. 6 is a diagram showing the change over time in the catalyst layer temperature at the catalyst layer temperature control point in FIG. 5. 13: Reforming reaction tube, 14: High temperature section of reforming reaction tube, 15:
Low temperature section of reforming reaction tube, 16.17: Catalyst. Figure 2 Time Figure 4 Figure 5 B odd Closed Figure 6

Claims (1)

【特許請求の範囲】 1)アルコールなどを触媒により水蒸気と反応させて水
素リッチなガスに改質し、燃料電池に供給する燃料電池
用燃料改質装置において、触媒を充填した改質反応管を
本体底部で折り返された二重構造に形成し、原料ガスの
入口側となる一方の側を比較的高温で運転する高温部と
し、また改質ガスの出口側となる他方の側を比較的低温
で運転する低温部として構成したことを特徴とする燃料
電池用燃料改質装置。 2)特許請求の範囲第1項記載の装置において、改質反
応管の高温部では主として原料ガスの分解反応を行わせ
、低温部では主としてCOの変成反応を行わせるように
した燃料電池用燃料改質装置。 3)特許請求の範囲第2項記載の装置において、改質反
応管の高温部の触媒は白金又はロジウム、パラジウムの
1種若しくはそれ以上を含む触媒である燃料電池用燃料
改質装置。4)特許請求の範囲第3項記載の装置におい
て、改質反応管の高温部の触媒を起動時には燃焼触媒と
して使用する燃料電池用燃料改質装置。
[Claims] 1) A reforming reaction tube filled with a catalyst is used in a fuel reformer for a fuel cell in which alcohol or the like is reacted with water vapor using a catalyst to reform into a hydrogen-rich gas and then supplied to a fuel cell. It is formed into a double structure folded back at the bottom of the main body, with one side serving as the inlet side for raw material gas serving as a high-temperature part that operates at a relatively high temperature, and the other side serving as the exit side for reformed gas serving as a relatively low-temperature part. 1. A fuel reformer for a fuel cell, characterized in that it is configured as a low-temperature section that operates at a low temperature. 2) A fuel for a fuel cell in the apparatus according to claim 1, in which a decomposition reaction of raw material gas is mainly performed in the high temperature section of the reforming reaction tube, and a shift reaction of CO is mainly performed in the low temperature section. reformer. 3) A fuel reformer for a fuel cell according to claim 2, wherein the catalyst in the high temperature section of the reforming reaction tube is a catalyst containing one or more of platinum, rhodium, and palladium. 4) A fuel reformer for a fuel cell according to claim 3, wherein the catalyst in the high temperature section of the reforming reaction tube is used as a combustion catalyst at startup.
JP62280122A 1987-11-05 1987-11-05 Fuel reformer for fuel cell Expired - Lifetime JPH0647441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280122A JPH0647441B2 (en) 1987-11-05 1987-11-05 Fuel reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280122A JPH0647441B2 (en) 1987-11-05 1987-11-05 Fuel reformer for fuel cell

Publications (2)

Publication Number Publication Date
JPH01122902A true JPH01122902A (en) 1989-05-16
JPH0647441B2 JPH0647441B2 (en) 1994-06-22

Family

ID=17620640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280122A Expired - Lifetime JPH0647441B2 (en) 1987-11-05 1987-11-05 Fuel reformer for fuel cell

Country Status (1)

Country Link
JP (1) JPH0647441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283028A (en) * 1988-09-19 1990-03-23 Kobe Steel Ltd Reforming apparatus for hydrocarbon
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP2002362902A (en) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
WO2003000585A1 (en) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246802A (en) * 1986-04-21 1987-10-28 Fuji Electric Co Ltd Methanol reformer
JPS63129002A (en) * 1986-11-17 1988-06-01 Hitachi Ltd Internal heating fuel reformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246802A (en) * 1986-04-21 1987-10-28 Fuji Electric Co Ltd Methanol reformer
JPS63129002A (en) * 1986-11-17 1988-06-01 Hitachi Ltd Internal heating fuel reformer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283028A (en) * 1988-09-19 1990-03-23 Kobe Steel Ltd Reforming apparatus for hydrocarbon
JPH0688761B2 (en) * 1988-09-19 1994-11-09 株式会社神戸製鋼所 Hydrocarbon reformer
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP2002362902A (en) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
WO2003000585A1 (en) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus
US7132178B2 (en) 2001-06-12 2006-11-07 Matsushita Electric Industrial Co., Ltd. Hydrogen generator, fuel cell system and control method of hydrogen generator
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system
US8003269B2 (en) 2007-04-24 2011-08-23 Samsung Sdi Co., Ltd. Fuel reforming apparatus and its method of driving and fuel cell system including the apparatus

Also Published As

Publication number Publication date
JPH0647441B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JP5100950B2 (en) Integrated module for solid oxide fuel cell system
EP0600621B1 (en) A combined reformer and shift reactor
KR100677016B1 (en) Cylindrical steam reforming unit
US6299994B1 (en) Process for providing a pure hydrogen stream for use with fuel cells
US6190623B1 (en) Apparatus for providing a pure hydrogen stream for use with fuel cells
US6280864B1 (en) Control system for providing hydrogen for use with fuel cells
US6793698B1 (en) Fuel processor reactor with integrated pre-reforming zone
AU2001272281A1 (en) Integrated module for solid oxide fuel cell systems
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
KR20050053770A (en) Autooxidation internal heating type steam reforming system
JP3711577B2 (en) Fuel reformer
JP2003529014A (en) Multi-stage combustion for fuel processing for use with fuel cells
JP2002208426A (en) Reforming device for fuel cell
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
JPH01122902A (en) Fuel reformer for fuel cell
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH0794322B2 (en) Methanol reformer
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP2002104808A (en) Method of reforming fuel
JP2001085039A (en) Fuel cell system
JPH0335241B2 (en)
JP2001106513A (en) Fuel reforming device
JPS62246802A (en) Methanol reformer
JP2002029705A (en) Reforming device