JPS61273182A - External power source synchronous inverter - Google Patents

External power source synchronous inverter

Info

Publication number
JPS61273182A
JPS61273182A JP60111330A JP11133085A JPS61273182A JP S61273182 A JPS61273182 A JP S61273182A JP 60111330 A JP60111330 A JP 60111330A JP 11133085 A JP11133085 A JP 11133085A JP S61273182 A JPS61273182 A JP S61273182A
Authority
JP
Japan
Prior art keywords
inverter
voltage
external power
power supply
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111330A
Other languages
Japanese (ja)
Other versions
JP2516195B2 (en
Inventor
Hideaki Kunisada
秀明 国貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60111330A priority Critical patent/JP2516195B2/en
Publication of JPS61273182A publication Critical patent/JPS61273182A/en
Application granted granted Critical
Publication of JP2516195B2 publication Critical patent/JP2516195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To suppress the frequency change rate by limiting a signal in response to the phase difference between an external power source voltage and an inverter output voltage to the prescribed time width within each zone divided in a plurality to input to a phase synchronizer system. CONSTITUTION:An inverter 1 of an external power source synchronous inverter supplies power through an AC switch 2 to a load 3, and a backup external power source 4 supplies power through an AC switch 5 to the load 3. The controller of the inverter 1 is composed of a gate controller 8 through a frequency divider 7 from a voltage control oscillator 6. In this case, to synchronize the voltage of the power source 4 with the output voltage of the inverter 1, a synchronization instructing circuit 9 and a phase comparator 10 are provided. Thus, the phase difference of the both is detected in response to a deviation of the both output voltages, and input only in the prescribed time width at the center of the zone of each half cycle. The prescribed time width is gradually expanded by the manner used for longitudinally increasing from the center.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は外部電源同期形インバータ装置に係り、特に周
波数過渡変動の少ない外部信号同期形インバータ装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an external power supply synchronized inverter device, and particularly to an external signal synchronized inverter device with little frequency transient fluctuation.

〔発明の背景〕[Background of the invention]

インバータ装置を商用電源等の外部電源に同期させて運
転させ、負荷に給電させておき、インバータの故障時あ
るいは保守時において、外部電源から負荷へ電力を供給
するように切換える場合がある。このようなインバータ
装置においては、例えば特公昭58−21506号公報
に開示されたように外部電源と同期したインバータ出力
を得るために、外部電源電圧とインバータ出力電圧の位
相差を位相比較回路により、検出する。その差に対応し
た電圧により、電圧制御発振器(VCO)の周波数を制
御し、さらに分周器でインバータ相数分に分周している
。これは、いわゆるフェーズ・ロック・ループ(P L
 L)と称され、最も普及している回路である。ところ
で、最近では、電子機器の高精度化に伴い、インバータ
の周波数の変化率を一定値以下に制限しなければならな
いといった負荷側要求が生じている。−例として、商用
周波数で使用する電子計算機では、周波数変化率を1(
Hz/秒〕以下に押さえなければならないと言われてい
る。
There are cases where an inverter device is operated in synchronization with an external power source such as a commercial power source to supply power to a load, and when the inverter fails or is maintained, the external power source is switched to supply power to the load. In such an inverter device, as disclosed in Japanese Patent Publication No. 58-21506, for example, in order to obtain an inverter output synchronized with an external power source, the phase difference between the external power source voltage and the inverter output voltage is detected by a phase comparator circuit. To detect. The frequency of a voltage controlled oscillator (VCO) is controlled by a voltage corresponding to the difference, and the frequency is further divided by the number of inverter phases using a frequency divider. This is the so-called phase-locked loop (PL
L) and is the most popular circuit. Incidentally, recently, as electronic equipment becomes more precise, there is a demand on the load side that the rate of change in the frequency of an inverter must be limited to a certain value or less. - For example, in an electronic computer used at commercial frequencies, the frequency change rate is 1 (
Hz/sec] or less.

従来の回路では、インバータの周波数は±2%程度の変
動範囲を有するように製作されている。
In conventional circuits, the frequency of the inverter is manufactured to have a variation range of approximately ±2%.

また、応答速度は0.1秒程度である。ここで、外部電
源がインバータ運転中に、初めて与えられる場合を考え
る。外部電源とインバータの位相が異なっていると、前
述のPLLの動作により、インバータは外部電源に同期
させられる。このとき、周波数変化率は概略、次式のよ
うになり、変化率が過大に過ぎる。
Further, the response speed is about 0.1 seconds. Here, consider the case where external power is applied for the first time while the inverter is operating. If the phases of the external power source and the inverter are different, the inverter is synchronized with the external power source by the operation of the PLL described above. At this time, the frequency change rate is approximately as shown in the following equation, and the change rate is too excessive.

0、1秒 これを1(Hz/秒〕以下に抑制するためには周波数変
動範囲を狭くするか、応答時間を長くしなければならな
い。しかし、前者は、外部電源の周波数が通常1%程度
変化するので、むやみに狭くすることはできない、後者
は、コンデンサ等の時間遅れ要素で応答を遅くすること
はできるが、位相を一敗させる時に、目標値に収束する
までに、ハンチング現象を生じ、制御が不安定となる。
0.1 second In order to suppress this to below 1 (Hz/second), the frequency fluctuation range must be narrowed or the response time must be lengthened.However, in the former case, the frequency of the external power supply is usually around 1%. In the latter case, the response can be slowed down with a time delay element such as a capacitor, but when the phase is completely defeated, a hunting phenomenon occurs before it converges to the target value. , control becomes unstable.

従来の制御回路では、周波数変化率を抑制して、かつ安
定に位相を制御できないという問題があった。
Conventional control circuits have a problem in that they cannot suppress the rate of frequency change and stably control the phase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は周波数変化率を抑制し、かつ、定常時の
整定精度、安定度に優れた外部電源同期形インバータ装
置を提供するにある。
An object of the present invention is to provide an external power supply synchronized inverter device that suppresses the frequency change rate and has excellent settling accuracy and stability during steady state.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、外部電源電圧とインバー
タ出力電圧の位相差に応じた信号を、複数に区分された
各区間内で所定時間幅に制限して、位相同期系に入力す
るようにすることである。
A feature of the present invention is that a signal corresponding to the phase difference between the external power supply voltage and the inverter output voltage is limited to a predetermined time width within each section divided into a plurality of sections, and is input to the phase synchronization system. It is to be.

以下に述べる本発明の望ましい一実施態様においては、
外部電源とインバータとの位相差は、両出力電圧の偏差
に応じて検出され、各半サイクル区間のうちの中央部の
所定時間幅においてのみ、位相同期制御系へ入力する。
In one preferred embodiment of the present invention described below,
The phase difference between the external power source and the inverter is detected according to the deviation between the two output voltages, and is input to the phase synchronization control system only during a predetermined time width in the center of each half cycle section.

また、この所定時間幅は、上記中央部から前後へ拡大す
る要領で漸次広げられ、いずれ、全期間に亘って位相同
期制御系へ入力される。
Further, this predetermined time width is gradually widened from the central portion to the front and back, and is eventually input to the phase synchronization control system over the entire period.

このように構成することによって、低い周波数変化率に
抑えつつ、定常時の周波数精度、安定度を損なうことの
ない外部電源同期形インバータ装置を得ることができる
With this configuration, it is possible to obtain an external power supply synchronized inverter device that suppresses the frequency change rate to a low level and does not impair frequency accuracy and stability during steady state.

〔発明の実施例〕[Embodiments of the invention]

以下、図示する実施例によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は、本発明の一実施例による外部電源同期形イン
バータ装置の全体ブロック図である。インバータ1は、
交流スイッチ2を介して負荷3に給電し、バックアップ
用の外部電源4は、交流スイッチ5を介して負荷3へ給
電可能である。また、インバータ1の制御装置としては
、電圧制御発振器6から、多相あるいは単相の相数に比
例した分周を行う分周器7を通し、ゲート制御回路8に
よって構成されている。
FIG. 1 is an overall block diagram of an external power supply synchronized inverter device according to an embodiment of the present invention. Inverter 1 is
Power is supplied to the load 3 via the AC switch 2, and an external power source 4 for backup can supply power to the load 3 via the AC switch 5. Further, the control device for the inverter 1 is constituted by a gate control circuit 8 that runs from a voltage controlled oscillator 6 through a frequency divider 7 that performs frequency division proportional to the number of polyphase or single-phase phases.

さて、外部電源4の電圧とインバータ1の出力電圧を同
期させるために、同期指令回路9と位相比較回路10が
設けられている。位相比較回路10は、同期指令回路9
の出力信号VISが“1”となったとき、電源電圧V、
とインバータ出力電圧V+tの位相差を検出し、この位
相差に応じた信号vlを電圧制御発振器6へ入力して周
波数を増減させ、位相差を小さくする同期制御系を構成
する。
Now, in order to synchronize the voltage of the external power supply 4 and the output voltage of the inverter 1, a synchronization command circuit 9 and a phase comparison circuit 10 are provided. The phase comparison circuit 10 is connected to the synchronization command circuit 9
When the output signal VIS of becomes “1”, the power supply voltage V,
A synchronous control system is constructed in which the phase difference between the inverter output voltage V+t and the inverter output voltage V+t is detected, and a signal vl corresponding to this phase difference is input to the voltage controlled oscillator 6 to increase or decrease the frequency to reduce the phase difference.

なお、信号V14は、同期検波のため、正負半サイクル
を区別する信号である。
Note that the signal V14 is a signal that distinguishes between positive and negative half cycles for synchronous detection.

第2図は、第1図における位相比較回路10の具体構成
を示す、演算増幅器114、抵抗ill。
FIG. 2 shows a specific configuration of the phase comparator circuit 10 in FIG. 1, including an operational amplifier 114 and a resistor ill.

112.113はインバータ出力電圧波形を反転し、演
算増幅器119、抵抗115,116.117゜118
は外部電源電圧波形とインバータ出力電圧波形の差をと
り、差電圧V+Sを得る。マルチプレクサ124は差電
圧vI、を同期検波するためのものである。抵抗120
,121,122,123は演算増幅器127の入力抵
抗であり、抵抗125゜128およびコンデンサ126
.129は夫々出力抵抗および出力コンデンサであり、
同期検波波形からリップル分を除去し、直流電圧V、。
112.113 inverts the inverter output voltage waveform, operational amplifier 119, resistor 115, 116.117°118
takes the difference between the external power supply voltage waveform and the inverter output voltage waveform to obtain the differential voltage V+S. The multiplexer 124 is for synchronously detecting the differential voltage vI. resistance 120
, 121, 122, 123 are input resistances of the operational amplifier 127, including a resistor 125°128 and a capacitor 126.
.. 129 are an output resistor and an output capacitor, respectively;
The ripple component is removed from the synchronous detection waveform to obtain a DC voltage V.

を得るため、−次遅れ要素としている。130は論理反
転回路、131,132はAND回路であり、同期検波
信号V14、同期指令回路出力vlSとの論理積により
、前述のマルチプレクサ124の制御端子A、Hに与え
る論理信号V、、、V、、を発生する。
In order to obtain , the −th lag element is used. 130 is a logic inversion circuit, 131 and 132 are AND circuits, and logical signals V, , V are given to the control terminals A and H of the multiplexer 124 by ANDing the synchronous detection signal V14 and the synchronous command circuit output vlS. , , occurs.

ここで、マルチプレクサは制御端子A、Hの信号により
、出力端子X、Yは下表のように接続されA、B端子が
共に“0″であるならば、入力端子X、が出力端子Xに
、入力端子Y、が出力端子Yに接続され、演算増幅器の
入力は共に零電圧であり、演算増幅器127の出力電圧
v1.も零電圧となる。
Here, the output terminals X and Y of the multiplexer are connected according to the signals of the control terminals A and H as shown in the table below. , input terminal Y, are connected to the output terminal Y, the inputs of the operational amplifier are both at zero voltage, and the output voltage v1. also becomes zero voltage.

A端子が“1”、B端子が0”であるならば、入力端子
X1が出力端子Xに、入力端子Y1が出力端子Yに接続
され、演算増幅器127は反転増幅器として動作するた
め、電圧v1.の極性を反転した出力電圧v1.が得ら
れる。
If the A terminal is "1" and the B terminal is 0, the input terminal X1 is connected to the output terminal X, the input terminal Y1 is connected to the output terminal Y, and the operational amplifier 127 operates as an inverting amplifier, so the voltage v1 An output voltage v1. with the polarity reversed is obtained.

A端子が“0”、B端子が1”であるならば、入力端子
X、が出力端子Xに、入力端子Yヨが出力端子Yに接続
され、演算増幅器127は非反転増幅器として動作する
ため・電圧v13と同極性Q電圧v1.を得る。
If the A terminal is "0" and the B terminal is "1", input terminal X is connected to output terminal X, input terminal Y is connected to output terminal Y, and the operational amplifier 127 operates as a non-inverting amplifier. - Obtain a Q voltage v1. of the same polarity as the voltage v13.

A、 B端子が共に“1″であるならば、入力端子X1
が出力端子Xに、入力端子Y1が出力端子Yに接続され
、演算増幅器の入力は共に零電圧であり演算増幅器12
7出力電圧v1.も零電圧となる。
If both A and B terminals are “1”, input terminal X1
is connected to the output terminal X, the input terminal Y1 is connected to the output terminal Y, and the inputs of the operational amplifier are both at zero voltage.
7 output voltage v1. also becomes zero voltage.

この実施例においては、同期指令回路9から与えられる
指令信号vISが“1”である期間のみ、位相比較回路
10は、位相差相当信号を電圧制御発振器6へ伝える。
In this embodiment, the phase comparison circuit 10 transmits the phase difference equivalent signal to the voltage controlled oscillator 6 only during the period when the command signal vIS given from the synchronization command circuit 9 is "1".

そこで、判り易くするため、まず、指令信号V+Sが全
領域に亘って“1”であると仮定した場合の動作を第3
図によって説明しておく、電源電圧波形Vllに対し、
インバータ出力電圧波形V1gが90°遅れている場合
を例に採る。差電圧V(2は外部電源電圧vIIに対し
45゜進んだ波形となる。ここで、1−1.からtxi
Therefore, in order to make it easier to understand, first, the operation when the command signal V+S is assumed to be "1" over the entire range is described in the third section.
For the power supply voltage waveform Vll, which will be explained with a diagram,
Let us take as an example a case where the inverter output voltage waveform V1g is delayed by 90°. The difference voltage V (2 is a waveform advanced by 45 degrees with respect to the external power supply voltage vII. Here, from 1-1. to txi
.

までは、同期検波信号V14が10ゝであり、また、同
期指令回路出力vISは“1″であるので、AND回路
131の出力信号V14が“O”、AND回路132の
出力信号V+1が“1”となる・マルチプレクサ124
の制御端子Aには0′、Bには1′が印加される。した
がって、前述の如く、演算増幅器127は非反転増幅器
として動作する。
Up to this point, the synchronous detection signal V14 is 10゜, and the synchronous command circuit output vIS is "1", so the output signal V14 of the AND circuit 131 is "O" and the output signal V+1 of the AND circuit 132 is "1". ” multiplexer 124
0' is applied to the control terminal A, and 1' is applied to the control terminal B. Therefore, as described above, operational amplifier 127 operates as a non-inverting amplifier.

仮に、コンデンサ126.129がない回路における演
算増幅器127の出力電圧をvl′とすれば、図中破線
で示す如く、差電圧V+Sと同相となる。コンデンサ1
26.129により、出力電圧のリップル分が除去され
、直流電圧成分が得られるので、演算増幅器127の出
力電圧v1.は正極性電圧として得られる。
If the output voltage of the operational amplifier 127 in a circuit without the capacitors 126 and 129 is vl', it will be in phase with the differential voltage V+S, as shown by the broken line in the figure. capacitor 1
26.129, the ripple component of the output voltage is removed and a DC voltage component is obtained, so the output voltage v1. is obtained as a positive polarity voltage.

次に°、1−1.から1−1□までは同期検波信号V1
4が“l”であり、また、同期指令回路出力V+Sは1
′であるので、AND回路131の出力信号v0が“l
“、AND回路132の出力信号vI?が60′となる
。マルチプレクサ124の制御端子Aには“l”、Bに
はO′が印加される。したがって、演算増幅器127は
反転増幅器として動作する。仮に、コンデンサ126,
129かない回路における演算増幅器127の出力電圧
v、、’は図中、破線で示す如く、差電圧vI3に対し
、極性反転する。コンデンサ126,129により、出
力電圧のリップル分が除去され、直流電圧成分が得られ
るので、演算増幅器127の出力電圧V+Sは正極性電
圧として得られる。マルチプレクサ124で同期検波す
ることにより、位相差に比例した直流電圧を取り出し、
電圧制御発振器6の周波数を高め、前述した電源電圧に
対する90゜の遅れを回復し、外部電源に同期すること
ができる。
Next, °, 1-1. From 1-1□ is the synchronous detection signal V1
4 is "l", and the synchronization command circuit output V+S is 1
', so the output signal v0 of the AND circuit 131 is "l".
, the output signal vI? of the AND circuit 132 becomes 60'. "1" is applied to the control terminal A of the multiplexer 124, and O' is applied to the control terminal B. Therefore, the operational amplifier 127 operates as an inverting amplifier. If the capacitor 126,
The output voltage v,,,' of the operational amplifier 127 in the circuit without 129 has its polarity inverted with respect to the differential voltage vI3, as shown by the broken line in the figure. Since the capacitors 126 and 129 remove the ripple component of the output voltage and obtain a DC voltage component, the output voltage V+S of the operational amplifier 127 is obtained as a positive polarity voltage. By performing synchronous detection with the multiplexer 124, a DC voltage proportional to the phase difference is extracted,
By increasing the frequency of the voltage controlled oscillator 6, the aforementioned 90° delay with respect to the power supply voltage can be recovered and synchronized with the external power supply.

さて、第4図を用いて、本発明の要部である周波数変化
率を低く抑制できることを説明する。上記と同様に、外
部電源電圧波形V、に対し、インバータ出力電圧波形■
18は90°遅れているものとする。差電圧vIffは
外部電源電圧Vllに対し45゜進んだ波形となる。こ
こで、1−1.から同期制御機能を動作させて、外部電
源に同期させるものとする。まず、1−1.からtss
l+間において、同期指令回路出力VtSは、同期検波
信号VI4の“0”区間の中心点に対し、前後等間隔に
出力され、txt、、から1=1目間、“1”となる、
したがって、AND回路132の出力信号Vl?がt”
tt+からt ”’ t 、、まで“1”となり、演算
増幅器127は非反転増幅器として動作し、仮に、コン
デンサ126,129がない回路における演算増幅器1
27の出力電圧V+S′は図中破線で示す如くとなる。
Now, with reference to FIG. 4, the ability to suppress the frequency change rate, which is the main part of the present invention, will be explained. Similarly to the above, for the external power supply voltage waveform V, the inverter output voltage waveform ■
18 is delayed by 90 degrees. The differential voltage vIff has a waveform that is advanced by 45 degrees with respect to the external power supply voltage Vll. Here, 1-1. The synchronization control function shall be operated from the beginning to synchronize with the external power supply. First, 1-1. From tss
During l+, the synchronization command circuit output VtS is output at equal intervals before and after the center point of the "0" section of the synchronized detection signal VI4, and becomes "1" for 1 = 1 interval from txt, .
Therefore, the output signal Vl of the AND circuit 132? gat"
The operational amplifier 127 becomes "1" from tt+ to t ''' t, , and the operational amplifier 127 operates as a non-inverting amplifier.
The output voltage V+S' of 27 is as shown by the broken line in the figure.

コンデンサ126.129により、出力電圧■1.は平
滑化されるので、1=1.から1 = 1 、、まで漸
次高くなり、t”t、!以降、略を−t、から1mj、
!と同一時間で漸次低くなり、txt、、で零電圧とな
る。ixj、から1−1゜間で、演算増幅器127の出
力電圧すなわち位相比較器10の出力電圧はt−tlI
からi−t 13間でわずかに正電圧が発生し、電圧制
御発振器6の周波数もわずかに高くなる0次に1−1.
からt−t3間において、同期指令回路出力V+Sは、
同期検波信号V14の“1”区間の中心点に対し、前後
等間隔に出力され、1−1.、からl−1,Sの間“1
”となる、したがってAND回路!31の出力信号vi
aが1=1.4からt ” t 、、まで“1°となり
、演算増幅器127は反転増幅器として動作も、仮に、
コンデンサ126,129がない回路における演算増幅
器127の出力電圧■3.′は図中破線で示す如くとな
る。コンデンサ127,129により、出力電圧vlは
平滑化されるので、1−tl4からt−tISまで漸次
高くなり、L”t、、以降、略1xl、4からt−t 
、、と同一時間で漸次低くなり、t−tl、で零電圧と
なる。1−1.から1−1.間で演算増幅器127の出
力電圧すなわち位相比較器10の出力電圧はt m t
 、、からむ=tlA間でわずかに正電圧が発生し、電
圧制御発振器6の周波数もわずかに高くなる。以下1=
1゜から1−1.間で、同期指令回路9の出力V+Sは
t、 ! l 、、から1−1 、Ilの間@1′とす
る。1−1゜から1−1.間では、同期指令回路9の出
力Visはtmlt、から1−1□の間“1”とする、
同期指令回路9の出力VI8は漸次“1°区間を長くし
ていき、最終的に全区間で“1” (信号v1.は、第
3図の状態)とし、定常状態に達する。同期指令回路9
の出力VI5のデユーティをdとすれば、演算増幅器1
27の出力電圧Vl11が出力されている時間は2dと
なる。ゆえに、当実施例によれば、周波数変化率は従来
例に対し、概略2d倍となる・ここで、デユーティを例
えば0.05きざみで漸次、長くしていけば周波数変化
率は従来例に対し、0.1倍となり、1(Hz/S)と
なる、またデユーティを適切に変化させることにより、
周波数変化率を任意に調整できる0位相比較回路10の
応答性および電圧制御発振器6の周波数変化範囲は全く
変更する必要はなく、ハンチング現象や同期可能周波数
範囲が狭くなることはない、さらに、定常時には、第3
図の如く、同期指令回路9の出力V+Sは全区間11゛
となっているので、充分なる整定精度が得られることは
明らかである。
Output voltage ■1. is smoothed, so 1=1. It gradually increases from 1 = 1, , and after t”t,!, approximately -t, to 1mj,
! It gradually becomes lower at the same time as , and reaches zero voltage at txt, . ixj, the output voltage of the operational amplifier 127, that is, the output voltage of the phase comparator 10 is t-tlI
A slightly positive voltage is generated between i-t 13 and the frequency of the voltage controlled oscillator 6 is also slightly higher.
From t-t3, the synchronization command circuit output V+S is:
They are output at equal intervals before and after the center point of the "1" section of the synchronous detection signal V14, and 1-1. , to l-1,S “1
”, therefore, the output signal vi of AND circuit !31
If a becomes 1 degree from 1=1.4 to t '' t , and the operational amplifier 127 operates as an inverting amplifier,
Output voltage of operational amplifier 127 in a circuit without capacitors 126 and 129■3. ' is as shown by the broken line in the figure. Since the output voltage vl is smoothed by the capacitors 127 and 129, it gradually increases from 1-tl4 to t-tIS, L"t, and thereafter approximately 1xl, from 4 to tt
The voltage gradually decreases over the same time period as , , and reaches zero voltage at t-tl. 1-1. From 1-1. The output voltage of the operational amplifier 127, that is, the output voltage of the phase comparator 10 between t m t
, , a slightly positive voltage is generated between entangle=tlA, and the frequency of the voltage controlled oscillator 6 also becomes slightly higher. Below 1=
1° to 1-1. Between t and !, the output V+S of the synchronization command circuit 9 is t, ! It is assumed that between l, , and 1-1, Il is @1'. 1-1° to 1-1. In between, the output Vis of the synchronization command circuit 9 is "1" from tmlt to 1-1□.
The output VI8 of the synchronization command circuit 9 gradually lengthens the 1° interval, and finally becomes "1" in the entire interval (signal v1. is in the state shown in Fig. 3), reaching a steady state.Synchronization command circuit 9
If the duty of the output VI5 is d, then the operational amplifier 1
The time during which the output voltage Vl11 of No. 27 is outputted is 2d. Therefore, according to this embodiment, the frequency change rate is approximately 2d times that of the conventional example.Here, if the duty is gradually increased, for example, in steps of 0.05, the frequency change rate will be approximately 2d times that of the conventional example. , becomes 0.1 times and becomes 1 (Hz/S). Also, by changing the duty appropriately,
There is no need to change the responsiveness of the zero-phase comparison circuit 10 whose frequency change rate can be arbitrarily adjusted and the frequency change range of the voltage controlled oscillator 6, and there is no hunting phenomenon or narrowing of the synchronizable frequency range. Sometimes the third
As shown in the figure, since the output V+S of the synchronization command circuit 9 is 11° over the entire range, it is clear that sufficient settling accuracy can be obtained.

同期指令回路9の詳細は省略したが、最近のパルス幅制
御技術などを用いて容易に構成できることが明らかであ
る。この場合、同期指令信号V+Sを、半サイクルに1
ケのパルスとすることなく、1サイクルに1ケのパルス
とするなどの変形も容易である。
Although the details of the synchronization command circuit 9 have been omitted, it is clear that it can be easily constructed using recent pulse width control technology. In this case, the synchronization command signal V+S is changed once every half cycle.
It is also easy to make modifications such as one pulse per cycle instead of two pulses.

以上本発明の一実施例について述べたが、本発明は前述
の実施例に限定されるものはでなく、更に変形可能なも
のである0例えば、マルチプレクサを用いた同期検波回
路を7リツプフロツブ等で構成する外、位相差を検出す
る他方式の位相比較手段であっても適用できることは言
うまでもない。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment, but can be further modified. Needless to say, other types of phase comparison means for detecting phase differences can also be applied.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、定常時の周波数精度、安定度を損うこ
となく、周波数変化率を抑制できる外部電源同期形イン
バータ装置を提供することができる。
According to the present invention, it is possible to provide an external power supply synchronized inverter device that can suppress the frequency change rate without impairing frequency accuracy and stability during steady state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による外部電源同期形インバ
ータ装置の全体構成ブロック図、第2図は第1図の位相
比較回路lOの詳細回路図、第3図およず第4図は上記
実施例の動作説明図である。 1・・・・インバータ、3・・・・負荷、4・・・・外
部電源、9・・・・同期指令回路、10・・・・位相差
検出(位相比較)回路。 第1図 第3図
FIG. 1 is a block diagram of the overall configuration of an external power supply synchronized inverter device according to an embodiment of the present invention, FIG. 2 is a detailed circuit diagram of the phase comparator circuit lO of FIG. 1, and FIGS. 3 and 4 are FIG. 4 is an explanatory diagram of the operation of the above embodiment. 1... Inverter, 3... Load, 4... External power supply, 9... Synchronization command circuit, 10... Phase difference detection (phase comparison) circuit. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、外部電源と、この電源との間に切換可能に負荷へ給
電するインバータと、このインバータの制御手段と、上
記電源の電圧と上記インバータ出力電圧との位相差を検
出する手段と、この位相差に応じた信号を上記インバー
タ制御手段に入力しインバータ出力電圧を電源電圧に同
期させる位相同期手段を備えるものにおいて、上記位相
差に応じた信号を上記インバータ制御手段に入力する期
間を、複数に区分された各区間内で所定時間幅に制限す
る手段を設けたことを特徴とする外部電源同期形インバ
ータ装置。 2、上記制限手段は、上記所定時間幅を漸次拡大する手
段を含む第1項記載の外部電源同期形インバータ装置。 3、上記制限手段は、複数区間の経過後にその制限を解
除する手段を含む第1項記載の外部電源同期形インバー
タ装置。 4、上記制限手段は、上記所定時間幅を調整する手段を
含む第1項記載の外部電源同期形インバータ装置。 5、上記複数の区間は、上記電源電圧の半サイクルであ
る第1項記載の外部電源同期形インバータ装置。 6、上記位相差検出手段は、上記電源電圧と上記インバ
ータ出力電圧とを比較する手段を備え、上記制限手段は
、各半サイクル区間の中央部の所定時間幅に制限する手
段である第5項記載の外部電源同期形インバータ装置。
[Claims] 1. An external power source, an inverter that supplies power to a load in a switchable manner between the power source, a control means for the inverter, and a phase difference between the voltage of the power source and the output voltage of the inverter. and phase synchronization means for inputting a signal corresponding to the phase difference to the inverter control means to synchronize the inverter output voltage with the power supply voltage, wherein the signal according to the phase difference is input to the inverter control means. 1. An external power supply synchronized inverter device, comprising: means for limiting a period of time to a predetermined time width within each section divided into a plurality of sections. 2. The external power supply synchronized inverter device according to claim 1, wherein the limiting means includes means for gradually expanding the predetermined time width. 3. The external power supply synchronized inverter device according to item 1, wherein the limiting means includes means for canceling the limitation after a plurality of sections have elapsed. 4. The external power supply synchronized inverter device according to claim 1, wherein the limiting means includes means for adjusting the predetermined time width. 5. The external power supply synchronized inverter device according to item 1, wherein the plurality of intervals are half cycles of the power supply voltage. 6. Clause 5, wherein the phase difference detection means includes means for comparing the power supply voltage and the inverter output voltage, and the limiting means is means for limiting to a predetermined time width in the center of each half cycle section. External power supply synchronous type inverter device as described.
JP60111330A 1985-05-25 1985-05-25 External power supply synchronous inverter device Expired - Lifetime JP2516195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111330A JP2516195B2 (en) 1985-05-25 1985-05-25 External power supply synchronous inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111330A JP2516195B2 (en) 1985-05-25 1985-05-25 External power supply synchronous inverter device

Publications (2)

Publication Number Publication Date
JPS61273182A true JPS61273182A (en) 1986-12-03
JP2516195B2 JP2516195B2 (en) 1996-07-10

Family

ID=14558470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111330A Expired - Lifetime JP2516195B2 (en) 1985-05-25 1985-05-25 External power supply synchronous inverter device

Country Status (1)

Country Link
JP (1) JP2516195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422905B1 (en) 2012-01-30 2014-07-23 엘에스산전 주식회사 Meduim voltage inverter control apparatus and meduim voltage inverter system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070851A (en) * 1973-10-26 1975-06-12
JPS5821506A (en) * 1981-07-31 1983-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for measuring profile of tire
JPS601905A (en) * 1983-06-17 1985-01-08 Sony Corp Pll-type fm demodulator
JPS6038930A (en) * 1983-08-11 1985-02-28 Toshiba Corp Phase locked loop circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070851A (en) * 1973-10-26 1975-06-12
JPS5821506A (en) * 1981-07-31 1983-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for measuring profile of tire
JPS601905A (en) * 1983-06-17 1985-01-08 Sony Corp Pll-type fm demodulator
JPS6038930A (en) * 1983-08-11 1985-02-28 Toshiba Corp Phase locked loop circuit

Also Published As

Publication number Publication date
JP2516195B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US4922141A (en) Phase-locked loop delay line
JPH04364609A (en) Delay lock loop circuit for clock synchronism
JPH042218A (en) Pll frequency synthesizer
US6954510B2 (en) Phase-locked loop lock detector circuit and method of lock detection
JPS61273182A (en) External power source synchronous inverter
KR100604783B1 (en) PLL Circuit having DLL mode
JPH06164381A (en) Out-of-synchronism detection circuit for pll
JPH01146426A (en) Pll circuit
JP2651688B2 (en) Digital PLL circuit
JPS6239919A (en) Phase locked loop oscillation circuit
JPS6214524A (en) Phase synchronization oscillator
JPH0349319A (en) Synchronization detection system
KR100498411B1 (en) Method for controlling frequency lock and pll therefor
JPH03216025A (en) Parallel/serial converter
JPH04165819A (en) Phase synchronizing oscillator
JPH02180429A (en) Pll circuit
JPH02127818A (en) Phase locked loop oscillator
JP3025442B2 (en) Automatic frequency controller for multi-input
JPS6212385A (en) External signal synchronization type inverter
JPS638684B2 (en)
JPH04154220A (en) Phase synchronizing circuit
JPH03265468A (en) Phase control circuit
JPH10215172A (en) Pll circuit
JPH0276416A (en) Phase synchronizing circuit
JPS609375B2 (en) Phase lock loop circuit