JPS61272364A - Metallic mold - Google Patents

Metallic mold

Info

Publication number
JPS61272364A
JPS61272364A JP11508685A JP11508685A JPS61272364A JP S61272364 A JPS61272364 A JP S61272364A JP 11508685 A JP11508685 A JP 11508685A JP 11508685 A JP11508685 A JP 11508685A JP S61272364 A JPS61272364 A JP S61272364A
Authority
JP
Japan
Prior art keywords
ion
mold
tin
steel
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11508685A
Other languages
Japanese (ja)
Other versions
JPH064909B2 (en
Inventor
Masaya Iwaki
正哉 岩木
Takanobu Fujihana
藤花 隆信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP11508685A priority Critical patent/JPH064909B2/en
Publication of JPS61272364A publication Critical patent/JPS61272364A/en
Publication of JPH064909B2 publication Critical patent/JPH064909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a metallic mold having high accuracy and durability by implanting Ti or N ions into the surface of a metallic mold and forming a thin TiN film on the surface of the mold. CONSTITUTION:About 10<17> Ti ions per 1cm<3> or about 5X10<17> N ions per 1cm<3> are implanted into the surface of a metallic mold such as a steel mold for molding plastics. A thin TiN film is then formed on the surface of the mold by a PVD method applicable at a low temp. such as sputtering or ion plating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金型に関し、詳しくはイオン注入後薄膜被覆が
施された高精度金型に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mold, and more particularly to a high-precision mold in which a thin film coating is applied after ion implantation.

(従来の技術) 金型の表面には摩耗による損傷を防ぐために、耐摩耗表
面処理が施される。この耐摩耗表面処理の方法としては
、従来、ガス軟窒化法、イオン窒化法、C,V、D、法
が使用されていた。これら処理方法においては金型は5
00℃〜1000℃以上の高温にさらされるので、金型
に寸法変化が生じ、仕上加工が必要となるという大きな
問題があった。この問題を回避するために高安定、高硬
度の材料を、500℃以下の低温で処理が可能なP、V
、D、法により金型表面に被覆することが提案されてい
る。
(Prior Art) A wear-resistant surface treatment is applied to the surface of a mold to prevent damage due to wear. Conventionally, gas soft nitriding, ion nitriding, and C, V, D, methods have been used as methods for this anti-wear surface treatment. In these processing methods, the mold is
Since the mold is exposed to high temperatures of 00°C to 1000°C or higher, there is a major problem in that the mold undergoes dimensional changes and requires finishing. In order to avoid this problem, highly stable and hard materials such as P and V can be processed at low temperatures below 500℃.
, D. It has been proposed to coat the mold surface by the method.

(発明が解決しようとする問題点) TiN はTICと比較しても極めて安定であり、金型
表面を保護する材料としては最も適したものであると考
えられる。しかしながらTiN はその性質が極めて安
定であるがために金型表面との密着性が悪い。TiN膜
の厚さを2μm以上とすれば金型表面への密着性を実用
上問題にならない程度にすることができるが、これでは
金型の寸法精度が低下してしまう。従って、TiN に
より表面が被覆された金型は現実には広く使用されてい
ない。
(Problems to be Solved by the Invention) TiN is extremely stable compared to TIC, and is considered to be the most suitable material for protecting the mold surface. However, since TiN is extremely stable in nature, it has poor adhesion to the mold surface. If the thickness of the TiN film is 2 μm or more, the adhesion to the mold surface can be made to a level that does not pose a practical problem, but this will reduce the dimensional accuracy of the mold. Therefore, molds whose surfaces are coated with TiN are not widely used in practice.

本発明の目的は、高精度、高耐久性の金型を提供するこ
とにある。
An object of the present invention is to provide a mold with high precision and high durability.

(問題点を解決するための手段) 金型の表面にTIまたはNをイオン注入した後に、Ti
N N膜を形成することにより上記目的は達成される。
(Means for solving the problem) After ion-implanting Ti or N into the surface of the mold, Ti
The above object is achieved by forming the N 2 N film.

なお、TiN薄膜形成はスパッタリング、イオンブレー
ティング等の低温処理可能なP、■、D。
Note that TiN thin films can be formed using low-temperature processes such as sputtering and ion blating for P, ■, and D.

法によって行われる。It is done by law.

本発明によると、TiN膜を薄く金型表面につけること
が可能となる。
According to the present invention, it is possible to apply a thin TiN film to the mold surface.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

プラスチック成形用鋼材、金属成形用鋼材および機械構
造用炭素鋼材にTビイオンまたはN+イオンを加速電圧
70〜150kcV 、ビーム電流密度1〜10μΔ/
cl、注入量5X10”〜lXl0”イオン/cIdの
範囲でイオン注入し、その後P、 V、 D。
Tbi ions or N+ ions are applied to plastic molding steel materials, metal molding steel materials, and carbon steel materials for machine structures at an accelerating voltage of 70 to 150 kcV and a beam current density of 1 to 10 μΔ/
cl, ion implantation in the range of 5X10" to 1X10" ions/cId, followed by P, V, D.

法により、TiN薄膜を形成した場合の表面硬さ、耐摩
耗性、密着性を、TビイオンまたはN+イオンを注入し
ない他は同様にしてP、V、D、法によりTiN薄膜を
形成した場合と比較検討した。
The surface hardness, abrasion resistance, and adhesion of a TiN thin film formed by the P, V, and D methods were compared with those of a TiN thin film formed by the P, V, and D methods in the same manner, except that no Tbi ions or N+ ions were implanted. A comparative study was conducted.

第1図は、プラスチック成形用鋼材(JIS。Figure 1 shows steel materials for plastic molding (JIS).

5KD61相当)に対し、Ti+ イオンを10”イオ
ン/ctlあるいはN+イオンを5X10”イオン/c
d注入し、その後、TiN イオンブレーティングを施
した鋼のTiN膜厚と硬度の関係を表わす。硬度は未注
入・未被覆の鋼との相対比で表わした。
5KD61 equivalent), Ti+ ions at 10" ions/ctl or N+ ions at 5X10" ions/ctl.
d represents the relationship between TiN film thickness and hardness of steel that was implanted and then subjected to TiN ion blating. Hardness was expressed as a relative ratio to unpoured and uncoated steel.

TiN イオンブレーティング前にイオン注入を行なっ
た鋼材はイオン注入を行なわずにTiN イオンブレー
ティングのみを施した鋼材と比較して明らかな硬度の上
昇が認められた。
A clear increase in hardness was observed in steel materials subjected to ion implantation prior to TiN ion blasting compared to steel materials subjected only to TiN ion blasting without ion implantation.

第2図にプラスチック成形用鋼材(JIS、 5KD6
1相当)に対しTi+ イオンを101フイオン/ c
rjあるいはN+イオンを5X10”イオン/crl注
入し、その後TiN イオンブレーティングを施した場
合のTiN膜厚と摩耗量の関係を示す。摩耗テストはp
in ondisc型摩耗試験機を用い、摩耗量は未注
入・未被覆の鋼材の摩耗量との比で示した。イオン注入
を行なわずTiN イオンブレーティングのみを施した
鋼は、TiN膜厚1.8μm以上で耐摩耗性を発揮した
のに対し、TiN イオンブレーティング前にイオン注
入を施した鋼は、N+イオン注入した鋼で1.2μm、
Ti+イオン注入鋼では0.7μmの膜厚で耐摩耗性を
発揮した。このようにイオン注入を行なった後TiN 
イオンブレーティングを施すことにより耐摩耗性に有効
な膜厚を大きく減少でき、それだけ寸法変化を小さく出
来る。上述の摩耗テストは試験荷重2.11kgf 、
摩擦速度220即/5eC1摩擦距1111100m大
気中無潤滑下で行なった。
Figure 2 shows steel materials for plastic molding (JIS, 5KD6
101 ions/c
This shows the relationship between TiN film thickness and wear amount when 5X10" ions/crl of rj or N+ ions are implanted and then TiN ion blating is performed. The wear test was performed using p
Using an in-disc type abrasion tester, the amount of wear was expressed as a ratio to the amount of wear of uninjected and uncoated steel. Steel that was only subjected to TiN ion blating without ion implantation exhibited wear resistance with a TiN film thickness of 1.8 μm or more, whereas steel that was ion implanted before TiN ion brating showed N+ ion 1.2 μm for injected steel,
Ti + ion-implanted steel exhibited wear resistance with a film thickness of 0.7 μm. After performing ion implantation in this way, TiN
By applying ion blating, the film thickness that is effective for wear resistance can be greatly reduced, and dimensional changes can be reduced accordingly. The above wear test had a test load of 2.11 kgf,
The test was conducted at a friction speed of 220/5eC1 and a friction distance of 1111100 m in the atmosphere without lubrication.

第3図は、プラスチック成形用鋼材に対し、Ti” イ
オンを5X10”イオン/ cut注入した後TiN 
イオンブレーティングを施した鋼(SKD61相当)と
、イオン注入を行なわずにTiN イオンブレーティン
グのみを施した鋼(SKD61相当)にお゛ける膜厚と
密着力の関係を示す。Ti+イオン注入を行なってから
TiN イオンブレーティングを施したものは、Ti+
イオン注入をせずにTiN イオンブレーティングのみ
を施こしたものと比較して、明らかに安定した高い密着
性を示した。
Figure 3 shows TiN after injecting 5×10” Ti” ions/cut into steel material for plastic molding.
The relationship between film thickness and adhesion is shown for steel subjected to ion blasting (corresponding to SKD61) and steel to which only TiN ion blasting was performed without ion implantation (corresponding to SKD61). If TiN ion blating is performed after Ti+ ion implantation, Ti+
It clearly showed stable and high adhesion compared to the case where only TiN ion blating was performed without ion implantation.

また、他のプラスチック成形用鋼材、金属成形用鋼材、
機械構造用炭素鋼材およびステンレス鋼材についても同
様の実験を行なったがプラスチック成形用鋼材(SKD
61相当)の場合と同様の結果であった。
In addition, other steel materials for plastic molding, steel materials for metal molding,
Similar experiments were conducted on carbon steel materials for machine structures and stainless steel materials, but steel materials for plastic molding (SKD
The results were similar to those of the case (equivalent to 61).

(発明の効果) 本発明の金型においては、耐摩耗性、耐蝕性の点で極め
て優れかつ高硬度のTiN薄膜が金型表面に強固に密着
しており、また、TiN薄膜を薄くすることができるの
で高精度、高耐久性の金型を得ることができる。なお、
TiまたはNのイオン注入により基材硬度が上昇し、見
かけ上の膜硬度も従来のP、V、D、法のみによる被膜
の硬度より高くなるという利点も生じる。
(Effects of the Invention) In the mold of the present invention, the TiN thin film, which has excellent wear resistance and corrosion resistance and has high hardness, firmly adheres to the mold surface, and it is possible to make the TiN thin film thinner. This makes it possible to obtain molds with high precision and high durability. In addition,
The ion implantation of Ti or N increases the hardness of the base material, and there is also the advantage that the apparent hardness of the film is higher than that of a film formed only by the conventional P, V, D, method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヌープ硬さ試験によるTビイオン、10”イオ
ン/ crlあるいはN゛イオフ5XIO1ffイオン
/Cl11注入た後TiN イオンブレーティング被膜
を施した鋼材及びイオン注入を行なわすTiNイオンブ
レーティングのみを施した鋼材のTiN膜厚と未注入・
未被覆の鋼材の硬度との相対硬度変化の関係の一例を示
すグラフ、 第2図はpin on disc摩耗試験によるTi+
 イオン10′フイオ7 / cutあるいはN゛イオ
ン5X 10’イオン/ cr&注入した後TiN イ
オンブレーティング被膜を施した鋼材及びイオン注入を
行なわすTiNブレーティングのみを施した鋼材のTi
N膜厚と未注入・未被覆の鋼材の摩耗量との相対摩耗量
の関係の一例を示すグラフ、 ′S3図はスクラッチ試験によるT11 イオン5×1
01aイオン/ cd油注入た後TiN イオンブレー
ティング被膜を施した鋼材及びイオン注入を行なわずT
iN イオンブレーティングのみを施した鋼材における
膜厚と密着力(臨界剪断力)の関係の一例を示すグラフ
である。 第1図 下iN  71臭 厚  〔μm〕 第2図 Ti、N  膜厚 〔埒〕
Figure 1 shows steel materials subjected to TiN ion blating coating after implantation of T bio-ion, 10" ion/crl or N-ion 5XIO1ff ion/Cl11 as determined by the Knoop hardness test, and steel materials subjected to TiN ion blating only with ion implantation. TiN film thickness of treated steel material and uninjected
A graph showing an example of the relationship between the hardness of uncoated steel and the relative change in hardness.
Ion 10' Fio7/cut or N'ion 5X 10' ion/cr
A graph showing an example of the relationship between the relative wear amount between the N film thickness and the wear amount of uninjected/uncoated steel material.
01a ion/cd steel with TiN ion blating coating after oil injection and T without ion injection.
It is a graph showing an example of the relationship between film thickness and adhesion force (critical shear force) in a steel material subjected to only iN ion blating. Figure 1 Lower iN 71 odor thickness [μm] Figure 2 Ti, N film thickness [埒]

Claims (1)

【特許請求の範囲】[Claims] TiまたはN原子がイオン注入された金型表面にTiN
薄膜が設けられている金型。
TiN on the mold surface into which Ti or N atoms have been ion-implanted.
A mold with a thin film.
JP11508685A 1985-05-28 1985-05-28 Mold Expired - Lifetime JPH064909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11508685A JPH064909B2 (en) 1985-05-28 1985-05-28 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11508685A JPH064909B2 (en) 1985-05-28 1985-05-28 Mold

Publications (2)

Publication Number Publication Date
JPS61272364A true JPS61272364A (en) 1986-12-02
JPH064909B2 JPH064909B2 (en) 1994-01-19

Family

ID=14653846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11508685A Expired - Lifetime JPH064909B2 (en) 1985-05-28 1985-05-28 Mold

Country Status (1)

Country Link
JP (1) JPH064909B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122714A (en) * 1985-11-25 1987-06-04 Canon Inc Duplicate mold for precision molding
JPS6465251A (en) * 1987-09-07 1989-03-10 Nippon Light Metal Co Surface treatment of aluminum member
JPH02156070A (en) * 1988-12-08 1990-06-15 Agency Of Ind Science & Technol Metallic mold for casting and production thereof
JPH02250952A (en) * 1989-03-24 1990-10-08 Ishikawajima Harima Heavy Ind Co Ltd Thin film formation
JPH02267265A (en) * 1989-02-21 1990-11-01 General Electric Co <Ge> Preparation of lubricating bearing
JPH0343211A (en) * 1989-07-11 1991-02-25 Hitachi Tool Eng Ltd Plastic molding mold
DE102007002806A1 (en) 2007-01-18 2008-07-24 Sms Demag Ag Mold with coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122714A (en) * 1985-11-25 1987-06-04 Canon Inc Duplicate mold for precision molding
JPH0513045B2 (en) * 1985-11-25 1993-02-19 Canon Kk
JPS6465251A (en) * 1987-09-07 1989-03-10 Nippon Light Metal Co Surface treatment of aluminum member
JPH02156070A (en) * 1988-12-08 1990-06-15 Agency Of Ind Science & Technol Metallic mold for casting and production thereof
JPH02267265A (en) * 1989-02-21 1990-11-01 General Electric Co <Ge> Preparation of lubricating bearing
JPH02250952A (en) * 1989-03-24 1990-10-08 Ishikawajima Harima Heavy Ind Co Ltd Thin film formation
JPH0541695B2 (en) * 1989-03-24 1993-06-24 Ishikawajima Harima Heavy Ind
JPH0343211A (en) * 1989-07-11 1991-02-25 Hitachi Tool Eng Ltd Plastic molding mold
DE102007002806A1 (en) 2007-01-18 2008-07-24 Sms Demag Ag Mold with coating
WO2008086862A1 (en) 2007-01-18 2008-07-24 Sms Siemag Ag Die with coating

Also Published As

Publication number Publication date
JPH064909B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
Hirvonen et al. Present progress in the development of low friction coatings
JPS61174372A (en) Surface treatment of metal
JPS61272364A (en) Metallic mold
JPS5757868A (en) Piston ring
JPS58181863A (en) Surface treatment method
ES2080335T5 (en) STEEL COMPONENT WITH GALVANICALLY APPLIED ANTI-CORROSIVE LAYER.
US6274257B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
US20210355577A1 (en) Process for coating a conductive component and conductive component coating
US20030155045A1 (en) Lubricated low temperature carburized stainless steel parts
US6723177B2 (en) Life extension of chromium coating and chromium alloys
WO1990004044A1 (en) Surface treatment of metals and alloys
Quaeyhaegens et al. Promising developments for new applications
US20190153584A1 (en) Wear and/or Friction Reduction by Using Molybdenum Nitride Based Coatings
JPS60243269A (en) Surface treatment of steel material
JPS5629670A (en) Preparation of coated high speed steel
US7572345B2 (en) Life extension of chromium coatings and chromium alloys
JPH02228483A (en) Surface treatment to improve frictional characteristic
JPH0236917A (en) Injection molding method for fluororesin
JP2003073800A (en) Surface treatment method for steel material, and steel material having impact resistance, abrasion resistance, and corrosion resistance
JPS61258713A (en) Surface treatment of metal mold for resin molding
Matthews et al. Plasma immersion ion implantation as a technique in duplex and hybrid processing
JPH0712624U (en) Spherical plain bearing
JP2005272855A (en) Sliding member and manufacturing method therefor
JPH0544011A (en) Formation of hard inorganic thin film
CN113260735B (en) Coatings for enhanced performance and extended life in plastic processing applications