JPH0541695B2 - - Google Patents

Info

Publication number
JPH0541695B2
JPH0541695B2 JP1070593A JP7059389A JPH0541695B2 JP H0541695 B2 JPH0541695 B2 JP H0541695B2 JP 1070593 A JP1070593 A JP 1070593A JP 7059389 A JP7059389 A JP 7059389A JP H0541695 B2 JPH0541695 B2 JP H0541695B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
ion
layer
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1070593A
Other languages
Japanese (ja)
Other versions
JPH02250952A (en
Inventor
Yoshinori Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7059389A priority Critical patent/JPH02250952A/en
Publication of JPH02250952A publication Critical patent/JPH02250952A/en
Publication of JPH0541695B2 publication Critical patent/JPH0541695B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜形成方法に係り、特に基板とこれ
に密着形成される薄膜との親和性を高め、薄膜の
密着強度を向上することのできる薄膜形成方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a thin film, and in particular, it is possible to improve the affinity between a substrate and a thin film formed in close contact with the same, and to improve the adhesion strength of the thin film. This invention relates to a thin film forming method.

[従来の技術] 一般に、基板上に薄膜を形成するに際し、基板
となるものにはステンレス、超鋼材料、シリコン
ウエーハ等種々のものが知られている。このよう
な鉄系やシリコン系は個々に原子の配列や原子間
距離が異なり固有の特性を有する。したがつて基
板が異なるとその材質も異なる。また、基板に封
着される薄膜には機能性膜など取り付ける材料は
種々雑多に存在する。そこで、基板に薄膜を形成
するにはそれぞれ用途目的に見合つた材料を選択
することになる。
[Prior Art] Generally, when forming a thin film on a substrate, various substrates are known, such as stainless steel, super steel, and silicon wafers. These iron-based and silicon-based materials each have unique characteristics with different atomic arrangements and interatomic distances. Therefore, different substrates have different materials. Furthermore, there are various materials for attaching a thin film to a substrate, such as a functional film. Therefore, in order to form a thin film on a substrate, a material suitable for each purpose must be selected.

[発明が解決しようとする課題] ところで、基板に薄膜を密着形成する場合に、
基板と薄膜との親和性が高い程、薄膜の密着強度
は強化される。したがつて、親和性が確保される
場合には基板上に直接薄膜を形成することができ
る。
[Problem to be solved by the invention] By the way, when forming a thin film in close contact with a substrate,
The higher the affinity between the substrate and the thin film, the stronger the adhesion strength of the thin film. Therefore, if affinity is ensured, a thin film can be formed directly on the substrate.

他方、上述したように基板に種々の特性があ
り、これに付着される薄膜にも種々の機能が求め
られる。このため、互いに親和性に劣る材料の組
み合わせもあり、このような場合は薄膜の密着強
度が弱く、薄膜は剥がれやすいことになる。
On the other hand, as mentioned above, the substrate has various characteristics, and the thin film attached thereto is also required to have various functions. For this reason, there are some combinations of materials that have poor affinity for each other, and in such cases, the adhesion strength of the thin film is weak and the thin film is likely to peel off.

そこで、従来は互いに親和性が低い材料の場合
はこれら基板と薄膜との間に両者の性質の似通つ
た中間層(バツフアー層)を介在させなければな
らない問題があつた。例えば、シリコンに金属の
薄膜を形成するにはスパツタリングあるいは真空
蒸着により一般的になされており、このような原
子の個々の特性が異なる材料の場合には基板表面
部に金属膜を形成するに先立つてその金属膜と比
較的性質の似通つた中間層を形成しその中間層を
介して基板とこれに付着される金属膜との密着強
度を確保しなければならなたつた。したがつて、
互いに特性のことなる材料ほど基板から順次重ね
て薄膜に近似する性質の中間層を介在させること
になる。
Therefore, in the past, in the case of materials having low affinity for each other, there was a problem that an intermediate layer (buffer layer) having similar properties had to be interposed between the substrate and the thin film. For example, forming a thin metal film on silicon is generally done by sputtering or vacuum evaporation, and in the case of materials with different individual characteristics of atoms, prior to forming a metal film on the surface of the substrate. Therefore, it was necessary to form an intermediate layer having properties relatively similar to that of the metal film, and to ensure adhesion strength between the substrate and the metal film attached thereto via the intermediate layer. Therefore,
Materials with different properties are sequentially stacked on each other from the substrate, and an intermediate layer having properties similar to a thin film is interposed.

本発明は上記問題点を有効に解決すべく創案さ
れたものである。
The present invention has been devised to effectively solve the above problems.

本発明は基板に薄膜を密着形成するに際し、基
板と薄膜との密着強度を高めることのできる薄膜
形成方法を提供することを目的とする。
An object of the present invention is to provide a thin film forming method that can increase the adhesion strength between a substrate and a thin film when the thin film is closely formed on a substrate.

[課題を解決するための手段] 本発明はステンレス製基板にチタンナイトライ
ドからなる温度センサ用薄膜を密着形成するに際
し、洗浄された上記基板表面部から基板内に上記
薄膜の金属イオンとなるチタンイオンを注入し、
そのイオン注入層を上記薄膜の実際の使用温度よ
り50〜100度高い温度まで加熱した後、その加熱
処理されたイオン注入層上に上記薄膜を形成した
ものである。
[Means for Solving the Problems] In the present invention, when a thin film for a temperature sensor made of titanium nitride is closely formed on a stainless steel substrate, titanium, which becomes metal ions of the thin film, flows from the cleaned surface of the substrate into the substrate. Inject ions,
The ion-implanted layer is heated to a temperature 50 to 100 degrees higher than the actual operating temperature of the thin film, and then the thin film is formed on the heated ion-implanted layer.

[作用] 温度センサ用薄膜を形成するに際し、先ずステ
ンレス製基板が洗浄され、その洗浄された基板内
にはその表面部から後に形成される薄膜の金属イ
オンとなるチタンイオンが打ち込まれ注入され
る。したがつて、基板内にはその深さ方向にイオ
ン注入層が形成されることになる。この場合、イ
オンが注入されても基板内の表層部付近のイオン
注入密度が低く、表層部から深さ方向に少し入つ
た領域側のイオンを注入密度が高くなり、注入密
度は不均一になる。
[Operation] When forming a thin film for a temperature sensor, a stainless steel substrate is first cleaned, and titanium ions, which will become the metal ions of the thin film that will be formed later, are implanted from the surface of the cleaned substrate. . Therefore, an ion implantation layer is formed in the depth direction of the substrate. In this case, even if ions are implanted, the ion implantation density near the surface layer in the substrate is low, and the ion implantation density is high in the region slightly deeper from the surface layer, resulting in non-uniform implantation density. .

そこで、基板内にイオンを打ち込み注入した後
はそのイオン注入層を薄膜の実際の使用温度より
50〜100度高い温度まで加熱し、イオンを表面部
側に熱拡散させて注入密度を均一化する。
Therefore, after implanting ions into the substrate, the ion-implanted layer is heated to a temperature higher than the actual operating temperature of the thin film.
The material is heated to a temperature 50 to 100 degrees higher, and the ions are thermally diffused toward the surface to make the implantation density uniform.

したがつて、表層部側のイオン密度が高くな
り、基板とその表面部上に後に密着形成される薄
膜との親和性が高められ、薄膜の密着強度が向上
することになる。
Therefore, the ion density on the surface layer side becomes high, and the affinity between the substrate and the thin film that will be closely formed later on the surface of the substrate is increased, and the adhesion strength of the thin film is improved.

[実施例] 以下、本発明の一実施例を添付図面に従つて詳
述する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図に示すように、基板1にはフラツトな表
面部2が形成される。
As shown in FIG. 1, a flat surface portion 2 is formed on a substrate 1. As shown in FIG.

この基板1の表面部2にはこれに沿つて薄膜3
が形成される。本実施例においてはたとえばステ
ンレスからなる基板1にチタンナイトライド
(TiN)からなる薄膜3が形成される。
A thin film 3 is formed along the surface portion 2 of the substrate 1.
is formed. In this embodiment, a thin film 3 made of titanium nitride (TiN) is formed on a substrate 1 made of stainless steel, for example.

そこで、基板1に薄膜3を形成するにあつては
先ず、第2図に示すように基板1の表面部2の洗
浄(エツチング)がなされる。次いで、洗浄され
た基板1の表面部2からその内部に、後に密着形
成される薄膜3の金属イオンを打ち込み注入す
る。本実施例においては薄膜3の金属イオンとな
るチタンイオンを注入することになる。
Therefore, in forming the thin film 3 on the substrate 1, the surface portion 2 of the substrate 1 is first cleaned (etched) as shown in FIG. Next, metal ions for the thin film 3 to be closely formed later are implanted into the cleaned substrate 1 from the surface portion 2 thereof. In this embodiment, titanium ions, which will become the metal ions of the thin film 3, are implanted.

このように基板1内に金属イオンが注入される
と第3図に示すように、基板1内にはその表面部
2から深さ方向に金属イオンによる不純物層が形
成されることになる。すなわち、基板1内にはイ
オン注入層4が形成される。このイオン注入層4
においては第4図の実線で示すように、不均一な
イオン注入密度となる。
When metal ions are implanted into the substrate 1 in this manner, an impurity layer of metal ions is formed in the substrate 1 in the depth direction from the surface portion 2, as shown in FIG. That is, an ion implantation layer 4 is formed within the substrate 1. This ion implantation layer 4
In this case, as shown by the solid line in FIG. 4, the ion implantation density is non-uniform.

すなわち、基板1内のうちの表層部5付近が粗
になり、これより深さ方向に少し入つた領域6に
おいて密度が高くなり、以後下方の領域7が低く
なる密度分布を形成する。
That is, a density distribution is formed in which the vicinity of the surface layer 5 in the substrate 1 is rough, the density is high in a region 6 a little deeper in the depth direction, and the density is lower in the region 7 below.

そこで、イオン注入密度を表層部5からその深
さ方向に均一にするために、イオン注入層4を加
熱(アニーリング)することになる。
Therefore, in order to make the ion implantation density uniform in the depth direction from the surface layer 5, the ion implanted layer 4 is heated (annealed).

具体的には温度センサに採用される薄膜3であ
る場合には薄膜3の実際の使用温度が予め定めら
れた使用許容温度を越えると、薄膜3の特性が変
化する虞れがある。これを防止するために、本実
施例では薄膜3の実際の使用環境温度から順次上
げて高い温度でイオン注入層4が加熱処理され
る。たとえば、薄膜3の使用温度が100度のとき
は150〜200度でイオン注入層4が加熱処理され
る。
Specifically, in the case of the thin film 3 employed in a temperature sensor, if the actual operating temperature of the thin film 3 exceeds a predetermined allowable operating temperature, there is a risk that the characteristics of the thin film 3 may change. In order to prevent this, in this embodiment, the ion-implanted layer 4 is heat-treated at a temperature that is gradually raised from the actual operating environment temperature of the thin film 3. For example, when the operating temperature of the thin film 3 is 100 degrees, the ion implantation layer 4 is heat-treated at 150 to 200 degrees.

このように基板1のイオン注入層4が加熱処理
されると第4図および第5図に示すように、金属
イオンは熱拡散され、表層部5からその深さ方向
に少し入つた領域6の密度が高い部分の金属イオ
ンはその深さ方向上下(第4図矢印)に移動し、
表層部5側のイオンは密度が高くなる。したがつ
て、全体的には第4図の鎖線で示すように、なだ
らかなイオン密度分布が形成される。
When the ion-implanted layer 4 of the substrate 1 is heat-treated in this way, as shown in FIGS. 4 and 5, the metal ions are thermally diffused into a region 6 slightly extending from the surface layer 5 in the depth direction. Metal ions in areas with high density move up and down in the depth direction (arrows in Figure 4).
Ions on the surface layer 5 side have a higher density. Therefore, as a whole, a gentle ion density distribution is formed as shown by the chain line in FIG.

このようにイオン注入層4が加熱処理され金属
イオンが拡散された後は第1図に示すように、基
板1の表面部2に沿つてすなわちイオン注入層4
上に薄膜3を形成することになる。図示例の薄膜
3はイオンミキシングにより形成され三層のイオ
ンミキシング膜を示したものである。その他、本
発明においては真空蒸着、イオンプレーテイン
グ、スパツタリングにより薄膜3を形成してもよ
い。
After the ion implantation layer 4 is heat-treated and the metal ions are diffused in this way, as shown in FIG.
A thin film 3 will be formed thereon. The illustrated thin film 3 is formed by ion mixing and shows a three-layer ion mixing film. In addition, in the present invention, the thin film 3 may be formed by vacuum evaporation, ion plating, or sputtering.

このように本発明は基板1にイオン注入した
後、そのイオン注入層4を加熱するので、基板1
内の表層部5に薄膜3の金属イオンが集められ、
薄膜3の特性にあわせて基板1の表面部2の性質
を可変することができる。特に、イオン注入層4
を薄膜3の実際の使用温度より50〜100度高い温
度まで加熱するために、薄膜3の特性を損なうこ
となくイオン密度を均一化することができる。す
なわち、50〜100度より高い温度で加熱したので
は薄膜3の特性が変化し、低い温度で加熱したの
では均一なイオン注入密度は得られない。このた
め、基板1とその表面部2上に密着形成される薄
膜3との親和性が高められ、その密着強度を単に
基板1に薄膜3を形成するよりさらに向上させる
ことができる。
In this way, the present invention heats the ion implantation layer 4 after ion implantation into the substrate 1.
The metal ions of the thin film 3 are collected in the inner surface layer 5,
The properties of the surface portion 2 of the substrate 1 can be varied in accordance with the properties of the thin film 3. In particular, the ion implantation layer 4
Since the thin film 3 is heated to a temperature 50 to 100 degrees higher than the actual operating temperature of the thin film 3, the ion density can be made uniform without impairing the properties of the thin film 3. That is, heating at a temperature higher than 50 to 100 degrees will change the characteristics of the thin film 3, and heating at a lower temperature will not provide uniform ion implantation density. Therefore, the affinity between the substrate 1 and the thin film 3 closely formed on the surface portion 2 thereof is enhanced, and the adhesion strength can be further improved than simply forming the thin film 3 on the substrate 1.

また、従来例の如く、中間層を介在させる必要
がないので、基板1に薄膜3を直接形成すること
のできる組み合わせ例が多くなり、中間層を介在
させない基板材料と薄膜材との選択範囲を広げる
ことができる。
In addition, since there is no need to interpose an intermediate layer as in the conventional example, there are many combination examples in which the thin film 3 can be directly formed on the substrate 1, and the selection range of substrate materials and thin film materials that do not require an intermediate layer is increased. Can be expanded.

[発明の効果] 以上要するに本発明によれば、イオン注入され
たイオン注入層を薄膜の実際の使用温度より50〜
100度高い温度まで加熱するために、薄膜の特性
を損なうことなくイオン密度を均一化することが
でき、基板と温度センサ用薄膜との親和性が高め
られて薄膜の密着強度を高めることができる。
[Effects of the Invention] In summary, according to the present invention, the ion-implanted layer is heated to a temperature of 50 to 50°C above the actual operating temperature of the thin film.
Because it is heated to a temperature 100 degrees higher, the ion density can be made uniform without impairing the properties of the thin film, and the affinity between the substrate and the temperature sensor thin film can be improved, increasing the adhesion strength of the thin film. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板に薄膜を密着形成した本発明の一
実施例を示す断面図、第2図は洗浄基板を示す側
面図、第3図はイオン注入した基板を示す断面
図、第4図は基板内のイオン密度分布を示す図、
第5図はイオン注入され加熱処理された基板を示
す断面図である。 図中、1は基板、2は基板表面部、3は薄膜、
4はイオン注入層である。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention in which a thin film is closely formed on a substrate, FIG. 2 is a side view showing a cleaned substrate, FIG. 3 is a cross-sectional view showing a substrate into which ions have been implanted, and FIG. A diagram showing the ion density distribution within the substrate,
FIG. 5 is a cross-sectional view showing a substrate that has been ion-implanted and heat-treated. In the figure, 1 is the substrate, 2 is the substrate surface, 3 is the thin film,
4 is an ion implantation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス製基板にチタンナイトライドから
なる温度センサ用薄膜を密着形成するに際し、洗
浄された上記基板表面部から基板内に上記薄膜の
金属イオンとなるチタンイオンを注入し、そのイ
オン注入層を上記薄膜の実際の使用温度より50〜
100度高い温度まで加熱した後、その加熱処理さ
れたイオン注入層上に上記薄膜を形成したことを
特徴とする温度センサ用薄膜形成方法。
1. When closely forming a temperature sensor thin film made of titanium nitride on a stainless steel substrate, titanium ions, which will become the metal ions of the thin film, are implanted from the cleaned surface of the substrate into the substrate, and the ion-implanted layer is bonded to the surface of the substrate. 50~ than the actual operating temperature of the thin film
A method for forming a thin film for a temperature sensor, characterized in that the thin film is formed on the heat-treated ion-implanted layer after heating to a temperature 100 degrees higher.
JP7059389A 1989-03-24 1989-03-24 Thin film formation Granted JPH02250952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7059389A JPH02250952A (en) 1989-03-24 1989-03-24 Thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7059389A JPH02250952A (en) 1989-03-24 1989-03-24 Thin film formation

Publications (2)

Publication Number Publication Date
JPH02250952A JPH02250952A (en) 1990-10-08
JPH0541695B2 true JPH0541695B2 (en) 1993-06-24

Family

ID=13436011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7059389A Granted JPH02250952A (en) 1989-03-24 1989-03-24 Thin film formation

Country Status (1)

Country Link
JP (1) JPH02250952A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102360A (en) * 1994-09-29 1996-04-16 Toyota Central Res & Dev Lab Inc Orfanic/inorganic complex thin-film electroluminescent element
US7648586B2 (en) 2002-07-31 2010-01-19 National Institute Of Advanced Industrial & Technology Ultra-low carbon stainless steel
US7785718B2 (en) 2003-12-16 2010-08-31 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
KR101844575B1 (en) * 2016-12-23 2018-04-03 주식회사 포스코 Gold color steel plate and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272364A (en) * 1985-05-28 1986-12-02 Rikagaku Kenkyusho Metallic mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272364A (en) * 1985-05-28 1986-12-02 Rikagaku Kenkyusho Metallic mold

Also Published As

Publication number Publication date
JPH02250952A (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US5403401A (en) Substrate carrier
EP0856884A3 (en) Low temperature via and trench fill process by means of CVD of Cu followed by PVD of Cu
WO2002089178A3 (en) Embedded metal nanocrystals
EP0936664A3 (en) Partial silicidation method to form shallow source/drain junctions
TW362293B (en) Thermoelectric piece and process of making the same
WO2003080887A3 (en) Methods and apparatus for annealing in physical vapor deposition systems
EP0776037A3 (en) Low temperature integrated metallization process and apparatus
WO2003038877A3 (en) Low temperature formation of backside ohmic contacts for vertical devices
EP0964436A3 (en) Method for manufacturing SOI wafer and SOI wafer
EP0954015A3 (en) High throughput Al-Cu thin film sputtering process on small contact via
EP0798765A3 (en) Method of manufacturing a semiconductor wafer comprising a dopant evaporation preventive film on one main surface and an epitaxial layer on the other main surface
EP1039531A3 (en) Interconnection in semiconductor device and method of manufacturing the same
JPH0541695B2 (en)
JP2017500756A5 (en)
EP0935282A3 (en) Semiconductor device with a Silicon-rich silicide contact layer and method for manufacturing the same
KR900018407A (en) Vacuum circuit breaker contacts and manufacturing method thereof
EP1237185A3 (en) A method for manufacturing isolating structures
CA1278273C (en) Forming polycide structure comprised of polysilicon, silicon, and metal silicide lavers
JPS6476736A (en) Manufacture of semiconductor device
EP0987752A3 (en) Improved-reliability damascene interconnects and process of manufacture
JPS6220338A (en) Manufacture of semiconductor device
JPH10209153A (en) Method for forming metal film
EP0455284A1 (en) Method for applying metal silicides to silicon
KR100202667B1 (en) Forming method for semiconductor device
JPH0229743B2 (en)