JPH10209153A - Method for forming metal film - Google Patents

Method for forming metal film

Info

Publication number
JPH10209153A
JPH10209153A JP790597A JP790597A JPH10209153A JP H10209153 A JPH10209153 A JP H10209153A JP 790597 A JP790597 A JP 790597A JP 790597 A JP790597 A JP 790597A JP H10209153 A JPH10209153 A JP H10209153A
Authority
JP
Japan
Prior art keywords
metal film
film
forming
metal
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP790597A
Other languages
Japanese (ja)
Inventor
Susumu Iwanaga
進 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP790597A priority Critical patent/JPH10209153A/en
Publication of JPH10209153A publication Critical patent/JPH10209153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a metal film with an improved adhesion property on a semiconductor substrate by implanting a metal ion species with a strong bonding force for a metal film that is formed by a next process to a ground layer consisting of the non-metallic material of a semiconductor substrate and then forming the metal film. SOLUTION: By considering the physical property values of a ground layer 14 and Al ion, optimum injection conditions are obtained in advance by a simulation calculation such as the Monte Carlo method. Then, under the injection conditions, Al atoms are subjected to ion implantation into the ground layer 14, thus forming an alloy layer 16 consisting of Si and Al atoms on the ground layer 15. Then, an Al film 18 is formed by the sputtering method. Therefore, since the bonding force between the Al film 18 and Al atoms injected into the alloy layer 16 is strong, an adhesion property for the ground layer 14 of the Al film 18 is greatly improved. Also, to improve an adhesion property, a heat treatment process that has been performed after forming a metal film can be eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置を製造
する際の半導体基板への金属膜の形成方法に関し、更に
詳しくは、半導体基板上に密着性の良い金属膜を形成す
るようにした金属膜の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal film on a semiconductor substrate when manufacturing a semiconductor device, and more particularly, to a method for forming a metal film having good adhesion on a semiconductor substrate. The present invention relates to a method for forming a film.

【0002】[0002]

【従来の技術】半導体装置の製造工程では、半導体基板
上に、配線形成等の目的で金属膜を形成している。図2
は、従来の方法で金属膜が形成された半導体基板の断面
図を示す。従来、半導体基板上に金属膜を形成するに
は、一般に、スパッタリング等のPVD(Physical Vap
or Deposition)法により半導体基板の下地層10上に
金属膜12を成膜し、次いで、高温の熱処理を行って基
板の下地層と金属膜12との間に合金層(図示せず)を
形成して、成膜された金属膜12を下地層10に密着さ
せている。
2. Description of the Related Art In a manufacturing process of a semiconductor device, a metal film is formed on a semiconductor substrate for the purpose of forming wiring or the like. FIG.
1 shows a cross-sectional view of a semiconductor substrate on which a metal film has been formed by a conventional method. Conventionally, to form a metal film on a semiconductor substrate, generally, PVD (Physical Vapor) such as sputtering is used.
A metal film 12 is formed on the base layer 10 of the semiconductor substrate by a method of forming an alloy layer (not shown) between the base layer and the metal film 12 by performing a high-temperature heat treatment. Then, the formed metal film 12 is adhered to the underlayer 10.

【0003】[0003]

【発明が解決しようとする課題】しかし、形成される合
金層の厚みは極僅かであるため、金属膜と半導体基板の
下地層との間の密着力が低いと言う問題があった。ま
た、熱処理工程を行う必要もあった。以上のような事情
に照らして、本発明の目的は、半導体基板上に密着性の
良い金属膜を形成するようにした金属膜の形成方法を提
供することである。
However, since the thickness of the formed alloy layer is extremely small, there is a problem that the adhesion between the metal film and the underlying layer of the semiconductor substrate is low. In addition, it was necessary to perform a heat treatment step. In view of the circumstances described above, an object of the present invention is to provide a method for forming a metal film having good adhesion on a semiconductor substrate.

【0004】[0004]

【課題を解決するための手段】本発明者は、前処理とし
て下地層の表面改質を行うことにより下地層と金属膜と
の密着力を上げることを検討し、本発明を完成するに至
った。
Means for Solving the Problems The present inventor studied to improve the adhesion between the underlayer and the metal film by modifying the surface of the underlayer as a pretreatment, and completed the present invention. Was.

【0005】上記目的を達成するために、本発明に係る
金属膜の形成方法は、半導体基板の非金属性材料からな
る下地層に、次工程で成膜する金属膜に対して強い結合
力を有する金属イオン種をイオン注入する工程と、 次いで、金属膜を成膜する成膜工程とを備えていること
を特徴としている。イオン注入する領域は、金属膜を形
成する部分にのみに限定してもよい。イオンの注入条件
は、好適には、イオン注入される下地層の材料及び金属
イオンの物性値を考慮し、モンテカルロ法などのシュミ
レーション解析により検討し、決定する。イオン注入後
の金属膜の成膜方法は、特に限定しないが、実用的には
PVD法である。
In order to achieve the above object, a method of forming a metal film according to the present invention provides a method for forming a strong bonding force on a metal film to be formed in a next step on a base layer made of a nonmetallic material of a semiconductor substrate. The method is characterized by comprising a step of ion-implanting a metal ion species having the same and a film-forming step of subsequently forming a metal film. The region to be ion-implanted may be limited to only a portion where a metal film is formed. The ion implantation conditions are preferably determined by considering the material of the underlayer to be ion-implanted and the physical properties of the metal ions by a simulation analysis such as a Monte Carlo method. The method for forming the metal film after the ion implantation is not particularly limited, but is practically a PVD method.

【0006】本発明により、下地層の金属膜に対するぬ
れ性が良いので、成膜される金属膜は下地層になじみ易
く、従って、金属膜の下地層に対する密着力は従来に比
べて遥かに高くなる。
According to the present invention, the wettability of the underlayer with respect to the metal film is good, so that the formed metal film is easily adapted to the underlayer. Become.

【0007】イオン注入する金属イオン種が金属膜を形
成する金属種と同一であると、結合力が極めて強いの
で、密着力は極めて高くなる。
If the metal ion species to be ion-implanted is the same as the metal species forming the metal film, the bonding force is extremely strong, and the adhesion becomes extremely high.

【0008】例えば、半導体基板の下地層がSiで、金
属膜がAlであるとき、イオン注入する金属イオン種は
Alイオンである。この後、金属膜をエッチングして、
半導体基板の下地層への密着力の高い金属配線を得るこ
とができる。
For example, when the underlying layer of the semiconductor substrate is Si and the metal film is Al, the metal ion species to be ion-implanted is Al ions. After this, the metal film is etched,
It is possible to obtain a metal wiring having high adhesion to a base layer of a semiconductor substrate.

【0009】[0009]

【発明の実施の形態】以下に、実施例を挙げ、添付図面
を参照して、本発明の実施の形態をより具体的に説明す
る。実施例1 本実施例は、半導体基板が単結晶Siで、すなわち下地
層も単結晶Siで、金属膜の形成材料がAlであり、注
入するイオンがAlイオンの実施例である。図1
(a)、(b)及び(c)は、それぞれ、本実施例の各
工程毎の基板断面図を示す。尚、図1で、白丸はSi原
子、斜線の形成された丸はAl原子を示す。本実施例で
は、先ず、下地層14及びAlイオンの物性値を考慮
し、モンテカルロ法などによるシュミレーション計算に
より、予め、最適な注入条件を求めた。次いで、上記の
注入条件で、下地層14(図1(a)参照)にAl原子
をイオン注入した。この結果、図1(b)に示すよう
に、下地層14にSi原子とAl原子とからなる合金層
16が形成された。次いで、スパッタリング法により、
図1(c)に示すように、Al膜18を成膜した。
Embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. Embodiment 1 In this embodiment, the semiconductor substrate is made of single-crystal Si, that is, the underlying layer is also made of single-crystal Si, the material for forming the metal film is Al, and the ions to be implanted are Al ions. FIG.
(A), (b) and (c) are cross-sectional views of the substrate in each step of this embodiment. In FIG. 1, white circles indicate Si atoms, and circles with oblique lines indicate Al atoms. In the present embodiment, first, the optimum implantation conditions were determined in advance by simulation calculation using the Monte Carlo method or the like in consideration of the physical properties of the underlayer 14 and Al ions. Next, Al atoms were ion-implanted into the underlayer 14 (see FIG. 1A) under the above-described implantation conditions. As a result, as shown in FIG. 1B, an alloy layer 16 composed of Si atoms and Al atoms was formed on the underlayer 14. Then, by the sputtering method,
As shown in FIG. 1C, an Al film 18 was formed.

【0010】以上の工程により得られた半導体基板20
では、Al膜18と合金層16に注入されたAl原子と
の結合力が強く、従って、Al膜18の下地層14に対
する密着性が、従来に比べて大幅に向上していた。
The semiconductor substrate 20 obtained by the above steps
In this case, the bonding force between the Al film 18 and the Al atoms implanted into the alloy layer 16 was strong, and therefore, the adhesion of the Al film 18 to the underlying layer 14 was significantly improved as compared with the related art.

【0011】実施例2 本実施例は、半導体基板上に金属配線を形成する方法例
である。本実施例では、実施例1の半導体基板20のA
l膜18をエッチングして金属配線(図示せず)を形成
した。その結果、形成された金属配線の下地層14に対
する密着力は、従来に比べて遥かに高かった。
Embodiment 2 This embodiment is an example of a method for forming a metal wiring on a semiconductor substrate. In the present embodiment, A of the semiconductor substrate 20 of the first embodiment is
The l film 18 was etched to form a metal wiring (not shown). As a result, the adhesion of the formed metal wiring to the underlayer 14 was much higher than in the past.

【0012】[0012]

【発明の効果】本発明によれば、金属膜の形成方法は、
半導体基板の非金属性材料からなる下地層に、次工程で
成膜する金属膜に対して強い結合力を有する金属イオン
種をイオン注入する工程と、次いで、金属膜を成膜する
成膜工程とを備えている。これにより、成膜される金属
膜と、半導体基板の下地層との間の密着力は、従来に比
べて遥かに高くなる。また、密着性向上のために金属膜
成膜後に従来行っていた熱処理工程を省くことができ
る。本発明で、イオン注入する金属イオン種が金属膜を
形成する金属種と同一であると、結合力は極めて強くな
る。
According to the present invention, a method for forming a metal film comprises:
A step of ion-implanting a metal ion species having a strong binding force to a metal film to be formed in the next step into a base layer made of a non-metallic material of a semiconductor substrate, and then a film forming step of forming a metal film And Thereby, the adhesion between the metal film to be formed and the underlying layer of the semiconductor substrate is much higher than in the past. Further, the heat treatment step conventionally performed after the formation of the metal film for improving the adhesion can be omitted. In the present invention, when the metal ion species to be ion-implanted is the same as the metal species forming the metal film, the bonding force becomes extremely strong.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)、(b)及び(c)は、それぞれ、
実施例1の各工程毎の半導体基板の断面図を示す。
1 (a), (b) and (c) are respectively
FIG. 3 is a cross-sectional view of the semiconductor substrate in each step of Example 1.

【図2】従来の方法で金属膜が形成された半導体基板の
基板断面図である。
FIG. 2 is a sectional view of a semiconductor substrate on which a metal film is formed by a conventional method.

【符号の説明】[Explanation of symbols]

10……半導体基板、12……金属膜、14……下地
層、16……合金層、18……Al膜、20……半導体
基板。
10 semiconductor substrate, 12 metal film, 14 base layer, 16 alloy layer, 18 Al film, 20 semiconductor substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の非金属性材料からなる下地
層に、次工程で成膜する金属膜に対して強い結合力を有
する金属イオン種をイオン注入する工程と、 次いで、金属膜を成膜する成膜工程とを備えていること
を特徴とする金属膜の形成方法。
A step of ion-implanting a metal ion species having a strong bonding force with a metal film to be formed in a next step into an underlayer made of a non-metallic material of a semiconductor substrate; A film forming step of forming a film.
【請求項2】 イオン注入する金属イオン種が、金属膜
を形成する金属種と同一であることを特徴とする請求項
1に記載の金属膜の形成方法。
2. The method for forming a metal film according to claim 1, wherein the metal ion species to be ion-implanted are the same as the metal species forming the metal film.
【請求項3】 半導体基板の下地層がSiで、金属膜が
Alであるとき、イオン注入する金属イオン種がAlイ
オンであることを特徴とする請求項2に記載の金属膜の
形成方法。
3. The method according to claim 2, wherein when the base layer of the semiconductor substrate is Si and the metal film is Al, the metal ion species to be ion-implanted is Al ions.
JP790597A 1997-01-20 1997-01-20 Method for forming metal film Pending JPH10209153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP790597A JPH10209153A (en) 1997-01-20 1997-01-20 Method for forming metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP790597A JPH10209153A (en) 1997-01-20 1997-01-20 Method for forming metal film

Publications (1)

Publication Number Publication Date
JPH10209153A true JPH10209153A (en) 1998-08-07

Family

ID=11678586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP790597A Pending JPH10209153A (en) 1997-01-20 1997-01-20 Method for forming metal film

Country Status (1)

Country Link
JP (1) JPH10209153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396693B1 (en) * 2000-03-30 2003-09-02 주식회사 하이닉스반도체 method for forming metal line of semiconductor device
CN108847407A (en) * 2018-06-19 2018-11-20 陈长生 A kind of integrated circuit package substrate fine wire production method
CN114561623A (en) * 2021-11-05 2022-05-31 杭州大和热磁电子有限公司 Surface treatment method for bismuth telluride material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396693B1 (en) * 2000-03-30 2003-09-02 주식회사 하이닉스반도체 method for forming metal line of semiconductor device
CN108847407A (en) * 2018-06-19 2018-11-20 陈长生 A kind of integrated circuit package substrate fine wire production method
CN114561623A (en) * 2021-11-05 2022-05-31 杭州大和热磁电子有限公司 Surface treatment method for bismuth telluride material

Similar Documents

Publication Publication Date Title
US4272302A (en) Method of making V-MOS field effect transistors utilizing a two-step anisotropic etching and ion implantation
US20080064182A1 (en) Process for high temperature layer transfer
EP1408545A3 (en) A method of producing a substrate by transferring a donor wafer comprising foreign species, and an associated donor wafer
EP0977255A3 (en) A method of fabricating an SOI wafer and SOI wafer fabricated by the method
TW430902B (en) Improvement in adhesion of diffusion barrier and fluorinated silicon dioxide using hydrogen based preclean technology
US4764478A (en) Method of manufacturing MOS transistor by dual species implantation and rapid annealing
JPS61181150A (en) Improvement in adhesivity of film in thin film ic construction
JPH10209153A (en) Method for forming metal film
JP2550027B2 (en) Fine wiring method for IC device
JPH04214671A (en) Metallization method of rear of semiconductor substrate
JPH01123452A (en) Formation of trench capacitor insulating film
KR960009124A (en) Metal wiring formation method
JPS61263138A (en) Manufacture of semiconductor device
JPS6115330A (en) Manufacture of semiconductor element
JPH0256928A (en) Treatment of semiconductor wafer
JPS58202526A (en) Manufacture of x-ray exposure mask
CN107369614A (en) The preparation method of metal film plating method, thin film transistor (TFT) and array base palte
JPH02137323A (en) Method for forming low stress thin film
JPH02278729A (en) Method for forming aluminum film
KR19980046267A (en) Tungsten Plug Formation Method
JPH02267952A (en) Manufacture of semiconductor device
JPS5887894A (en) Methd of forming thin film
JPH04180220A (en) Manufacture of annealing-protective film
JPH05102139A (en) Method for forming wiring
JPS60194575A (en) Manufacture of schottky gate type fet