JPS61270315A - Production of ferromagnetic iron powder - Google Patents

Production of ferromagnetic iron powder

Info

Publication number
JPS61270315A
JPS61270315A JP60109411A JP10941185A JPS61270315A JP S61270315 A JPS61270315 A JP S61270315A JP 60109411 A JP60109411 A JP 60109411A JP 10941185 A JP10941185 A JP 10941185A JP S61270315 A JPS61270315 A JP S61270315A
Authority
JP
Japan
Prior art keywords
iron
iron powder
coercive force
nitrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109411A
Other languages
Japanese (ja)
Inventor
Tomiyoshi Kubo
久保 富義
Masao Imamura
今村 政雄
Yoshiichi Inoue
井上 芳一
Shinya Ando
信也 安藤
Tsukasa Shibata
柴田 司
Takeshi Goto
武 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60109411A priority Critical patent/JPS61270315A/en
Publication of JPS61270315A publication Critical patent/JPS61270315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain ferromagnetic iron powder having high dispersion orientation and adequate coercive force by reducing ferric oxide to iron by gaseous hydrogen then subjecting the iron to a heating treatment in a gaseous mixture composed of NH3+N2 then to a stabilizing treatment. CONSTITUTION:An oxidizing gas is brought into contact with the iron hydroxide obtd. by neutralizing an aq. ferrous salt soln. to form needle-like iron oxyhydroxide. Such iron oxyhydroxide is dehydrated and calcined to form ferric oxide which is then reduced by hydrogen. The reduced iron is cooled and is then subjected to the heating treatment in the gaseous mixture composed of NH3+N2 to solutionize about 0.5-3wt% nitrogen in the iron-component. The iron powder after the treatment is immersed in toluene, etc. and filtered and thereafter the iron powder is dried in air so as to be given atm. stability. The surface of the particles is thereby coated with the thin oxide film. The ferromagnetic iron powder having the adequately decreased coercive force is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気テープ、磁気ディスク及び磁気シートな
どの磁気記録媒体の原料の磁性粉末で特に高密度磁気記
録用に最適と言われている強磁性鉄粉の製造方法に関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a magnetic powder used as a raw material for magnetic recording media such as magnetic tapes, magnetic disks, and magnetic sheets, and is said to be particularly suitable for high-density magnetic recording. The present invention relates to a method for producing ferromagnetic iron powder.

本発明の最大の特徴は、従来、相反する強磁性鉄粉の特
性と言われていた高分散配向性で、かつヘッドの飽和磁
束密度に適合する適正な保磁力を有する強磁性鉄粉の製
造に関するものである。
The greatest feature of the present invention is the production of ferromagnetic iron powder that has highly dispersed orientation, which was conventionally said to be a contradictory characteristic of ferromagnetic iron powder, and has an appropriate coercive force that matches the saturation magnetic flux density of the head. It is related to.

(従来の技術) 針状の磁性鉄粉は、従来のγ−Ire、O,とかCO−
γ−Fe2O3と異なり高い保磁力と、飽和磁束密度を
有するため高密度磁気記録には最適で、更に小型軽量化
の進んだ81)1)!VTR用の磁気テープには、磁性
鉄粉を使用したメタル・テープが不可欠である。
(Prior art) Acicular magnetic iron powder can be used in the conventional γ-Ire, O, or CO-
Unlike γ-Fe2O3, it has a high coercive force and saturation magnetic flux density, making it ideal for high-density magnetic recording, and it is also smaller and lighter81)1)! Metal tapes using magnetic iron powder are indispensable for magnetic tapes for VTRs.

磁気記録用の磁性粉末の特性のうち、特に保磁力は、短
波長記録による記録密度の増大、転写の防止効果など、
重要な役割があり、保磁力の増大が磁性材の開発の歴史
であるとまで言われている。
Among the characteristics of magnetic powder for magnetic recording, coercive force is particularly important for increasing recording density due to short wavelength recording, preventing transfer, etc.
It plays such an important role that it is even said that the increase in coercive force is the history of the development of magnetic materials.

8asVTR用磁気テープの原料に従来のAインチVT
R用磁気テープにかわりメタル・テープが使用されるの
は、この高い保磁力を利用するのが最大の理由である。
Conventional A-inch VT is used as raw material for magnetic tape for 8as VTR.
The main reason why metal tape is used instead of R magnetic tape is to take advantage of this high coercive force.

メタル・テープ忙対応するヘッドの性能も除々に開発が
進み、最近ではアモルファスあるいは、薄膜センダスト
の合成及び加工の技術も向上し、高い飽和磁束密度と透
磁率を有する様になり、メタルφテープの保磁力も約1
5000eまで許容出来る様になった。
The performance of heads that can handle metal tapes has gradually been developed, and recently the synthesis and processing technology for amorphous or thin film sendust has improved, resulting in high saturation magnetic flux density and magnetic permeability. Coercive force is also about 1
Now it can tolerate up to 5000e.

しかし、本来、金属鉄は1−Fe、O,あるいは、Pe
、04と異なり高い自発飽和磁化を有するもので、更K
 Camrasの発明による針状性、つまり形状異方性
を利用する方法との組合せにより、15000・以上の
高保磁力を有する鉄粉が容易に得られる様になりた。特
に塗布形面内記録方式による磁気テープの製造では軸比
(長軸/短軸の比)を大きくする事により、いわゆる分
散配向性が向上し、ヒステリシス・ループを描いた場合
、高い角型比の曲線となる、更に最近ではノイズ低減に
よる出力及び感度の向上を図る開発の傾向で、磁性粒子
の微細化が進み、微細化の目安となる比表面積で例をあ
げると従来のカインチ・VTR用テープに使用されてい
るco−r−F’s、O,がせいぜい約45m’/gで
あるのに対して、磁性鉄粉では約55m”7gであり、
近い将来には60d19以上で長軸が12μm以下の超
微細鉄粉の出現が予想されている。
However, originally metal iron was 1-Fe, O, or Pe.
, 04, has a high spontaneous saturation magnetization, and has a higher
By combining this method with the method utilizing acicularity, that is, shape anisotropy, invented by Camras, it has become possible to easily obtain iron powder having a high coercive force of 15,000 or more. In particular, when manufacturing magnetic tape using the coated in-plane recording method, by increasing the axial ratio (major axis/minor axis ratio), so-called dispersion orientation improves, and when a hysteresis loop is drawn, a high squareness ratio is achieved. Furthermore, with the recent trend of development to improve output and sensitivity through noise reduction, magnetic particles have become finer. While the cor-r-F's, O, used in tapes is about 45 m'/g at most, magnetic iron powder is about 55 m'7 g.
In the near future, it is predicted that ultrafine iron powder with a size of 60d19 or more and a long axis of 12 μm or less will appear.

ここで問題となるのは、軸比の増大及び粒子の微細化は
、保磁力を一層増大させるものである。
The problem here is that increasing the axial ratio and making the grains finer further increases the coercive force.

保磁力が15000eを大きく越えると、現在のヘッド
の飽和磁束密度より大きいため、記録信号が充分に記録
されないとか消去が出来ないなど、実用上程々の問題が
生じる。従って、磁性鉄粉の製造においては、保磁力を
ヘッドの性能に適合させる事が重要で、一般的には、微
細粒子で、分散配向性に優れた形状の鉄粉子の保磁力は
大きく、これらの特性を低下させることなく保磁力だけ
を低減させてヘッドの性能くいかく適合させるかが課題
と言える。
If the coercive force greatly exceeds 15,000e, it is higher than the saturation magnetic flux density of current heads, and this causes some practical problems, such as recording signals not being recorded sufficiently or being unable to be erased. Therefore, in the production of magnetic iron powder, it is important to match the coercive force to the performance of the head. Generally, iron powder with fine particles and a shape with excellent dispersion orientation has a large coercive force. The challenge is how to reduce only the coercive force without degrading these characteristics to better match the performance of the head.

磁性鉄粉の保磁力を低減させる方法としては、TIQe
ll:、工g(Nb−Na)40式で示される要因を低
減する事で検討されて来た(He:保磁力、工8:自発
磁化、Wb−1)a:形状異方性係数、に:結晶性を表
わす定数〕。この方法としては、これまでに次の方法な
どがある。
As a method to reduce the coercive force of magnetic iron powder, TIQe
It has been investigated by reducing the factors shown in the formula ll:, g(Nb-Na)40 (He: coercive force, g8: spontaneous magnetization, Wb-1) a: shape anisotropy coefficient, :Constant representing crystallinity]. As this method, the following methods have been used so far.

■ ニッケルなどを多量に被着し、熱処理過程でF’e
−Niの合金化を図り、自発磁化を小さくする。
■ A large amount of nickel etc. is deposited and F'e is removed during the heat treatment process.
- Alloy Ni to reduce spontaneous magnetization.

■ 軸比を小さくすることで形状異方性の係数を小さく
する。
■ Reduce the coefficient of shape anisotropy by reducing the axial ratio.

■ 熱処理工程での結晶成長を押える事による方法。■ A method by suppressing crystal growth during the heat treatment process.

但し、■の方法は前述の分散配向性を低下させるもので
特別の形状の磁性鉄粉の製造を目的とする場合以外は1
.応用出来ない方法である、仮に応用しても、軸比な約
5以下にしないと保磁力の低減の効果は顕著に表われな
いし、この場合には分散配向性の低下が大きく実用的で
ない。
However, method (1) reduces the above-mentioned dispersion orientation and is not used unless the purpose is to manufacture magnetic iron powder with a special shape.
.. This is a method that cannot be applied; even if it were applied, the effect of reducing coercive force would not be noticeable unless the axial ratio was set to about 5 or less, and in this case, the dispersion orientation would be greatly reduced, making it impractical.

次に■の方法は、熱処理の操作条件を種々組み合わせる
事により、比較的簡単に保磁力の低減を図る事が出来る
ので実用上良く使用される方法である。しかし粒子内の
単一結晶の成長と粒子内の空孔(脱水孔及び脱酸孔)を
拡散させ粒子外に追い出す封孔現象とが同時に進行する
もので、脱水焼成過程でオギシ水酸化鉄(α−Fe00
H)を充分、焼しめて結晶の成長と封孔を進行させた酸
化第二鉄(α−we、o、)を生成し、更に水素で完全
に還元する事で針状で、空孔のない鉄粒子が得られるも
ので、この2つの過程で結晶成長を抑える事は空孔を粒
子内に残留させる事を意味するもので、ローレンツ効果
により磁化量の低下、つまり保磁力を低減させる事は結
果的には成り立つが、粒子内に残った空孔により粒子の
分散配向性も同時に低下するものである。実用上では保
磁力の低減効果を重視し分散配向性はその低下を許容出
来る値に出来るだけ近付けるという条件で、良く使われ
る方法である。
Next, method (2) is a method that is often used in practice because the coercive force can be relatively easily reduced by combining various operating conditions for heat treatment. However, the growth of a single crystal within the grain and the sealing phenomenon in which the pores within the grain (dehydration pores and deoxidation pores) are diffused and expelled from the grain proceed simultaneously, and during the dehydration and firing process, iron hydroxide α-Fe00
H) is sufficiently sintered to produce ferric oxide (α-we, o,) with advanced crystal growth and pore sealing, and then completely reduced with hydrogen to form a needle-like, pore-free product. Iron particles are obtained, and suppressing crystal growth in these two processes means leaving vacancies within the particles, and reducing the amount of magnetization due to the Lorentz effect, that is, reducing the coercive force. Although this is true in the end, the dispersion and orientation of the particles is also reduced due to the pores remaining in the particles. In practice, this is a method that is often used under the condition that emphasis is placed on the effect of reducing coercive force, and that the reduction in dispersion orientation is brought as close to an acceptable value as possible.

最後に■の方法は、ニッケルあるいは他の元素をα−F
eOOH粒子表面に被着した後、熱処理により粒子内部
に拡散させ、更に金属鉄と固溶合金化させる事により、
鉄粒子そのものの自発飽和磁化を低減する事により保磁
力の低減を図る方法である。
Finally, in method ①, nickel or other elements are
After adhering to the surface of eOOH particles, it is diffused into the inside of the particles through heat treatment, and then formed into a solid solution alloy with metallic iron.
This method aims to reduce the coercive force by reducing the spontaneous saturation magnetization of the iron particles themselves.

この処理方法の問題点は例えば被着・固溶成分としてニ
ッケルを採用した場合、ニッケルと鉄との重量比で15
チ以上、好ましては20チ以上固溶させないと保磁力の
大巾な低減が得られず、この様に多量にニッケルを固溶
させる事は、一般的には非常に難して、鉄粒子の表面に
被着しないニッケル、つまり遊離したニッケル粒子が存
在する事と、また多量のニッケル被着により鉄粒子その
ものの形状も変化する。これらの制作用で、保磁力の低
減と同時に磁性塗料として重要な特性である分散配向性
が低下し、総合的評価では極めて低品位の磁性鉄粉とな
る事が多い。
The problem with this treatment method is that, for example, when nickel is used as an adhesion/solid solution component, the weight ratio of nickel to iron is 15.
A large reduction in coercive force cannot be obtained unless nickel is dissolved in solid solution in a large amount, preferably 20 or more, and it is generally very difficult to dissolve nickel in such a large amount as iron particles. The shape of the iron particles themselves changes due to the presence of nickel that is not deposited on the surface, that is, free nickel particles, and due to the large amount of nickel deposited. When used for these productions, the coercive force is reduced and at the same time the dispersion orientation, which is an important property for magnetic paints, is reduced, and the overall evaluation often results in extremely low-quality magnetic iron powder.

この対策として予め高分散配向性の鉄粉の形状を予想し
ておいて、ニッケル被着、固溶後に1その形状になる様
にする方法も考えられるが、実際には、α−FθOOH
粒子とニッケル塩の結晶構造的な相違もあり、自由に被
着状況を制御する事は難して実用的ではない。
As a countermeasure to this problem, it is possible to predict the shape of highly dispersed and oriented iron powder in advance and make it take the same shape after nickel deposition and solid solution, but in reality, α-FθOOH
There are also differences in the crystal structure of the particles and the nickel salt, so it is difficult and impractical to freely control the adhesion state.

本発明はニッケルなどの金属元素以外の成分、つまり窒
素を鉄中罠固溶させる事により、保磁力の低減を図る方
法であるがニッケルなど金属成分の場合と異なり他の特
性には殆んど変化がなく、保磁力だけが自由に制御出来
ることに特長がある。
The present invention is a method for reducing coercive force by trapping a component other than metal elements such as nickel, that is, nitrogen, as a solid solution in iron, but unlike the case of metal components such as nickel, there are almost no other properties. The feature is that there is no change, and only the coercive force can be freely controlled.

アンモニアガスによる窒化処理法に関する技術は特開5
7−59504号明細書に開示されているが、この方法
は400〜700℃の範囲でアンモニアガスで酸化鉄を
直接還元及び窒化処理して窒化鉄(Fe、N)を10〜
70チ含有させる事により、保磁力が450〜7000
e の磁性鉄粉を製造する方法に関するものである。こ
の方法の対象とするところは現有のオーディオあるいは
1/2インチVTR用テープの原料つまりコバルト含有
の酸化鉄であり、保磁力が低いものである。これ忙対し
、本発明の対象とするところは8m vTR用テープの
原料で保磁力が約15000eと高い磁性鉄粉である事
が大きな違いであるが、予め水素還元した鉄粉を処理温
度が500℃以下の低い温度でアンモニアと窒素の混合
ガスで処理するため、鉄粒子中に固溶した窒素濃度も低
く、X線回折でも、窒化鉄(Ire、N)のピークも明
確には固定されない程度のものである。
The technology related to the nitriding method using ammonia gas is disclosed in JP-A-5
No. 7-59504, this method directly reduces and nitrides iron oxide with ammonia gas at a temperature of 400 to 700°C to reduce iron nitride (Fe, N) from 10 to 700°C.
By containing 70%, the coercive force is 450-7000
The present invention relates to a method for producing magnetic iron powder. The object of this method is the raw material for existing audio or 1/2-inch VTR tapes, that is, cobalt-containing iron oxide, which has a low coercive force. In view of this, the object of the present invention is that the raw material for 8m vTR tape is magnetic iron powder, which has a high coercive force of approximately 15,000e. Because the treatment is performed with a mixed gas of ammonia and nitrogen at a low temperature below ℃, the concentration of nitrogen solidly dissolved in the iron particles is also low, and even in X-ray diffraction, the peak of iron nitride (Ire, N) is not clearly fixed. belongs to.

(問題点を解決するための手段) 本発明は前述の自発磁化の低減により、磁性鉄粉の保磁
力の低減を図る処理法に関するものであるが、ニッケル
被着による欠点を改組すべき種々の検討をした。つまり
分散・配向性の良い針状性の鉄粉の形状変化を出来るだ
け抑え、かつ、粒子間のバラツキもな(、均一な特性値
を有する処理法として、 ■ 添加成分を気体状で反応させる。
(Means for Solving the Problems) The present invention relates to a treatment method for reducing the coercive force of magnetic iron powder by reducing the above-mentioned spontaneous magnetization. I considered it. In other words, as a processing method that suppresses changes in the shape of acicular iron powder with good dispersion and orientation as much as possible, and has uniform characteristic values with no variation between particles, ■ Reacting the additive components in a gaseous state. .

■ 針状で分散配向性の良い還元後の鉄粉を処理する。■ Processing reduced iron powder that is acicular and has good dispersion and orientation.

■ 鉄粉の形状変化を抑えるために、低温度でしかも、
固溶成分の量が少量で効果を挙げること。
■ In order to suppress the shape change of iron powder,
To be effective even when the amount of solid solution components is small.

の条件な滴定させる、添加 成分及び処理条件に関するものである。conditional titration, addition of Concerning ingredients and processing conditions.

本発明は、少量のアンモニアガスを含有する窒素ガスで
100〜300℃で処理しα5〜54wtの窒素を鉄粒
子に固溶させる事により保磁力を約15000eK低減
させる事を見い出した。この処理法では、処理前後の鉄
粒子の形状変化は殆んどなく、したがって、鉄粒子の粒
径を示す1つの目安である比表面積(BIT値)の変化
もない。反応も比較的に緩慢である一方、設定温度によ
って固溶窒素量が決定され、しかも100〜300℃の
温度範囲では、はぼ直線的に処理温度の上昇に伴い、固
溶窒素量も増加する傾向があり、実用度の高い処理方法
と言える。
The present invention has found that the coercive force can be reduced by about 15,000 eK by treating the iron particles with nitrogen gas containing a small amount of ammonia gas at 100 to 300° C. and dissolving α5 to 54 wt of nitrogen into the iron particles. In this treatment method, there is almost no change in the shape of the iron particles before and after the treatment, and therefore there is no change in the specific surface area (BIT value), which is one indicator of the particle size of the iron particles. While the reaction is relatively slow, the amount of solid solute nitrogen is determined by the set temperature, and in the temperature range of 100 to 300°C, the amount of solute nitrogen increases almost linearly as the processing temperature rises. This can be said to be a highly practical treatment method.

本発面の基本的原理は、自発磁化の低減により保磁力の
低減を、図るもので当然であるが鉄粒子の飽和磁束密度
(δa)の、若干の低下は避けられないが、一般に8%
VTR用テープの原料として要求される1 20 em
u/g以上の飽和磁束密度は、充分達成出来るもので、
実用上の問題はない。
The basic principle of this invention is to reduce the coercive force by reducing spontaneous magnetization, and although a slight decrease in the saturation magnetic flux density (δa) of iron particles is unavoidable, it is generally 8%.
1 20 em required as raw material for VTR tape
A saturation magnetic flux density of u/g or higher is fully achievable.
There are no practical problems.

本発明の反応上の特長は、鉄粒子の触媒的作用により、
NH,が解離し、生成した発生機の窒素が鉄粒子の表面
より内部に拡散し少量の窒素固溶で保磁力低減の効果が
ある。窒素ガス単独では窒素の固溶あるいは窒化鉄の生
成が殆んど起きないため、保磁力の低減はない窒素ガス
単独の場合には500℃以上、実用的には約600℃以
上で窒化鉄の生成は起るがこの様な高温では鉄粒子その
ものの形状にも変化が起り、針状が崩れ、分散配向性も
急減する。また、Nil、を輸送するガスとして■、ガ
スを使用する場合は、■、による脱窒素(NH。
The feature of the reaction of the present invention is that due to the catalytic action of iron particles,
NH, is dissociated, and the generated nitrogen diffuses from the surface of the iron particles to the inside, and a small amount of nitrogen solid solution has the effect of reducing the coercive force. When using nitrogen gas alone, there is almost no solid solution of nitrogen or the formation of iron nitride, so there is no reduction in the coercive force.If nitrogen gas is used alone, the coercive force will not be reduced.In the case of nitrogen gas alone, the coercive force will not be reduced. Although formation occurs, at such high temperatures, the shape of the iron particles themselves changes, the needle shape collapses, and the dispersion orientation rapidly decreases. In addition, when using gas (■) as a gas to transport Nil, denitrification (NH) by ■.

の生成)反応が起るため窒化の効率は悪い。またアルゴ
ン・ガス(Ar)などの不活性ガスを使用する場合は、
反応の進行が早く、制御が難しいばかりでなく、高価で
あるため工業的実用性はN、ガスより劣る。
The efficiency of nitriding is poor because of the reaction (formation of Also, when using an inert gas such as argon gas (Ar),
Not only does the reaction proceed quickly and is difficult to control, but it is also expensive, making it less industrially practical than N or gas.

次に本発明の反応機構を説明する。簡便的には、下記の
反応式で考察出来る、 反応式 2Fa(solla)+し12NHs(Gas
) +−A172 Fe4N(soxta)+5/4H
,(G!Lll )標準自由エネルギー ΔG’−5100+2.26TtOgT−14,52T
アンモニア・ガスの解離(N1)n(G)→’A N!
(a ) +5/!1(t(G))は、約200℃以上
で、また上式のNH,によるFe4Nの生成反応は約4
00℃以上で活発に進行するが、実際にはキャリヤーガ
スによる分圧低下の効果及び超微細な還元鉄粉の触媒効
果の双方の作用で約150℃以上の温度で、鉄粒子内部
への窒素固溶による実用上の保磁力低減が認められるし
アンモニアの濃度が高い場合とか、処理温度が高い場合
忙は、X線回折でFe4Nが同定される。NH,ガスに
同伴させるキャリヤーガスとしては、■、ガスが副生す
るため、H,ガスより馬ガスを使用する方が効果的で、
H!ガスの場合には、ME、ガスの濃度を高くする必要
がある。
Next, the reaction mechanism of the present invention will be explained. For convenience, the reaction formula can be considered using the following reaction formula: 2Fa (solla) + 12NHs (Gas
) +-A172 Fe4N(soxta)+5/4H
, (G!Lll) Standard free energy ΔG'-5100+2.26TtOgT-14,52T
Dissociation of ammonia gas (N1)n(G)→'A N!
(a) +5/! 1(t(G)) is about 200°C or higher, and the reaction for producing Fe4N by NH in the above formula is about 4
Nitrogen progresses actively at temperatures above 00°C, but in reality, nitrogen enters the inside of iron particles at temperatures above about 150°C due to both the partial pressure reduction effect of the carrier gas and the catalytic effect of ultrafine reduced iron powder. A reduction in practical coercive force due to solid solution is observed, and when the concentration of ammonia is high or the processing temperature is high, Fe4N can be identified by X-ray diffraction. As a carrier gas to accompany NH gas, it is more effective to use horse gas than H gas because gas is produced as a by-product.
H! In the case of gas, it is necessary to increase the concentration of ME and gas.

図1及び図2は、長軸α29μm、長軸/短軸比が1&
40針状のオキシ水酸化鉄(a−pθ0OH)を原料と
して、脱水焼成及び水素還元後、窒素雰囲気中で冷却し
更にトルエン中に浸漬し、濾過乾燥後、室温で空気気流
中で乾燥及び酸化安定化処理した磁性鉄粉(長軸(L2
Qμm、長軸/短軸比1五2.窒素濃度aaSチwt)
を同一の熱処理を施し、冷却の過程で100℃以上の温
度で約2時間保持しアンモニアガスの濃度α5優マ01
 (残り:窒素ガス)以上の濃度で窒化処理した場合の
保磁力を示すものである。
Figures 1 and 2 have a long axis α of 29 μm and a long axis/short axis ratio of 1 &
40 Needle-shaped iron oxyhydroxide (a-pθ0OH) is used as a raw material, and after dehydration and calcination and hydrogen reduction, it is cooled in a nitrogen atmosphere, further immersed in toluene, filtered and dried, and then dried and oxidized in an air stream at room temperature. Stabilized magnetic iron powder (long axis (L2)
Qμm, major axis/minor axis ratio 152. Nitrogen concentration aaS chi wt)
was subjected to the same heat treatment and held at a temperature of 100℃ or higher for about 2 hours during the cooling process to reduce the ammonia gas concentration α5 Yuma 01.
(Remaining: Nitrogen gas) This shows the coercive force when nitriding is performed at a concentration higher than (remaining: nitrogen gas).

現在、市販されている8%VTR用テープの原料として
の磁性鉄粉の保磁力はヘッドの性能との相応で約150
0±300e以内と厳して規制されているが、本発明に
よれば比較的正確に保磁力が制御出来るばかりでなく、
他の特性の劣化も起らず、しかも200℃近辺の低温度
で、はぼ大気圧下で、可能であるため工業的実用性が高
いものである。以下実施例で詳細を説明する。
Currently, the coercive force of magnetic iron powder used as raw material for 8% VTR tape on the market is approximately 150, commensurate with head performance.
Although it is strictly regulated to be within 0±300e, according to the present invention, not only can the coercive force be controlled relatively accurately,
No deterioration of other properties occurs, and it is possible to do this at a low temperature of around 200° C. under almost atmospheric pressure, so it has high industrial practicality. Details will be explained below in Examples.

実施例1 アルカリ側で晶析した枝分れがない針状のα−7eOO
H粒子(長軸a、29ttm、軸比1)1L4)の表面
に、市販の水ガラス水溶液(J工83号を使用し、Nへ
Si0.の濃度をcL5モル/lに稀釈)で、S1鳴を
被着しh後、濾過・水洗浄し、α−IFeOOHケーク
を得る。ケークの組成はFsに対して51=五44%w
tであった。
Example 1 Unbranched acicular α-7eOO crystallized on the alkali side
The surface of H particles (long axis a, 29 ttm, axial ratio 1) 1L4) was coated with a commercially available water glass aqueous solution (using J Engineering No. 83, the concentration of Si0. was diluted to cL5 mol/l in N). After 5 hours of coating, it is filtered and washed with water to obtain an α-IFeOOH cake. The composition of the cake is 51=544% w with respect to Fs
It was t.

このケークを汎用のディスク型のスプレードライヤー(
熱風温度250℃)にて平均粒径が100μmの球状の
顆粒に造粒・乾燥し、更に725℃で5時間大気中で脱
水・焼成し、ヘマタイト(α−ハ^)とした。このFs
lOlを1に9分取し、流動層反応炉(内径150m/
m)にて400℃で水素還元を行った。
Dry this cake using a general-purpose disc-type spray dryer (
The mixture was granulated and dried into spherical granules with an average particle size of 100 μm using a hot air temperature of 250°C, and further dehydrated and fired in the air at 725°C for 5 hours to obtain hematite (α-Ha^). This Fs
1/9 portions of lOl were collected and placed in a fluidized bed reactor (inner diameter 150 m/
Hydrogen reduction was carried out at 400°C.

還元終了後、レトルトを炉より取り出し、そのまま鵬ガ
ス中で、200℃まで約1時間で冷却し、次にZ5%N
Hs−%混合ガスを導入し、別の処理炉で2時間保持し
た。その後、穐ガスに切り換え、室温まで冷却した。
After the reduction, the retort was taken out of the furnace and cooled to 200°C in about 1 hour in Hou gas, and then Z5%N
Hs-% mixed gas was introduced and kept in another processing furnace for 2 hours. Thereafter, the gas was switched to phosphorus gas, and the mixture was cooled to room temperature.

処理後の鉄粉をトルエンに浸漬させた後、空気中に取り
出し、−過後、空気中で乾燥し大気安定性を付与し磁性
鉄粉を得た。
The treated iron powder was immersed in toluene, taken out into the air, filtered, and dried in the air to impart atmospheric stability to obtain magnetic iron powder.

回収した鉄粉(約(L77J19)の一部を分取して東
英製作所の振動試料型磁気測定器で磁気特性値及び比表
面積をBICT法(高滓製作所、マイクロメリテックス
−2200)で測定結果を表1に示す。比較例1のNA
−Nit混合ガスによる窒化処理を行わなかった場合と
比較し、保磁力は14900eで約5100e 低下し
た事及び飽和磁束密度(δ8)が12 emu/ 9低
下した以外、他の特性値には殆んど差が認められなかっ
た。また、固溶した窒素の含有量は1.90%wtであ
った。また図5は、鉄粉の結晶状態を示す電子顕微鏡写
真であるが、窒化処理による針状粒子の形崩れは認めら
れない。
A portion of the recovered iron powder (approx. The results are shown in Table 1. NA of Comparative Example 1
-Compared to the case without nitriding with Nit mixed gas, there are almost no other characteristic values except that the coercive force decreased by about 5100e from 14900e and the saturation magnetic flux density (δ8) decreased by 12 emu/9. No difference was observed. Further, the content of solid-dissolved nitrogen was 1.90%wt. Further, FIG. 5 is an electron micrograph showing the crystalline state of the iron powder, and no deformation of the acicular particles due to the nitriding treatment is observed.

また、この鉄粉のX線回折線図を図4に示す。Moreover, the X-ray diffraction diagram of this iron powder is shown in FIG.

更に、表2は磁気シートの結果を示すものであり、分散
、配向性の点でも低下は認められず、以上の点で本発明
の窒化処理が、分散、配向性に優れた針状性の鉄粒子の
保磁力を適正値まで正確に低減する事が可能である事を
示すものである。
Furthermore, Table 2 shows the results of the magnetic sheet, and no deterioration was observed in terms of dispersion and orientation.In the above points, the nitriding treatment of the present invention has an acicular property with excellent dispersion and orientation. This shows that it is possible to accurately reduce the coercive force of iron particles to an appropriate value.

実施例2 実施例1と同一のα−7θOOHを使用し、熱処理した
後、175℃で2時間、2−5%N−−賜混合ガスで窒
化処理して鉄粉を回収した。
Example 2 The same α-7θOOH as in Example 1 was used, and after heat treatment, it was nitrided at 175° C. for 2 hours with a 2-5% N-hydrogen mixed gas to recover iron powder.

保磁力は15500sと比較例1と比べ約2500s 
の低減であった。また窒素含有量は1.28%帆であっ
た。
The coercive force is 15500s, which is about 2500s compared to Comparative Example 1.
This was a reduction in The nitrogen content was 1.28%.

実施例5 同様に150℃で1時間、5%マolN%−%混合ガス
で窒化処理をした場合である。
Example 5 This is a case in which nitriding treatment was similarly performed at 150° C. for 1 hour using a 5% MaolN%-% mixed gas.

保磁力は、15700・で窒素含有量は195%wtで
あった。
The coercive force was 15,700· and the nitrogen content was 195% wt.

以上、いずれの場合も保磁力と若干の飽和磁束密度の低
下以外の特性値の劣化は認められなかった。
As described above, no deterioration in characteristic values other than a slight decrease in coercive force and saturation magnetic flux density was observed in any of the cases.

比較例1 実施例1のα−FeOOHを原料に、同一条件で熱処理
を行い、窒化処理を省略してトルエン浸漬後、空気中で
徐々に乾燥させて、鉄粉を回収した。
Comparative Example 1 Using α-FeOOH as a raw material in Example 1, heat treatment was performed under the same conditions, omitting the nitriding treatment, immersion in toluene, and then gradual drying in air to recover iron powder.

回収した鉄粉の特性は表1に示す様に、保磁力は180
00s と高く、現在の8 m1m V T R用テー
プの原料としては、使用出来ない値であるが、他の特性
値は良好で、図5の電子顕微鏡写真と同様な針状性の鉄
粉である。
The characteristics of the recovered iron powder are shown in Table 1, with a coercive force of 180
00s, which is a value that cannot be used as a raw material for current 8 ml VTR tape, but other characteristic values are good and it is an acicular iron powder similar to the electron micrograph in Figure 5. be.

実施例1〜3は、このα−7θOOHを原料に熱処理後
に本発明の窒化処理を施し、保磁力を夫々の値に低減し
たものである。
In Examples 1 to 3, this α-7θOOH was heat treated and then subjected to the nitriding treatment of the present invention to reduce the coercive force to the respective values.

比較例2 実施例1と同一のα−FeOOHを使用し、熱処理を行
った後、200℃で2時間、20%volNHa−4混
合ガスで窒化処理したもので、保磁力及び飽和磁束密度
が夫々1)500θ、  104 emu/ 9と低く
、実用出来ないものであった。これはNH。
Comparative Example 2 The same α-FeOOH as in Example 1 was used, and after heat treatment, it was nitrided with a 20% vol NHa-4 mixed gas at 200°C for 2 hours, and the coercive force and saturation magnetic flux density were respectively 1) It was low at 500θ and 104 emu/9 and could not be put to practical use. This is NH.

濃度が高く反応が急激でNの拡散速度も太きいためで、
この条件下では均一な組成を得る事は出来ず実用的でな
い。
This is because the concentration is high, the reaction is rapid, and the diffusion rate of N is high.
Under these conditions, a uniform composition cannot be obtained and is not practical.

比較例5 実施例1と同一のα−7θOOHで熱処理後、20%v
ol MB、−4混合ガス中で460℃より200℃ま
で15分間で冷却しながら保持した後、トルエンに浸漬
し、更に空気中乾燥した鉄粉中の窒素濃度は1.14%
wtであったが、鉄粒子内部への拡散が不十分で、保磁
力はf 6200e と低減効果は少なく実」的ではな
かった。
Comparative Example 5 After heat treatment with the same α-7θOOH as in Example 1, 20%v
The nitrogen concentration in the iron powder was 1.14% after being cooled from 460°C to 200°C for 15 minutes in a MB, -4 mixed gas, immersed in toluene, and then dried in air.
wt, but the diffusion into the interior of the iron particles was insufficient and the coercive force was f 6200e, meaning that the reduction effect was small and not practical.

比較例4 比較例3と同様に熱処理した後、反応ガスに20%vo
lN%%混合ガスで460℃で2時間保持し、更にその
雰囲気下で15分間で200℃まで冷却し、次に馬ガス
中で室温まで冷却した。
Comparative Example 4 After heat treatment in the same manner as Comparative Example 3, 20% vo was added to the reaction gas.
The mixture was maintained at 460° C. for 2 hours in a 1N%% mixed gas, further cooled to 200° C. for 15 minutes under that atmosphere, and then cooled to room temperature in horse gas.

空気中乾燥して回収した鉄粒子中の窒素濃度は5.83
%wtと高く、保磁力は10800n で飽和磁束密度
も107 emu/ 9と低(8,VTR用テ−プの磁
性粉原料としては、使用出来ない品質であった。図5は
、この鉄粉のX線回折線図を示す、F@4Nのピークが
明確で、図4の実施例1の場合と比較し大きく興なるの
が分かる。
The nitrogen concentration in the iron particles recovered by drying in the air was 5.83.
%wt, the coercive force was 10800n, and the saturation magnetic flux density was low at 107 emu/9 (8, the quality was such that it could not be used as a magnetic powder raw material for VTR tape. Figure 5 shows this iron powder. It can be seen that the F@4N peak is clear in the X-ray diffraction diagram of FIG.

表2 磁気シート特性 (註)1.磁気シート作成条件 (1)塗料組成:鉄粉:4 (重量部)vAllH:1 溶剤 :z5 分散剤:0.Q64 電溶剤: メチAζり9レテトンρAパVしNセナノン
==1/IVAGH:塩酢ビ共重合体 2、lI&料分散時間:48時間 (ペヱイントシェーカー) 五 配向磁場;五4KOe
Table 2 Magnetic sheet characteristics (Note) 1. Magnetic sheet creation conditions (1) Paint composition: Iron powder: 4 (parts by weight) vAllH: 1 Solvent: z5 Dispersant: 0. Q64 Electrosolvent: MethiAζri9retetonρApaVshiNsenanone==1/IVAGH: Salt-vinyl acetate copolymer 2, lI & material Dispersion time: 48 hours (paint shaker) 5 Orienting magnetic field; 5 4KOe

【図面の簡単な説明】[Brief explanation of the drawing]

図1は鉄粒子中の窒素濃度と保持力の関係を示−もので
、図2は窒素処理温度と保磁力の関係をすものである。 図3は本発明の一実施例により理して得られた強磁性鉄
粉の結晶粒子状態を示図面に代る電子顕微鏡写真(倍率
5aooo倍)ある。また、図4は本発明の一実施例で
得られ強磁性鉄粉のX@回折線図(OuKα)を示すも
であり、図5は本発明の比較例で得られた磁性粉のX線
回折線図(OuKα)を示すものである。 特許出願人 東洋曹達工業株式会社 処理温度(0C)
FIG. 1 shows the relationship between nitrogen concentration in iron particles and coercive force, and FIG. 2 shows the relationship between nitrogen treatment temperature and coercive force. FIG. 3 is an electron micrograph (magnification: 5 aooo) showing the state of crystal grains of ferromagnetic iron powder obtained by processing according to an embodiment of the present invention. Moreover, FIG. 4 shows the X@ diffraction diagram (OuKα) of the ferromagnetic iron powder obtained in one example of the present invention, and FIG. 5 shows the X-ray diagram of the magnetic powder obtained in the comparative example of the present invention. It shows a diffraction diagram (OuKα). Patent applicant Toyo Soda Kogyo Co., Ltd. Processing temperature (0C)

Claims (5)

【特許請求の範囲】[Claims] (1)第一鉄塩水溶液をアルカリ水溶液で中和して得ら
れた水酸化鉄に、酸化性ガスと接触させて、酸化する事
により針状のオキシ水酸化鉄を生成させ、更に脱水焼成
、水素還元処理を行い、最後に、安定化処理で粒子の表
面を薄い酸化膜で被覆した強磁性鉄粉を製造する方法に
おいて、水素ガスで酸化第二鉄を鉄に還元したのちアン
モニアと窒素の混合ガス中で加熱処理する事を特徴とす
る強磁性鉄粉の製造方法。
(1) Iron hydroxide obtained by neutralizing a ferrous salt aqueous solution with an alkaline aqueous solution is brought into contact with an oxidizing gas, oxidized to produce acicular iron oxyhydroxide, and further dehydrated and calcined. In the method of manufacturing ferromagnetic iron powder, the surface of which is coated with a thin oxide film in a stabilization process, ferric oxide is reduced to iron using hydrogen gas, and then ammonia and nitrogen are added. A method for producing ferromagnetic iron powder characterized by heat treatment in a mixed gas of
(2)加熱処理温度が100〜300℃である特許請求
の範囲第(1)項記載の製造方法。
(2) The manufacturing method according to claim (1), wherein the heat treatment temperature is 100 to 300°C.
(3)アンモニアガス濃度が0.1〜10容量%である
特許請求の範囲第(1)項又は第(2)項に記載の製造
方法。
(3) The manufacturing method according to claim (1) or (2), wherein the ammonia gas concentration is 0.1 to 10% by volume.
(4)加熱処理時間が0.5〜5時間である特許請求の
範囲第(1)項から第(3)項までのいずれかの項に記
載の製造方法。
(4) The manufacturing method according to any one of claims (1) to (3), wherein the heat treatment time is 0.5 to 5 hours.
(5)強磁性鉄粉中の窒素固溶量が0.5〜3重量%で
ある特許請求の範囲第(1)項から第(4)項のいずれ
かの項に記載の製造方法。
(5) The manufacturing method according to any one of claims (1) to (4), wherein the solid solution amount of nitrogen in the ferromagnetic iron powder is 0.5 to 3% by weight.
JP60109411A 1985-05-23 1985-05-23 Production of ferromagnetic iron powder Pending JPS61270315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109411A JPS61270315A (en) 1985-05-23 1985-05-23 Production of ferromagnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109411A JPS61270315A (en) 1985-05-23 1985-05-23 Production of ferromagnetic iron powder

Publications (1)

Publication Number Publication Date
JPS61270315A true JPS61270315A (en) 1986-11-29

Family

ID=14509564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109411A Pending JPS61270315A (en) 1985-05-23 1985-05-23 Production of ferromagnetic iron powder

Country Status (1)

Country Link
JP (1) JPS61270315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447618B1 (en) 1998-07-31 2002-09-10 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554802A (en) * 1978-06-26 1980-01-14 Toshiba Corp Bulb
JPS6011446A (en) * 1983-06-30 1985-01-21 Showa Denko Kk Norbornane derivative and herbicide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554802A (en) * 1978-06-26 1980-01-14 Toshiba Corp Bulb
JPS6011446A (en) * 1983-06-30 1985-01-21 Showa Denko Kk Norbornane derivative and herbicide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447618B1 (en) 1998-07-31 2002-09-10 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component
US6682813B2 (en) 1998-07-31 2004-01-27 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component

Similar Documents

Publication Publication Date Title
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
JPS6249963B2 (en)
US8852314B2 (en) Method of producing magnetic powder for magnetic recording medium
JPS61196502A (en) Magnetic material and manufacture thereof
JPS61270315A (en) Production of ferromagnetic iron powder
JPH0123402B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH10245233A (en) Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
US20120042750A1 (en) Process for producing magnetic metal particles for magnetic recording, and magnetic recording medium
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JPS6132259B2 (en)
JP2002115002A (en) Spindle shaped metal magnetic particle essentially consisting of iron and its production method
US7473469B2 (en) Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPH05310431A (en) Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2000327334A (en) Spindle-shaped goethite grain, spindle-shaped hematite grain, spindle-shaped metal magnetic grain consisting essentially of iron and production thereof
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JP2634923B2 (en) Method for producing metal magnetic powder