JPH05310431A - Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound - Google Patents

Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound

Info

Publication number
JPH05310431A
JPH05310431A JP4143626A JP14362692A JPH05310431A JP H05310431 A JPH05310431 A JP H05310431A JP 4143626 A JP4143626 A JP 4143626A JP 14362692 A JP14362692 A JP 14362692A JP H05310431 A JPH05310431 A JP H05310431A
Authority
JP
Japan
Prior art keywords
metal powder
magnetic metal
magnetic
slurry
iron oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4143626A
Other languages
Japanese (ja)
Other versions
JP3446961B2 (en
Inventor
Kazufumi Hisaoka
一史 久岡
Masahide Shoji
正秀 庄司
Makoto Miyaji
誠 宮地
Yoshinobu Oka
良信 岡
Tadayoshi Saruwatari
忠良 猿渡
Hisashige Itou
寿繁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP14362692A priority Critical patent/JP3446961B2/en
Publication of JPH05310431A publication Critical patent/JPH05310431A/en
Application granted granted Critical
Publication of JP3446961B2 publication Critical patent/JP3446961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic metal powder for magnetic recording having excellent aging stability and magnetic properties and to provide a process for producing the powder. CONSTITUTION:The process for producing this magnetic metal powder is composed of two steps consisting of (I) a step to add an aqueous solution of a ferrous salt, an aqueous solution of an aluminum salt and an aqueous solution of at least one kind of element selected from manganese, zinc, cobalt and calcium to a slurry of acicular iron alpha-oxyhydroxide, sufficiently mix the components by stirring, adjust the pH to <=2, oxidize with an oxidizing agent, heat to >=50 deg.C and neutralize and age the product at pH adjusted to >=3.5 with an alkali and (II) a step to wash the obtained slurry of iron alpha-oxyhydroxide having colloidal ferric hydroxide containing aluminum and at least one kind of element selected from manganese, zinc, cobalt and calcium uniformly applied to the surface of the particle, dry and calcine the slurry, reduce the product and form an oxidized layer on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α−オキシ水酸化鉄お
よびこれを用いた磁気記録用磁性金属粉末の製造方法に
関し、さらに詳しくは表面にアルミニウムとマンガン、
亜鉛、コバルト、カルシウムの少なくとも1種を含有す
るコロイド状水酸化第二鉄が均一に被着されたα−オキ
シ水酸化鉄およびこれを用いた微細でかつ経時安定性と
磁気特性に優れた磁気記録用磁性金属粉末の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to .alpha.-iron oxyhydroxide and a method for producing magnetic metal powder for magnetic recording using the same.
Α-Iron oxyhydroxide uniformly coated with colloidal ferric hydroxide containing at least one of zinc, cobalt and calcium, and a fine magnetic powder using the same, which is excellent in stability and magnetic properties over time. The present invention relates to a method for producing a magnetic metal powder for recording.

【0002】[0002]

【従来の技術】最近の磁気記録用媒体として磁気記録密
度の向上や再生出力の向上を目的として鉄または鉄を主
体とする磁性金属粉末を用いた塗布型磁気記録媒体が実
用化されている。
2. Description of the Related Art As a recent magnetic recording medium, a coating type magnetic recording medium using iron or a magnetic metal powder mainly containing iron has been put into practical use for the purpose of improving magnetic recording density and reproducing output.

【0003】磁性金属粉末は、通常、α−FeOOH、
β−FeOOH、γ−FeOOH等の針状オキシ水酸化
鉄(ゲーサイト)を、その針状性を保持しながら空気の
ような酸化性ガス雰囲気下に脱水してヘマタイトにした
後、水素のような還元性ガス雰囲気下に金属鉄にまで還
元する方法で製造されている。そして磁性金属粉末は、
バインダー樹脂と混合して塗料化した後、テープ、ディ
スク等に塗布し、磁気テープ、磁気ディスク等の磁気記
録体として広く用いられている。
Magnetic metal powders are usually α-FeOOH,
After acicular acicular iron oxyhydroxide (goethite) such as β-FeOOH and γ-FeOOH is dehydrated in an oxidizing gas atmosphere such as air into hematite while retaining its acicularity, it is treated like hydrogen. It is manufactured by a method of reducing to metallic iron under various reducing gas atmospheres. And the magnetic metal powder is
It is widely used as a magnetic recording medium such as a magnetic tape or a magnetic disk after being mixed with a binder resin to form a paint and then applied to a tape, a disk or the like.

【0004】しかしながら、これらの磁性金属粉末は高
い記録密度を有する等の利点は有するものの、酸化鉄磁
性粉末と比較して経時劣化が大きい等の欠点を有してい
る。
However, although these magnetic metal powders have advantages such as a high recording density, they have a drawback that they are deteriorated over time as compared with the iron oxide magnetic powder.

【0005】さらに、最近の高記録密度化の流れの中で
磁性金属粉末の微細化が進んでおり、それにつれて経時
劣化はますます低下する傾向にある。
Furthermore, with the recent trend toward higher recording densities, the magnetic metal powders are becoming finer, and the deterioration over time tends to decrease more and more.

【0006】このような課題を解決するために、磁性金
属粉末中にアルミニウム等の各種元素を含有させること
が種々提案されている(特開昭52−134858号公
報、特開昭62−65307号公報、特開昭64−52
002号公報、特開昭64−33019号公報等)。
In order to solve such problems, various proposals have been made to incorporate various elements such as aluminum into the magnetic metal powder (Japanese Patent Laid-Open Nos. 52-134858 and 62-65307). Japanese Patent Laid-Open No. 64-52
002, JP-A 64-33019, etc.).

【0007】しかるに、これらの提案にも拘らず、依然
として経時劣化が大きいという課題が残っている。
However, in spite of these proposals, there is still a problem that deterioration with time is large.

【0008】[0008]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解決すべくなされたもので、経時劣化を大
幅に改善すると共に、磁気特性や塗料分散性等のその他
の要求特性を高い水準に維持することができ、特に磁性
金属粉末の微細化に十分に対応し得る磁気記録用磁性金
属粉末を得るためのα−オキシ水酸化鉄および前記磁性
金属粉末の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems of the prior art. It significantly improves deterioration over time and has other required characteristics such as magnetic characteristics and paint dispersibility. To provide α-iron oxyhydroxide for obtaining a magnetic metal powder for magnetic recording, which can be maintained at a standard level and can sufficiently cope with miniaturization of the magnetic metal powder, and a method for producing the magnetic metal powder. is there.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は、次
に示すα−オキシ水酸化鉄および磁性金属粉末の製造方
法によって達成される。
The above object of the present invention is achieved by the following method for producing α-iron oxyhydroxide and magnetic metal powder.

【0010】すなわち、本発明のα−オキシ水酸化鉄
は、表面にアルミニウムとマンガン、亜鉛、コバルト、
カルシウムの少なくとも1種を含有するコロイド状水酸
化第二鉄が均一に被着されていることを特徴とする。
That is, the α-iron oxyhydroxide of the present invention has aluminum, manganese, zinc, cobalt,
Colloidal ferric hydroxide containing at least one of calcium is uniformly applied.

【0011】また、本発明の磁気記録用磁性金属粉末の
製造方法は、(I)針状α−オキシ水酸化鉄のスラリー
に第一鉄塩水溶液とアルミニウム塩水溶液とマンガン、
亜鉛、コバルト、カルシウムの少なくとも1種の塩の水
溶液を添加し、充分に混合撹拌し、pHを2以下に調整
後、酸化剤により酸化させ、その後50℃以上に昇温
し、さらにアルカリによってpH3.5以上で中和熟成
する工程、(II)得られた表面にアルミニウムとマン
ガン、亜鉛、コバルト、カルシウムの少なくとも1種を
含有するコロイド状水酸化第二鉄が均一に被着されたα
−オキシ水酸化鉄のスラリーを洗浄後、乾燥、焼成し、
次いで還元ガス中で還元し、さらに表面に酸化被膜を形
成させる工程、からなることを特徴とする。
The method for producing magnetic metal powder for magnetic recording according to the present invention comprises: (I) a slurry of needle-shaped α-iron oxyhydroxide in a ferrous salt aqueous solution, an aluminum salt aqueous solution and manganese;
An aqueous solution of at least one salt of zinc, cobalt and calcium is added, thoroughly mixed and stirred, and after adjusting the pH to 2 or less, it is oxidized by an oxidizing agent and then heated to 50 ° C. or higher, and further pH is adjusted to 3 by alkali. Step of neutralizing and aging at 5 or more, (II) α obtained by uniformly depositing colloidal ferric hydroxide containing aluminum and at least one of manganese, zinc, cobalt and calcium on the obtained surface.
-After washing the iron oxyhydroxide slurry, drying and firing,
Then, a step of reducing in a reducing gas and further forming an oxide film on the surface is performed.

【0012】以下、本発明の製造方法について、さらに
詳述する。本発明では、針状α−オキシ水酸化鉄を原料
とする。この針状α−オキシ水酸化鉄の性状、製造法等
は特に限定されないが、好ましい平均長軸径の大きさは
0.1〜0.25μmである。また、鉄以外にニッケ
ル、マンガン、アルミニウム、ケイ素、リン、亜鉛、カ
ルシウム、マグネシウムから選択される少なくとも1種
含まれるものが望ましい。
The manufacturing method of the present invention will be described in more detail below. In the present invention, needle-shaped α-iron oxyhydroxide is used as a raw material. The properties and production method of the acicular α-iron oxyhydroxide are not particularly limited, but the preferable average major axis diameter is 0.1 to 0.25 μm. Further, in addition to iron, it is desirable to contain at least one selected from nickel, manganese, aluminum, silicon, phosphorus, zinc, calcium and magnesium.

【0013】本発明では、この針状α−オキシ水酸化鉄
スラリーに第一鉄塩水溶液とアルミニウム塩水溶液とマ
ンガン、亜鉛、コバルト、カルシウムの少なくとも1種
の塩の水溶液を添加し、充分に混合、撹拌する。
In the present invention, an aqueous solution of ferrous salt, an aqueous solution of aluminum salt and an aqueous solution of at least one salt of manganese, zinc, cobalt and calcium are added to the acicular α-iron oxyhydroxide slurry and mixed sufficiently. , Stir.

【0014】ここに用いられる第一鉄塩としては、硫酸
塩、塩化物等が例示されるが、経済性や反応の安定性を
考慮すると硫酸塩が好ましく用いられる。
Examples of the ferrous salt used here include sulfates and chlorides, but sulfates are preferably used in consideration of economy and stability of the reaction.

【0015】また、アルミニウム塩としては、硫酸塩、
硝酸塩、塩化物等が例示される。この場合にも工業的見
地から硫酸塩がよい。
As the aluminum salt, sulfate,
Examples include nitrates and chlorides. Also in this case, sulfate is preferable from the industrial point of view.

【0016】さらに、マンガン、亜鉛、コバルト、カル
シウムの少なくとも1種の塩としても、硫酸塩、硝酸
塩、塩化物等が例示される。この場合にも工業的見地か
ら硫酸塩が望ましい。
Further, as the salt of at least one of manganese, zinc, cobalt and calcium, sulfate, nitrate, chloride and the like are exemplified. Also in this case, sulfate is preferable from the industrial viewpoint.

【0017】第一鉄塩の好ましい範囲は、オキシ水酸化
鉄中の鉄を100としたときの第一鉄塩中の鉄の原子比
で10/100〜100/100である。また、アルミ
ニウム塩の好ましい範囲は、オキシ水酸化鉄中の鉄を1
00としたときの第一鉄塩中のアルミニウムの原子比で
6/100〜30/100である。マンガン、亜鉛、コ
バルト、カルシウムの少なくとも1種の塩は、オキシ水
酸化鉄中の鉄を100としたときの第一鉄塩中のマンガ
ン、亜鉛等の原子比で0.1/100〜10/100で
ある。
The preferred range of the ferrous salt is 10/100 to 100/100 in terms of the atomic ratio of iron in the ferrous salt when the iron in the iron oxyhydroxide is 100. The preferred range of the aluminum salt is 1% iron in iron oxyhydroxide.
The atomic ratio of aluminum in the ferrous salt when set to 00 is 6/100 to 30/100. The salt of at least one of manganese, zinc, cobalt, and calcium is 0.1 / 100 to 10 / in terms of atomic ratio of manganese, zinc, etc. in the ferrous iron salt when the iron in iron oxyhydroxide is 100. 100.

【0018】本発明では、上述のように充分に混合撹拌
されたオキシ水酸化鉄スラリーがpHを2以下に調整さ
れることが必要である。このためには、第一鉄塩水溶液
とアルミニウム塩水溶液とマンガン、亜鉛、コバルト、
カルシウムの少なくとも1種の塩の水溶液の添加前また
は添加後に酸を加えてもよく、いずれにしてもオキシ水
酸化鉄スラリーが酸化前にpH2以下に調整されること
が必要である。このpHが2を超えた場合には、スラリ
ー中の第一鉄塩は新たにα−オキシ水酸化鉄やマグネタ
イトを形成してしまう。
In the present invention, it is necessary to adjust the pH of the iron oxyhydroxide slurry, which has been sufficiently mixed and stirred as described above, to 2 or less. For this, ferrous salt aqueous solution and aluminum salt aqueous solution and manganese, zinc, cobalt,
The acid may be added before or after the addition of the aqueous solution of at least one salt of calcium, in any case it is necessary that the pH of the iron oxyhydroxide slurry is adjusted to 2 or lower before the oxidation. If the pH exceeds 2, the ferrous salt in the slurry will newly form α-iron oxyhydroxide and magnetite.

【0019】次に、このスラリーに酸化剤を添加する。
ここに用いられる酸化剤も特に限定されず、空気、酸
素、オゾンや過酸化水素水等の過酸化物等のいずれでも
よい。特に過酸化水素等の過酸化物が好ましい。この理
由は、強力な過酸化物を用いることによって、特に微細
なコロイド状水酸化第二鉄が得られるからである。
Next, an oxidizing agent is added to this slurry.
The oxidizing agent used here is also not particularly limited, and may be any of air, oxygen, ozone, peroxide such as hydrogen peroxide solution, and the like. Peroxides such as hydrogen peroxide are particularly preferable. The reason for this is that particularly finely divided colloidal ferric hydroxide can be obtained by using a strong peroxide.

【0020】次に、このスラリーを50℃以上、好まし
くは70℃以上に昇温する。50℃未満では、その後の
中和熟成工程で表面に微細なアルミニウムとマンガン、
亜鉛、コバルト、カルシウムの少なくとも1種を含有す
るコロイド状水酸化第二鉄が均一に被着されず、その結
果として最終的な磁性金属粉末の性状や特性が劣る。そ
して、このスラリーをアルカリによってpH3.5以
上、好ましくはpH3.5〜9.0とした後、中和熱成
する。ここで用いられるアルカリも特に限定されない
が、炭酸ナトリウム等の炭酸塩が一般的である。ここに
おいて、pHが3.5未満では微細な水酸化鉄第二鉄粒
子中にアルミニウムが含有されず、最終的な磁性金属粉
末の性状や特性に劣る。また、中和熟成時に、塗料分散
性を阻害しない程度に、リンおよび/またはケイ素の表
面処理を行なってもよい。これにより、焼成、還元工程
で高温度域を用いることができる。
Next, the temperature of this slurry is raised to 50 ° C. or higher, preferably 70 ° C. or higher. If it is less than 50 ° C, fine aluminum and manganese on the surface in the subsequent neutralization aging step,
Colloidal ferric hydroxide containing at least one of zinc, cobalt and calcium is not uniformly applied, and as a result the properties and characteristics of the final magnetic metal powder are inferior. Then, this slurry is adjusted to pH 3.5 or more, preferably pH 3.5 to 9.0 with an alkali, and then heat-neutralized. The alkali used here is not particularly limited, but a carbonate such as sodium carbonate is generally used. Here, when the pH is less than 3.5, aluminum is not contained in the fine ferric hydroxide particles, and the properties and characteristics of the final magnetic metal powder are poor. Further, during neutralization and aging, a surface treatment of phosphorus and / or silicon may be performed to the extent that the dispersibility of the paint is not impaired. Thereby, the high temperature range can be used in the firing and reduction steps.

【0021】このスラリー中のα−オキシ水酸化鉄は、
その表面に微細なアルミニウムとマンガン、亜鉛、コバ
ルト、カルシウムの少なくとも1種を含有するコロイド
状水酸化第二鉄が均一に被着されている。
The α-iron oxyhydroxide in this slurry is
Colloidal ferric hydroxide containing fine aluminum and at least one of manganese, zinc, cobalt and calcium is uniformly applied to the surface thereof.

【0022】このようにして得られたα−オキシ水酸化
鉄のスラリーを洗浄後、乾燥、焼成する。この乾燥は1
00〜200℃で12時間程度行ない、また焼成は大気
中または窒素雰囲気中で300〜800℃、好ましくは
400〜700℃で行なわれる。次いで還元ガス中で還
元し、さらに表面に酸化被膜を形成させる。この還元
は、水素ガスまたは一酸化炭素ガス等の還元ガス中で4
00〜600℃で行なわれ、経時安定性の向上のために
は特に500℃以上が好ましい。また表面に酸化被膜を
形成するには、不活性ガスと酸素ガスの混合ガス中で徐
々に酸素濃度を増加させ、最終的に大気の濃度として得
られる磁性金属粉末を取り出す方法がよい。
The slurry of α-iron oxyhydroxide thus obtained is washed, dried and fired. This drying is 1
The firing is performed at 00 to 200 ° C. for about 12 hours, and the firing is performed in the air or a nitrogen atmosphere at 300 to 800 ° C., preferably 400 to 700 ° C. Then, it is reduced in a reducing gas to further form an oxide film on the surface. This reduction is performed in a reducing gas such as hydrogen gas or carbon monoxide gas.
It is carried out at a temperature of 00 to 600 ° C., and is preferably 500 ° C. or higher in order to improve stability over time. Further, in order to form an oxide film on the surface, it is preferable to gradually increase the oxygen concentration in a mixed gas of an inert gas and oxygen gas and take out the magnetic metal powder finally obtained as the concentration in the atmosphere.

【0023】このような本発明の製造方法により得られ
た磁気記録用磁性金属粉末の形状は針状であり、好まし
い平均長軸径は0.05〜0.25μm、比表面積は4
0〜55m2/gである。また好ましい組成は、鉄を1
00としたときの原子比でアルミニウム6〜15原子
%、マンガン、亜鉛、コバルト、カルシウムの少なくと
も1種0.1〜5原子%をそれぞれ含有するものであ
る。
The shape of the magnetic metal powder for magnetic recording obtained by the production method of the present invention is needle-like, the average major axis diameter is preferably 0.05 to 0.25 μm, and the specific surface area is 4.
It is 0 to 55 m 2 / g. The preferred composition is 1 iron.
In the atomic ratio of 00, aluminum is contained in an amount of 6 to 15 atom% and at least one of manganese, zinc, cobalt and calcium in an amount of 0.1 to 5 atom%.

【0024】[0024]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0025】実施例1 比表面積82m2/g、平均長軸径0.22μmの針状
α−オキシ水酸化鉄100gを2000mlの水中によ
く分離させ懸濁させた。
Example 1 100 g of needle-shaped α-iron oxyhydroxide having a specific surface area of 82 m 2 / g and an average major axis diameter of 0.22 μm was well separated and suspended in 2000 ml of water.

【0026】この懸濁液に硫酸第一鉄0.80モル/l
と硫酸アルミニウム0.22モル/lと硫酸マンガン
0.03モル/lからなる混合水溶液560mlを添加
し、充分に混合、撹拌し、各成分を分散させた後、室温
でpH1.7に調整した。
Ferrous sulfate 0.80 mol / l was added to this suspension.
And 560 ml of a mixed aqueous solution containing 0.22 mol / l of aluminum sulfate and 0.03 mol / l of manganese sulfate were added, thoroughly mixed and stirred to disperse each component, and then the pH was adjusted to 1.7 at room temperature. ..

【0027】このスラリーに2価の鉄イオンが0.1g
/l以下になるまで過酸化水素水を添加し酸化した。1
時間分散させた後、80℃に昇温し炭酸ナトリウム水溶
液でpH3.5に保持して1時間熱成した。さらにpH
8に保持し、1時間熱成した後、冷却し洗浄を行った。
0.1 g of divalent iron ion was added to this slurry.
Hydrogen peroxide solution was added to oxidize until the amount became 1 / l or less. 1
After dispersing for an hour, the temperature was raised to 80 ° C., the pH was kept at 3.5 with an aqueous solution of sodium carbonate, and the mixture was thermally heated for 1 hour. Further pH
The temperature was maintained at 8 and the mixture was heated for 1 hour, then cooled and washed.

【0028】このようにして得られたα−オキシ水酸化
鉄は、α−オキシ水酸化鉄の表面にごく微細なコロイド
状水酸化第二鉄が均一に被着していることが判った。ま
た化学分析の結果、添加したアルミニウムおよびマンガ
ンは100%被着されたことが判った。すなわち、アル
ミニウムの被着量は、出発原料のα−オキシ水酸化鉄中
のFeを100としたときの原子比で11%であった。
また、第二鉄塩の被着量は、出発原料のα−オキシ水酸
化鉄中のFeを100としたときの原子比で41%であ
った。さらに、マンガン塩の被着量は、出発原料のα−
オキシ水酸化鉄中のFeを100としたときの原子比で
1.1%であった。このようにして得られたα−オキシ
水酸化鉄の比表面積は55m2/g、平均長軸径は0.
24μmであった。これらの出発原料および製造条件を
併せて表1に示した。
It was found that in the thus obtained α-iron oxyhydroxide, very fine colloidal ferric hydroxide was uniformly deposited on the surface of α-iron oxyhydroxide. As a result of chemical analysis, it was found that 100% of the added aluminum and manganese were deposited. That is, the deposited amount of aluminum was 11% in terms of atomic ratio when Fe in the starting material α-iron oxyhydroxide was 100.
Further, the amount of the ferric salt deposited was 41% in terms of atomic ratio when Fe in the starting material α-iron oxyhydroxide was 100. Further, the amount of manganese salt deposited is α- of the starting material.
The atomic ratio was 1.1% when Fe in iron oxyhydroxide was 100. The α-iron oxyhydroxide thus obtained has a specific surface area of 55 m 2 / g and an average major axis diameter of 0.
It was 24 μm. The starting materials and manufacturing conditions are shown in Table 1.

【0029】このα−オキシ水酸化鉄スラリーをフィル
タープレスでケーキ化した後、100〜120℃で一晩
乾燥させた。その後空気中で600℃で焼成後、水素ガ
ス中で550℃で還元し、針状磁性金属粉末を得た。最
後に還元された針状磁性金属粉末に安定な酸化被膜を形
成させた後、大気中に取り出し、磁気記録用磁性金属粉
末を得た。
The α-iron oxyhydroxide slurry was caked with a filter press and then dried at 100 to 120 ° C. overnight. Then, after firing in air at 600 ° C., reduction was performed in hydrogen gas at 550 ° C. to obtain acicular magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0030】その性状は、表2に示されるように比表面
積46m2/g、平均長軸径0.13μmであった。な
お、ここにおいて比表面積は、(株)島津製作所社製マ
イクロメリティクス2200型を用いて測定し、平均長
軸径はTEM写真上で単一粒子と認められるもの100
個の長軸径を測り、その平均値を求めた。
As shown in Table 2, the properties were a specific surface area of 46 m 2 / g and an average major axis diameter of 0.13 μm. Here, the specific surface area was measured by using a Micromeritics Model 2200 manufactured by Shimadzu Corporation, and the average major axis diameter was 100 which was recognized as a single particle on a TEM photograph.
The major axis diameter of each piece was measured, and the average value was obtained.

【0031】また、この磁性金属粉末について磁気特性
を評価した。磁気特性は保磁力(Hc)、飽和磁化量
(σs)について測定し、東英工業(株)社製VSMを
用い、外部磁場15KOe、詰め率1.20で測定し
た。
The magnetic characteristics of this magnetic metal powder were evaluated. The magnetic characteristics were measured for coercive force (Hc) and saturation magnetization (σs), using VSM manufactured by Toei Industry Co., Ltd. with an external magnetic field of 15 KOe and a packing rate of 1.20.

【0032】また、経時安定性の評価のために、60
℃、90%相対湿度雰囲気中で1週間放置した後の劣化
後飽和磁化量(σs)も併せて測定した。これらの結果
を併せて表2に示す。
Further, in order to evaluate the stability over time, 60
The saturated magnetization amount (σs) after deterioration after leaving for 1 week in an atmosphere of 90 ° C. and 90% relative humidity was also measured. The results are shown together in Table 2.

【0033】実施例2〜15 出発原料である針状α−オキシ水酸化鉄の性状、酸化時
のpH、酸化剤、各元素の塩の種類、各元素の塩の添加
量、熟成時のpHおよび熟成時の温度をそれぞれ表1に
示す通り変更した以外は、実施例1と全く同様にして表
面にごく微細なコロイド状水酸化第二鉄が均一に被着し
ているα−オキシ水酸化鉄のスラリーを得た。
Examples 2 to 15 Properties of acicular α-iron oxyhydroxide as a starting material, pH at oxidation, oxidizing agent, kind of salt of each element, addition amount of salt of each element, pH at aging .Alpha.-oxyhydroxide on which very fine colloidal ferric hydroxide was uniformly applied to the surface in exactly the same manner as in Example 1 except that the temperature during aging and the temperature during aging were changed as shown in Table 1, respectively. An iron slurry was obtained.

【0034】これらのα−オキシ水酸化鉄を実施例1に
準拠してケーキ化、乾燥、焼成、還元し、針状磁性金属
粉末を得た。最後に還元された針状磁性金属粉末に安定
な酸化被膜を形成させた後、大気中に取り出し、磁気記
録用磁性金属粉末を得た。
These α-iron oxyhydroxides were caked, dried, calcined and reduced according to Example 1 to obtain acicular magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0035】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0036】比較例1 表1に示すように酸化剤を用いず、かつ第一鉄塩を添加
しないこと以外は、実施例1と全く同様にしてα−オキ
シ水酸化鉄のスラリーを得た。
Comparative Example 1 As shown in Table 1, a slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1 except that the oxidizing agent was not used and the ferrous salt was not added.

【0037】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0038】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0039】比較例2 表1に示すようにアルミニウム塩を添加しないこと以外
は、実施例1と全く同様にしてα−オキシ水酸化鉄のス
ラリーを得た。
Comparative Example 2 A slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1 except that aluminum salt was not added as shown in Table 1.

【0040】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0041】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0042】比較例3 表1に示すように酸化反応時のpHを3とした以外は、
実施例1と全く同様にしてα−オキシ水酸化鉄のスラリ
ーを得た。このスラリーにはマグネタイトが混在してい
たため、磁気記録用磁性金属粉末とすることができなか
った。
Comparative Example 3 As shown in Table 1, except that the pH during the oxidation reaction was set to 3,
A slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1. Since magnetite was mixed in this slurry, the magnetic metal powder for magnetic recording could not be obtained.

【0043】比較例4 表1に示すように熟成時のpHを3とした以外は、実施
例1と全く同様にしてα−オキシ水酸化鉄のスラリーを
得た。
Comparative Example 4 As shown in Table 1, a slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1 except that the pH during aging was 3.

【0044】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0045】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0046】比較例5 表1に示すように熟成時の温度を30℃とした以外は、
実施例1と全く同様にしてα−オキシ水酸化鉄のスラリ
ーを得た。
Comparative Example 5 As shown in Table 1, except that the temperature during aging was 30 ° C.,
A slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1.

【0047】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0048】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0049】比較例6 表1に示すように酸化時のpHを10、酸化剤として空
気を用い、かつ熟成時のpHを9.5、熟成時の温度を
90℃とし、それ以外は実施例1と同様の手順によって
α−オキシ水酸化鉄のスラリーを得た。
Comparative Example 6 As shown in Table 1, the pH during oxidation was 10, air was used as the oxidant, the pH during aging was 9.5, and the temperature during aging was 90 ° C. A slurry of α-iron oxyhydroxide was obtained by the same procedure as in 1.

【0050】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0051】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0052】比較例7 表1に示すようにマンガン、亜鉛、コバルト、カルシウ
ムの少なくとも1種の塩を添加しないこと以外は、実施
例1と全く同様にしてα−オキシ水酸化鉄のスラリーを
得た。
Comparative Example 7 As shown in Table 1, a slurry of α-iron oxyhydroxide was obtained in exactly the same manner as in Example 1 except that at least one salt of manganese, zinc, cobalt and calcium was not added. It was

【0053】このα−オキシ水酸化鉄を実施例1に準拠
してケーキ化、乾燥、焼成、還元し、針状磁性金属粉末
を得た。最後に還元された針状磁性金属粉末に安定な酸
化被膜を形成させた後、大気中に取り出し、磁気記録用
磁性金属粉末を得た。
This α-iron oxyhydroxide was caked, dried, calcined and reduced according to Example 1 to obtain a needle-shaped magnetic metal powder. Finally, a stable oxide film was formed on the reduced acicular magnetic metal powder and then taken out into the air to obtain a magnetic metal powder for magnetic recording.

【0054】この磁性金属粉末の性状および磁気特性を
実施例1と同様に評価し、結果を表2に示した。
The properties and magnetic characteristics of this magnetic metal powder were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】表2の結果から明らかなように、実施例1
〜15は比較例1〜2および4〜7に比較して初期およ
び劣化後の飽和磁化量が高いことから、磁気特性に優
れ、また高い経時安定性を有することが判る。また、初
期の飽和磁化量を酸化皮膜形成工程でコントロールする
ことによって、劣化率(%)も優れた値を得ることがで
きる。なお、比較例3はマグネタイトが生成してしまっ
たので比較の対象とならなかった。
As is clear from the results of Table 2, Example 1
Since Nos. 15 to 15 have higher saturation magnetization amounts in the initial stage and after deterioration as compared with Comparative Examples 1 to 2 and 4 to 7, it is understood that they have excellent magnetic properties and high stability over time. Further, by controlling the initial saturation magnetization amount in the oxide film forming step, it is possible to obtain an excellent deterioration rate (%). In Comparative Example 3, magnetite was generated, and thus was not a target for comparison.

【0058】[0058]

【発明の効果】以上の本発明によって、経時安定性と磁
気特性に優れた微細な磁気記録用磁性金属粉末が得られ
る。
According to the present invention as described above, a fine magnetic metal powder for magnetic recording having excellent stability over time and magnetic properties can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猿渡 忠良 岡山県玉野市日比2丁目8−5 (72)発明者 伊藤 寿繁 岡山県児島郡灘崎町植松53−8 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadayoshi Saruwata 2-8-5 Hibi, Tamano City, Okayama Prefecture (72) Inventor Hisashige Ito 53-8 Uematsu, Nadasaki Town, Kojima District, Okayama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面にアルミニウムとマンガン、亜鉛、
コバルト、カルシウムの少なくとも1種を含有するコロ
イド状水酸化第二鉄が均一に被着されていることを特徴
とするα−オキシ水酸化鉄。
1. A surface containing aluminum, manganese, and zinc,
An α-iron oxyhydroxide, characterized in that colloidal ferric hydroxide containing at least one of cobalt and calcium is uniformly applied.
【請求項2】 (I)針状α−オキシ水酸化鉄のスラリ
ーに第一鉄塩水溶液とアルミニウム塩水溶液とマンガ
ン、亜鉛、コバルト、カルシウムの少なくとも1種の塩
の水溶液を添加し、充分に混合撹拌し、pHを2以下に
調整後、酸化剤により酸化させ、その後50℃以上に昇
温し、さらにアルカリによってpH3.5以上で中和熟
成する工程、 (II)得られた表面にアルミニウムとマンガン、亜
鉛、コバルト、カルシウムの少なくとも1種を含有する
コロイド状水酸化第二鉄が均一に被着されたα−オキシ
水酸化鉄のスラリーを洗浄後、乾燥、焼成し、次いで還
元ガス中で還元し、さらに表面に酸化被膜を形成させる
工程、からなることを特徴とする磁気記録用磁性粉末の
製造方法。
2. (I) A ferrous salt aqueous solution, an aluminum salt aqueous solution, and an aqueous solution of at least one salt of manganese, zinc, cobalt, and calcium are added to a slurry of needle-shaped α-iron oxyhydroxide, and the mixture is thoroughly added. After mixing and stirring, adjusting the pH to 2 or less, oxidizing with an oxidizing agent, then raising the temperature to 50 ° C. or more, and further neutralizing and aging at pH 3.5 or more with an alkali. And a slurry of α-iron oxyhydroxide uniformly coated with colloidal ferric hydroxide containing at least one of manganese, zinc, cobalt and calcium, washed, dried and fired, then in a reducing gas And a step of forming an oxide film on the surface of the magnetic powder for magnetic recording.
JP14362692A 1992-05-11 1992-05-11 Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide Expired - Fee Related JP3446961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14362692A JP3446961B2 (en) 1992-05-11 1992-05-11 Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14362692A JP3446961B2 (en) 1992-05-11 1992-05-11 Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide

Publications (2)

Publication Number Publication Date
JPH05310431A true JPH05310431A (en) 1993-11-22
JP3446961B2 JP3446961B2 (en) 2003-09-16

Family

ID=15343132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14362692A Expired - Fee Related JP3446961B2 (en) 1992-05-11 1992-05-11 Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide

Country Status (1)

Country Link
JP (1) JP3446961B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use
US6830613B2 (en) 2001-04-03 2004-12-14 Canon Kabushiki Kaisha Method of manufacturing a sugar-inorganic hybrid composite
JP2005277094A (en) * 2004-03-24 2005-10-06 Dowa Mining Co Ltd Magnetic powder for coating type magnetic recording medium coping with high-densification and manufacturing method thereof
JP2007081227A (en) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd Ferromagnetic powder, coating using the same and magnetic recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830613B2 (en) 2001-04-03 2004-12-14 Canon Kabushiki Kaisha Method of manufacturing a sugar-inorganic hybrid composite
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use
JP2011037710A (en) * 2002-03-18 2011-02-24 Sued Chemie Mt Srl Application of highly pure iron oxide
JP2005277094A (en) * 2004-03-24 2005-10-06 Dowa Mining Co Ltd Magnetic powder for coating type magnetic recording medium coping with high-densification and manufacturing method thereof
JP4534085B2 (en) * 2004-03-24 2010-09-01 Dowaエレクトロニクス株式会社 Magnetic powder for coating type magnetic recording medium corresponding to high density and manufacturing method thereof
JP2007081227A (en) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd Ferromagnetic powder, coating using the same and magnetic recording medium

Also Published As

Publication number Publication date
JP3446961B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP3446961B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP3446960B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS6411577B2 (en)
JPS6132259B2 (en)
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS6334609B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0755827B2 (en) Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3176735B2 (en) Method for producing ferromagnetic oxide powder
JPH03101103A (en) Production of magnetic powder for magnetic recording medium
JPH04252001A (en) Manufacture of ferromagnetic iron oxide powder for magnetic recording use
JPH0568843B2 (en)
JPS6187302A (en) Manufacture of magnetic recording medium
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPH02178903A (en) Fusiform particle and powder of magnetic iron oxide and manufacture thereof
JPH0425686B2 (en)
JPS63151621A (en) Production of needle-like magnetic iron oxide particle powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees