JPS61196502A - Magnetic material and manufacture thereof - Google Patents

Magnetic material and manufacture thereof

Info

Publication number
JPS61196502A
JPS61196502A JP60036533A JP3653385A JPS61196502A JP S61196502 A JPS61196502 A JP S61196502A JP 60036533 A JP60036533 A JP 60036533A JP 3653385 A JP3653385 A JP 3653385A JP S61196502 A JPS61196502 A JP S61196502A
Authority
JP
Japan
Prior art keywords
gas
iron
iron carbide
magnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60036533A
Other languages
Japanese (ja)
Inventor
Kazufuyu Sudou
須藤 和冬
Kimiteru Tagawa
公照 田川
Shigeo Koba
繁夫 木場
Kazufumi Oshima
一史 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60036533A priority Critical patent/JPS61196502A/en
Publication of JPS61196502A publication Critical patent/JPS61196502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to reduce the quantity of iron oxide and carbon by-produced when the fine grains of iron carbide are manufactured by a method wherein magnetic material, to be used for a magnetic recording medium consisting of ferromagnetic fine grains containing needle-like iron carbide, is formed. CONSTITUTION:Needle-like metal fine grains having iron for magnetic recording as the main component is manufactured, and a carbonic reaction is advanced by introducing carbon monoxide gas or the mixed gas or carbon monoxide gas and inert gas containing no hydrogen in the carbonization reaction process to be performed subsequently. Besides, when a compound is reduction-reacted using reducing gas having hydrogen as the main component after said carbonization reaction is finished, the generation of ion oxide and carbon can be reduced, thereby enabling to obtain ferromagnetic fine grains containing iron carbon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁性素材及びその製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a magnetic material and a method for manufacturing the same.

該素材は音声及び映像を主対象とした高密度記録に適し
た磁気記録媒体に於ける磁性素材として好適に使用でき
る。
The material can be suitably used as a magnetic material in a magnetic recording medium suitable for high-density recording mainly for audio and video.

従来技術 磁気テープ、磁気記録媒体として有用な磁性粉末は、か
ってγ−酸化鉄が主体であった。近年VTR用や高級オ
ーディオ用の高密度記録媒体が望まれるようになり、オ
キシ水酸化鉄あるいは酸化鉄を主体とする粉末を還元性
ガスによる気相接触還元反応によって得られる金属鉄も
しくはコバルト或いはニッケルと鉄との合金を主体とす
る高い保磁力を有する磁性粉末が用いられる様になって
きた。金属磁性微粒子の保磁力は形状異方性が強い為、
粒子サイズ、針状性等に依存するが、テープ記録用とし
ては再生ヘッド、消去ヘッドの能力との兼合いで適性な
保磁力が必要である。磁気記録用媒体はオーディオ用、
ビデオ用を問わず広い記録周波数帯域での高出力化、低
ノイズ化が要求される。即ち磁性粉末としてはその形状
は微細化の傾向にある。加えて塗料用樹脂との親和性や
分散性、塗膜の配向性・充填性を更に向上させる事が望
まれ、バインダー樹脂・各種添加剤の改良及び塗料分散
・媒体加工技術の改良研究が成されている(:例えば、
明石丘部「磁気テープの進歩」、日本応用磁気学会誌、
7(3)、185 (1983)、 )。
BACKGROUND OF THE INVENTION Magnetic powders useful for magnetic tapes and magnetic recording media used to be mainly composed of γ-iron oxide. In recent years, there has been a demand for high-density recording media for VTRs and high-end audio, and metallic iron, cobalt, or nickel, which is obtained by a gas-phase catalytic reduction reaction of iron oxyhydroxide or iron oxide-based powder using a reducing gas, has become desirable. Magnetic powders with high coercive force, mainly consisting of alloys of steel and iron, have come to be used. Because the coercive force of metal magnetic fine particles has strong shape anisotropy,
Although it depends on the particle size, acicularity, etc., suitable coercive force is required for tape recording in consideration of the capabilities of the reproducing head and erasing head. Magnetic recording media are for audio,
Regardless of whether it is for video use, high output and low noise are required over a wide recording frequency band. That is, the shape of magnetic powder tends to become finer. In addition, it is desired to further improve the affinity and dispersibility with paint resins, as well as the orientation and filling properties of coating films, and research has been carried out to improve binder resins and various additives, as well as paint dispersion and media processing technology. has been done (for example,
Okabe Akashi, “Advances in magnetic tape,” Journal of the Japanese Society of Applied Magnetics,
7(3), 185 (1983), ).

従って、磁性粉の許容範囲内での可及的なHc−値の増
大及び微細化が高密度記録実現の為の極めて律速的な要
素技術となっている。
Therefore, increasing the Hc value as much as possible within the permissible range of magnetic powder and making it finer are extremely rate-limiting elemental technologies for realizing high-density recording.

鉄を主要成分とした針状性金属粉微粒子の場合、その製
造方法によっても大きく変わり得る余地があるものの、
大局的には長軸径(:L)及び短軸径(=D)或いはそ
の軸比(: L/D )の値で既述のHc−値はほぼ決
まってしまい、例えばL / D:10前後以上の針状
性微粒子系ではL:1μ前後でHc−値:500乃至7
000e程度、L:0.5μ前後でHc−値: 100
0乃至12000e程度、又り二0.1μ前後で140
0乃至16000e程度が通常は実現されている。
In the case of acicular metal powder particles containing iron as the main component, although there is room for large variations depending on the manufacturing method,
Broadly speaking, the above-mentioned Hc-value is almost determined by the values of the major axis diameter (: L) and minor axis diameter (=D) or their axial ratio (: L / D), for example, L / D: 10 In the case of acicular fine particle systems with a diameter of around 1 μm or more, L: around 1μ and Hc-value: 500 to 7.
About 000e, L: around 0.5μ, Hc-value: 100
0 to 12000e, or 140 at around 20.1μ
A value of about 0 to 16,000e is normally achieved.

従来、磁性粉の形状を保持し、又適性な保持力を有しつ
つ、粒子サイズを微細化する技術としては(1)軸比を
極度に低(設計する方法(2)多量のNi−成分の導入
に基づく合金化微粒子の方法 更に、 (3)Si、 B、 P、 C及びN等の導入に基づく
半金属合金化微粒子の方法 等が知られている。
Conventionally, the techniques for reducing the particle size while maintaining the shape of magnetic powder and having an appropriate holding force are (1) extremely low axial ratio (design method) (2) a large amount of Ni-component. Further, (3) a method for producing semimetallic alloyed particles based on the introduction of Si, B, P, C, N, etc. is also known.

(1)に於いては形状異方性を低下させる事によって、
強磁性発現機構を抑制する事が原理であり、また(2)
に於いてばNiによるFe成分の形成している体心立方
晶(:bcc)の格子置換化に伴なう磁気的希釈によっ
て磁気異方性が低下する事を積極的に利用する方法であ
るが、テープ媒体に加工すると充分な配向化が達成でき
ず、媒体の残留磁束密度(:Br)と最大磁束密度(:
Bm)との比: Br / Bm−値、即ちその角型比
が大きく低下してしまう欠点がある。
In (1), by reducing the shape anisotropy,
The principle is to suppress the ferromagnetic expression mechanism, and (2)
In this case, it is a method that actively utilizes the fact that the magnetic anisotropy decreases due to the magnetic dilution caused by the lattice substitution of the body-centered cubic crystal (:bcc) formed by the Fe component due to Ni. However, when processed into a tape medium, sufficient orientation cannot be achieved, and the residual magnetic flux density (:Br) and maximum magnetic flux density (:
Bm): There is a drawback that the Br/Bm value, that is, the squareness ratio thereof is greatly reduced.

(3)に於いてはその出発物質を各種オキシ水酸化鉄と
し、B、Si及びPを含む化合物を表面変性しても水素
ガスを主体とする気相接触反応によっては該酸化物迄に
停まりそれらの導入は不可能である。高価なボランガス
、シランガス、ホスフィンガスによる気相接触反応を行
う事となる。残るN及びCのみが廉価であり、気相接触
反応によって鉄中に導入する事が可能であるが、Nの導
入には窒化剤にアンモニアを使用する事となるので、製
造設備上の特殊な腐食対策を講する必要があり、工業的
な生産を考えた場合は実際的ではなかった。
In (3), the starting material is various iron oxyhydroxides, and even if a compound containing B, Si, and P is surface-modified, the oxides can be stopped by a gas phase catalytic reaction mainly using hydrogen gas. Therefore, their introduction is impossible. A gas phase catalytic reaction using expensive borane gas, silane gas, and phosphine gas will be performed. Only the remaining N and C are inexpensive and can be introduced into iron by gas phase catalytic reaction, but since ammonia is used as a nitriding agent to introduce N, special manufacturing equipment is required. It was necessary to take measures against corrosion, which was impractical when considering industrial production.

本発明の解決しようとする問題点 音声及び映像を主対象とした高密度磁気記録媒体用の磁
性素材としての針状性磁性粉に対して、その粒子サイズ
と磁気特性、特に保磁力Hc−値とを独立に制御する設
計技術は、磁性粉に関する究極の要素技術の一つである
。これは高密度化の為の最も待ち望まれている工業技術
の一つと位置づける事が出来る。
Problems to be Solved by the Invention Regarding acicular magnetic powder as a magnetic material for high-density magnetic recording media mainly intended for audio and video, its particle size and magnetic properties, particularly its coercive force Hc-value. The design technology that independently controls the magnetic powder is one of the ultimate elemental technologies related to magnetic powder. This can be positioned as one of the most awaited industrial technologies for densification.

既に、本発明者等によって[還元鉄を炭化性ガスで気相
接触反応により炭化鉄微粒子を製造する方法」が提案さ
れている。しかしながら、この技術に於いては炭化反応
の前工程で可能な限り、オキシ水酸化鉄の還元を完結し
ておく必要があった。
The present inventors have already proposed a method for producing iron carbide fine particles by a gas phase catalytic reaction of reduced iron with a carbonizing gas. However, in this technique, it was necessary to complete the reduction of iron oxyhydroxide as much as possible in the step before the carbonization reaction.

該還元が未了では炭化工程で未還元のオキシ水酸化鉄に
より炭化反応中に酸化鉄及び炭素の生成が副反応として
起り、σSを高く保持しつつ、効率良(保磁力を下げる
事ができない場合があった。
If the reduction is not completed, the production of iron oxide and carbon occurs as a side reaction during the carbonization reaction due to the unreduced iron oxyhydroxide in the carbonization process, resulting in a high efficiency (coercive force cannot be lowered) while maintaining a high σS. There was a case.

又、還元未了を恐れる余り、還元温度を高めたり、還元
時間を長(すると金属微粒子間の焼結が起り、テープ特
性(Br78m)の低下等の原因となり、極めて好まし
くない。
Furthermore, fear of incomplete reduction increases the reduction temperature or lengthens the reduction time (this causes sintering between fine metal particles, which causes deterioration of tape properties (Br78m), etc., which is extremely undesirable.

本発明では炭化鉄微粒子の製造に於いて副生ずる酸化鉄
量及び炭素量を極めて少量にする事を主目的としている
The main purpose of the present invention is to minimize the amount of iron oxide and carbon produced as by-products in the production of fine iron carbide particles.

基本的着想 本発明者等は、上記の問題点の解決を計る為に、種々の
検討を加え、その特性の改良を研究し続けている間に炭
化工程に於いて炭化性ガスと共に還元性ガスをも同伴さ
せる事により酸化鉄及び炭素の生成量の少ない磁性素材
として好適な炭化鉄を製造することができることを見い
出した。この方法によって効率良(炭化反応が進むので
保磁力(Hc)は炭化度に応じて8000e程度迄低下
でき、尚且飽和磁化(σS)も高く保持する事が可能に
なった。即ち、より微細な粒子を適性なHcまで低下制
御しても、媒体テープの電磁変換特性の出力の低下は最
小限に抑えつつ、ノイズは飛躍的に低下させる事の可能
な画期的な技術を見い出したわけである。
Basic Idea In order to solve the above-mentioned problems, the present inventors conducted various studies, and while continuing to research the improvement of its properties, the inventors discovered that reducing gas was used together with carbonizing gas in the carbonization process. It has been discovered that iron carbide, which is suitable as a magnetic material and which generates small amounts of iron oxide and carbon, can be produced by also entraining iron carbide. This method is efficient (as the carbonization reaction progresses, the coercive force (Hc) can be lowered to about 8000e depending on the degree of carbonization, and it is also possible to maintain a high saturation magnetization (σS). In other words, it is possible to maintain a high saturation magnetization (σS). We have discovered a revolutionary technology that can dramatically reduce noise while minimizing the drop in the output of the electromagnetic conversion characteristics of the media tape, even if the particles are controlled to drop to an appropriate Hc. .

即ち、本発明の要旨は、第一段階として磁気記録用の鉄
を主要成分とした針状性金属粉微粒子を製造し、次いで
第二段階として該金属粉微粒子を炭化する工程と還元す
る工程を設ける事から構成される。
That is, the gist of the present invention is to manufacture acicular metal powder particles for magnetic recording with iron as a main component as a first step, and then to carbonize and reduce the metal powder particles as a second step. It consists of providing.

発明の開示 磁気記録用の鉄を主要成分とした針状性金属粉微粒子の
製造は基本的に充分公知となっている方法により得られ
る。例えば比表面積20〜150 =/gr、のα−オ
キシ水酸化鉄、もしくはA1、Ti、Cr、Mn%Co
、Ni、Zn等の元素から選ばれた少なくとも一種の元
素が共沈したα−オキシ水酸化鉄に、焼結回避・形状保
持・保磁力制御・耐蝕性の向上等の為に、B、AI、S
i、P% Ti、Zn、Cr、Mn、Co、Ni、Cu
DISCLOSURE OF THE INVENTION Acicular metal powder fine particles containing iron as a main component for magnetic recording can be produced basically by a well-known method. For example, α-iron oxyhydroxide with a specific surface area of 20 to 150 =/gr, or A1, Ti, Cr, Mn%Co
In order to avoid sintering, maintain shape, control coercive force, improve corrosion resistance, etc., B, AI, etc. , S
i, P% Ti, Zn, Cr, Mn, Co, Ni, Cu
.

Zr、Sn、Pb、C3,Ba等の元素から選ばれた少
なくとも一種の元素を表面被着し、乾燥した表面変性α
−オキシ水酸化鉄を粉砕し必要に応じて300〜800
℃において仮焼し表面変性α−酸化鉄とした後、水素ガ
スを主体とする還元性ガスにより、300〜500℃程
度の温度において気相接触還元反応に供して結晶学的に
は体心立方晶系(:bcc)を形成するα−Fe粉を製
造する事が出来る。
Surface-modified α coated with at least one element selected from elements such as Zr, Sn, Pb, C3, Ba, etc.
- Grind iron oxyhydroxide to 300 to 800 granules as necessary.
After calcining at ℃ to form surface-modified α-iron oxide, it is subjected to a gas phase catalytic reduction reaction at a temperature of about 300 to 500 ℃ using a reducing gas mainly composed of hydrogen gas to form body-centered cubic iron oxide crystallographically. It is possible to produce α-Fe powder that forms a crystal system (:bcc).

該還元反応の終了は水素流通温度及び時間を設定するか
、或いは反応器系排出ガスの水分濃度の分析、例えば露
点測定で判定するのが通常である。
The completion of the reduction reaction is usually determined by setting the hydrogen flow temperature and time, or by analyzing the water concentration of the exhaust gas from the reactor system, for example, by measuring the dew point.

還元停止後窒素ガス雰囲気下で一部抜き出して、磁気特
性を測定すると飽和磁化(σS)は150〜200 e
mu / gr 、程度の値となり、純鉄の飽和磁化(
σs ) 217.Oemu / gr、よりは低い値
を示す〔化学便覧 改訂3版 基礎編[p、511 ]
After stopping the reduction, a portion was extracted under a nitrogen gas atmosphere and the magnetic properties were measured, and the saturation magnetization (σS) was 150 to 200 e.
mu / gr, which is the value of the degree, saturation magnetization of pure iron (
σs ) 217. Oemu/gr indicates a lower value [Chemical Handbook Revised 3rd Edition Basic Edition [p, 511]
.

次の炭化反応工程に於いて、水素を含まない一酸化炭素
ガス或いは一酸化炭素ガスと不活性ガスとの混合ガスを
導入して炭化反応を進行せしめると、その炭化度に応じ
て鉄−炭化鉄一酸化鉄一炭素系の複雑な組成の化合物が
得られる。該組成の化合物を粉末X−線回折測定に供し
、結晶性回折ピーク群の回折角度から同定すると、炭化
鉄としては所謂セメンタイト種(Fe5C,ASTM−
23−1113)が検出され、又酸化鉄としてはマグネ
タイト種(Fe3O4、ASTM−19−629)が検
出される。炭化度が低い場合に限りα−Fe相が同時に
検出される。
In the next carbonization reaction step, when carbon monoxide gas that does not contain hydrogen or a mixed gas of carbon monoxide gas and inert gas is introduced to advance the carbonization reaction, iron-carbonization occurs depending on the degree of carbonization. A compound with a complex composition based on iron monoxide and carbon is obtained. A compound with this composition was subjected to powder X-ray diffraction measurement, and when identified from the diffraction angle of the crystalline diffraction peak group, iron carbide was found to be a so-called cementite species (Fe5C, ASTM-
23-1113) was detected, and magnetite species (Fe3O4, ASTM-19-629) were detected as iron oxide. α-Fe phase is simultaneously detected only when the degree of carbonization is low.

更に、該炭化反応終了後、該組成の化合物を水素を主体
とした還元性ガスで還元反応に供すると、酸化鉄及び炭
素の生成を減少させる事が可能となり本発明の炭化鉄含
有強磁性微粒子が得られる。
Further, after the carbonization reaction is completed, if the compound having the composition is subjected to a reduction reaction with a reducing gas mainly composed of hydrogen, it is possible to reduce the production of iron oxide and carbon, thereby reducing the iron carbide-containing ferromagnetic fine particles of the present invention. is obtained.

又は、該炭化反応工程に於いて一酸化炭素ガスと水素ガ
スとの混合ガスの導入、或いは一酸化炭素ガス、水素ガ
ス及び不活性ガスとの混合ガスの導入を行い、炭化及び
還元反応を同時に進行させる事によっても、酸化鉄及び
炭素の生成を抑制する事が可能となり、本発明の炭化鉄
含有強磁性微粒子が得られる。
Alternatively, in the carbonization reaction step, a mixed gas of carbon monoxide gas and hydrogen gas is introduced, or a mixed gas of carbon monoxide gas, hydrogen gas, and an inert gas is introduced to simultaneously carry out the carbonization and reduction reactions. By allowing the process to proceed, it becomes possible to suppress the production of iron oxide and carbon, and the iron carbide-containing ferromagnetic fine particles of the present invention can be obtained.

該炭化反応の温度は200〜700℃、好ましくは30
0〜500℃が適切である。200℃未満の反応では炭
化が実質的には進まず、本発明の目的に合致しない。又
700℃を越えた場合は炭化反応自体は進行するものの
、針状性微粒子の焼結が激しく生じてしまい、磁気記録
用の磁性粉としては不適当となる。又、該炭化反応の時
間は5〜600m1n、程度が適切である。これ未満の
場合では、再現性良く炭化反応を制御できないし、これ
を越えると経済的に不適当である。
The temperature of the carbonization reaction is 200 to 700°C, preferably 30°C.
A temperature of 0 to 500°C is suitable. If the reaction temperature is lower than 200° C., carbonization will not substantially proceed and the object of the present invention will not be met. If the temperature exceeds 700°C, although the carbonization reaction itself will proceed, the acicular fine particles will be severely sintered, making the powder unsuitable as a magnetic powder for magnetic recording. Further, the appropriate time for the carbonization reaction is about 5 to 600 m1n. If it is less than this, the carbonization reaction cannot be controlled with good reproducibility, and if it exceeds this, it is economically unsuitable.

反応ガスの供給量・速度としては、気体空間速度(:G
H8V)で表示すれば0.1〜100.好ましくは10
〜30 NA’−totaA? gas/gr−Fe/
Hrの範囲が適当である。この範囲未満では、炭化反応
は進むものの速度が遅く、実用的ではないし、この範囲
を越えた場合は反応系の圧損が増大する事となるので反
応操作として好ましくない。
The supply amount and speed of the reaction gas are determined by the gas hourly space velocity (:G
H8V) is 0.1 to 100. Preferably 10
~30 NA'-totaA? gas/gr-Fe/
The range of Hr is appropriate. If it is less than this range, the carbonization reaction will proceed but at a slow rate, which is not practical, and if it exceeds this range, the pressure drop in the reaction system will increase, which is not preferable as a reaction operation.

一酸化炭素ガスと水素ガスとの混合比は接触温度、接触
時間、流速(気体空間速度)等の接触条件や還元鉄粉の
軸比、粒子径等の原料条件によって適宜選択する事が必
要であるが、その比(CO:H2)は200 : 1〜
1 : 200の間にある事が望ましい。一酸化炭素量
が多いと炭素及び酸化鉄が生成するし、少ないと炭化反
応に長時間を要する事となる。該混合ガスと同伴させる
不活性ガスとしてはヘリウムガス、アルゴンガス及び二
酸化炭素ガスを使用する事も可能であるが比較的廉価な
窒素ガスが最も好ましい。該混合ガスの体積比(CO:
N、)は1:1〜1 : 500が適当であり、主とし
て炭化反応の反応速度を制御する事が目的である。炭化
反応の反応速度が速過ぎると遊離の炭素が生成するし、
又余りに遅いと経済的でなく、該組成領域が適当である
The mixing ratio of carbon monoxide gas and hydrogen gas must be selected appropriately depending on contact conditions such as contact temperature, contact time, and flow velocity (gas space velocity), and raw material conditions such as the axial ratio of reduced iron powder and particle size. However, the ratio (CO:H2) is 200:1~
It is desirable that it be between 1 and 200. If the amount of carbon monoxide is large, carbon and iron oxide will be produced, and if the amount is small, the carbonization reaction will take a long time. Although it is possible to use helium gas, argon gas, or carbon dioxide gas as the inert gas to be accompanied with the mixed gas, nitrogen gas is most preferable because it is relatively inexpensive. The volume ratio of the mixed gas (CO:
The ratio of N, ) is suitably 1:1 to 1:500, and the main purpose is to control the reaction rate of the carbonization reaction. If the reaction rate of the carbonization reaction is too fast, free carbon will be produced,
Moreover, if it is too slow, it is not economical, so this composition range is appropriate.

得られた組成物をFeCxOyと表示した場合1、の値
ハo、o5乃至0.5及びyの値は0.01乃至1.0
の範囲にある事が適当である。
When the obtained composition is expressed as FeCxOy, the value of 1 is o, o5 to 0.5 and the value of y is 0.01 to 1.0.
It is appropriate that the value be within the range of .

X−値が0.05未満の場合は、目的としている強磁性
特性、特にHc−値の低下は2000e未満にとどまる
。又、X−値が0.5を越えるとHc−値の低下は大き
くなるものの、磁気媒体に加工した場合の残留磁束密度
:Br−値を規制する要因の一つである飽和磁化:σS
−値が極度に低下してしまい、磁気記録媒体の磁性素材
粉としては適当でなくなる。
When the X-value is less than 0.05, the desired ferromagnetic properties, especially the Hc-value, decreases to less than 2000e. In addition, when the X-value exceeds 0.5, the Hc-value decreases greatly, but the saturation magnetization: σS, which is one of the factors that regulates the residual magnetic flux density: Br-value when processed into a magnetic medium.
- The value is extremely reduced, making it unsuitable as a magnetic material powder for magnetic recording media.

yの値としてはy≦1.0となってもウスタイト種(F
ed)の生成は認められず、マグネタイト種が確認され
る事により可及的に小さい値が望ましいが上記の範囲が
実際的と言える。
As for the value of y, even if y≦1.0, the wustite species (F
ed) was not observed and magnetite species were confirmed, it is desirable to have a value as small as possible, but the above range can be said to be practical.

該炭化粉体の粒子形状を30000乃至90000倍の
電子顕微鏡で観察すると、イメージ上は前段反応での形
成粉体微粒子、即ち鉄を主要成分とした還元金属粉の粒
子形状と全く同一である。即ち、その形状は一次原料と
したオキシ水酸化鉄微粒子の形状を良く継承した針状外
形を有し、約100乃至300X程度の球状超微粒子(
:結晶子・微結晶・クリスタリノト・グレイン等と称さ
れている)が多数集合して針状の炭化粉体形骸粒子のそ
れぞれを構成しているのである。なお、破損・破壊、更
に粒子間結合即ち焼結の類は殆ど見られない。
When the particle shape of the carbonized powder is observed under an electron microscope with a magnification of 30,000 to 90,000 times, it appears to be exactly the same as the particle shape of the fine powder particles formed in the previous reaction, that is, the reduced metal powder containing iron as the main component. That is, its shape has an acicular outer shape that closely follows the shape of the iron oxyhydroxide fine particles used as the primary raw material, and it has a spherical ultrafine particle (about 100 to 300X).
(referred to as crystallites, microcrystals, crystallinotes, grains, etc.) are aggregated to form each needle-shaped carbonized powder skeleton particle. Incidentally, there is hardly any damage, destruction, or interparticle bonding, that is, sintering.

かくして、針状性のオキシ水酸化鉄微粒子を一次原料と
し、気相接触還元反応による針状性の還元鉄粉を経て、
気相接触炭化反応によって炭化粉体を製造する事が出来
る。後段の気相接触炭化反応は、既述の通り前段の気相
接触還元反応を実施する反応器系がそのまま利用する事
が出来、しかも炭化材としては一酸化炭素を使用する事
から反応設備の腐食等の問題は発生せず、極めて好都合
である。
In this way, acicular iron oxyhydroxide fine particles are used as the primary raw material, and through a gas phase catalytic reduction reaction, acicular reduced iron powder is produced.
Carbonized powder can be produced by gas phase catalytic carbonization reaction. As mentioned above, the gas-phase catalytic carbonization reaction in the second stage can use the same reactor system that carries out the gas-phase catalytic reduction reaction in the first stage, and since carbon monoxide is used as the carbonizing agent, the reaction equipment can be easily used. Problems such as corrosion do not occur, which is extremely convenient.

該針状性炭化鉄粉の磁気特性は、He−値としては50
00e以上、σS−値としては90emu/gr、以上
が適当である。この値未満では目的とする高出力・高密
度磁気記録が達成出来な℃・。この磁気特性は、−次原
料であるオキシ水酸化鉄微粒子の形態・その変性処方、
更に二次原料となる還元鉄粉類の特性、とりわけそれに
引き続く炭化反応条件によって制御する事が可能である
The magnetic properties of the acicular iron carbide powder have a He value of 50.
00e or more, and a σS-value of 90 emu/gr or more is appropriate. If the temperature is below this value, the desired high-output, high-density magnetic recording cannot be achieved. This magnetic property is determined by
Furthermore, it is possible to control the characteristics of the reduced iron powder used as the secondary raw material, especially the conditions of the subsequent carbonization reaction.

作用 本発明の作用を従来技術のそれと対比させ、その位置づ
けを明確にしながら説明する。
Function The function of the present invention will be explained by comparing it with that of the prior art and clarifying its position.

炭化鉄自体はよく知られた化学種であり、α−Feを一
酸化炭素ガスで炭化して得られる事由体も公知である(
たとえば: H,A、 Bahr等「DieKohle
noxyd −Spaltung an Eiseno
xyd und Eisenj 。
Iron carbide itself is a well-known chemical species, and the material obtained by carbonizing α-Fe with carbon monoxide gas is also known (
For example: H. A. Bahr et al.
noxyd-Spaltung an Eiseno
xyd und Eisenj.

Berichte、 66、1238(1933) )
。その炭化機構についても公知の事実が多いが、その用
途に関して従来は、もっばら鉄鋼板の相組織の設計及び
機械的硬度改善の為の所謂浸炭処理への利用が殆んどで
ある。
Berichte, 66, 1238 (1933))
. Although there are many well-known facts about its carbonization mechanism, most of its uses have so far been for the so-called carburizing treatment for designing the phase structure of steel plates and improving their mechanical hardness.

炭化鉄を微粒子として合成し、その強磁性的特性を磁気
記録媒体用の磁性素材粉として利用する事は殆んど知ら
れておらず、わずかに米国特許:USP−3,572,
993(Mar、 1971 : D、 B、 Rog
ers )K見られるのみである。該特許明細書による
と、鉄カルボニル体(=特にFe(CO)、を水素及び
一酸化炭素ガスの雰囲気下で280乃至340℃の範囲
内で熱分解を加えて、微粒子タイプのχ−相として、こ
のものを磁性粉とする。χ−相は、所謂□ggの炭化鉄
と称される種であり、Fe2Cと表記される。又、陣特
許明細書の記載によればその粒子形状ヲ】0.005乃
至0.1μの球状超微粒子であり、又その磁気特性はH
c−値は200乃至10000e、σS−値は85乃至
100 emu / gr 、程度とされている〇バル
ク状炭化鉄を磁気記録分野に於ける磁性材料として取り
扱った例も殆んど知られておらず、これもわずかに特開
昭53−26218に見られるのみである。該特開昭文
献では0.5乃至5.0%の炭素を含む鉄系合金を溶融
し、その融液を遠心急冷し、厚さ約3μ程度のリボン状
試料とする。次いで、該急冷試料を100℃/Hの昇温
速度で800℃迄加熱し、以後同速度で常温迄降温する
。この熱処理により、該リボン状試料の飽和磁化が増大
する事が示されている。
Little is known about synthesizing iron carbide as fine particles and utilizing its ferromagnetic properties as magnetic material powder for magnetic recording media, and there are only a few US patents: USP-3,572,
993 (Mar, 1971: D, B, Rog
ers ) K can only be seen. According to the patent specification, an iron carbonyl compound (=especially Fe(CO)) is thermally decomposed in a range of 280 to 340°C in an atmosphere of hydrogen and carbon monoxide gas to form a fine particle type χ-phase. This material is used as a magnetic powder.The χ-phase is a species called □gg iron carbide, and is expressed as Fe2C.According to the description of the patent specification, its particle shape is They are spherical ultrafine particles of 0.005 to 0.1μ, and their magnetic properties are H
The c-value is said to be about 200 to 10,000e, and the σS-value is about 85 to 100 emu/gr. There are almost no known examples of using bulk iron carbide as a magnetic material in the field of magnetic recording. However, this is also only briefly seen in JP-A-53-26218. In the Japanese Patent Laid-Open Publication No. 2003-120033, an iron-based alloy containing 0.5 to 5.0% carbon is melted, and the melt is rapidly cooled by centrifugation to form a ribbon-shaped sample with a thickness of about 3 μm. Next, the rapidly cooled sample is heated to 800° C. at a heating rate of 100° C./H, and then cooled to room temperature at the same rate. It has been shown that this heat treatment increases the saturation magnetization of the ribbon-shaped sample.

炭化鉄微粒子を合成する方法としては、非酸化性界゛囲
気下での鉄−シアン化合物の熱分解法(:特開昭50−
22000 )、低圧活性ガス中での鉄金属の蒸発によ
る方法(:特開昭52−84179 )、溶融体のガス
噴霧による方法(=特開昭54−29305 )等が知
られている。
As a method for synthesizing iron carbide fine particles, there is a method of thermal decomposition of iron-cyanide compounds under a non-oxidizing atmosphere (Japanese Patent Application Laid-Open No. 1989-1999-1).
22,000), a method by evaporation of iron metal in a low-pressure active gas (Japanese Patent Laid-Open No. 52-84179), a method by gas spraying of a melt (Japanese Patent Laid-Open No. 54-29305), etc. are known.

本発明の方法では、針状性のオキシ水酸化鉄微粒子を用
意し、形状保持成分等の被着変性処理・仮焼・還元工程
により針状性の強磁性還元鉄粉類とし、次いで炭化工程
および1つづいて還元工程により分子種としてはFe5
Cの針状性の強磁性炭化鉄微粒子とする事を特徴とする
In the method of the present invention, acicular iron oxyhydroxide fine particles are prepared, and are converted into acicular ferromagnetic reduced iron powder through a modification treatment with a shape-retaining component, calcination, and reduction process, followed by a carbonization process. Then, through the reduction step, the molecular species is Fe5
It is characterized by having acicular ferromagnetic iron carbide fine particles of C.

U S P −3,572,993の方法では、鉄カル
ボニル体の還元雰囲気下での熱分解によって強磁性の球
状超微粒子が形成され、更にその分子種はFe、Cであ
る。従って本発明は該特許技術体系とは全く異質の系と
言える。本発明の方法では、特定の針状性微粒子である
事が骨子の一つであり、磁気媒体の特性上欠落する事は
出来ない。
In the method of US Pat. No. 3,572,993, ferromagnetic spherical ultrafine particles are formed by thermal decomposition of an iron carbonyl compound in a reducing atmosphere, and the molecular species thereof are Fe and C. Therefore, the present invention can be said to be a completely different system from the patented technology system. In the method of the present invention, one of the key points is the use of specific acicular fine particles, which cannot be omitted due to the characteristics of the magnetic medium.

特開昭53−26218記載技術は、炭化鉄系の強磁性
としての特性向上を計る為の製造処方であり、本発明と
は意図する所および作用効果上全く異なる。
The technique described in JP-A-53-26218 is a manufacturing recipe for improving the ferromagnetic properties of iron carbide, and is completely different from the present invention in terms of purpose and effect.

更に、特開昭50−22000.52−84179.5
4−29305等は球状粒子の製造方法であり、やはり
本発明とは技術思想が異なると言える。
Furthermore, JP-A-50-22000.52-84179.5
No. 4-29305 and the like are methods for producing spherical particles, and it can be said that the technical idea is different from the present invention.

以上に見てきた様に、本発明の方法は、従来の関連技術
体系とは趣を全く異にするものであり、これ迄の磁気記
録技術分野では例の無い新規な磁性素材粉を提供するも
のである事が解る。
As seen above, the method of the present invention is completely different from conventional related technology systems, and provides a novel magnetic material powder that has never been seen before in the field of magnetic recording technology. I understand that it is something.

針状性の、分子種としてはFe5Cと表記される強磁性
微粒子の作用としては、α−Fe粉微粒子との対比で示
せば、同一のHe−値を示す粒子サイズを充分に小さく
設計する事が出来る事である。しかも化学量論以上の炭
素が含まれている場合も、本発明の適用範囲内であれば
分子種としてはFe5Cが形成されているので、既述の
Fe2Cの場合とは異なり、飽和磁化が大きく低下する
事はなく、極めて好都合である。
The effect of acicular ferromagnetic fine particles whose molecular species is expressed as Fe5C is that the particle size that exhibits the same He value can be designed to be sufficiently small when compared with α-Fe powder fine particles. This is something that can be done. Moreover, even if more than the stoichiometric amount of carbon is contained, as long as the present invention is applicable, Fe5C will be formed as a molecular species, so unlike the case of Fe2C mentioned above, the saturation magnetization will be large. There is no decline, which is extremely convenient.

この結果、媒体加工を施した場合、より微細化を計った
微粒子系を素材粉として使用しつつも、磁気特性上は殆
んど変わる事のないシステムにする事が可能となる。こ
の事の直接的結果として、磁性粉の粒子サイズに強く支
配される磁気記録特性、即ち高域での電磁変換特性(:
感度・出力)及びノイズが極めて大きく改善される事と
なる。
As a result, when media processing is performed, it is possible to create a system in which the magnetic properties are almost unchanged even though finer particles are used as the material powder. As a direct result of this, the magnetic recording characteristics are strongly controlled by the particle size of the magnetic powder, that is, the electromagnetic conversion characteristics at high frequencies (:
Sensitivity/output) and noise will be significantly improved.

特に、長軸径二0.1μ程度の針状性炭化鉄微粒子系は
、それがα−Fe粉系の場合であればHc−値は150
00e前後となり、所謂8iビデオ粉として使用され得
るものが、Hc−値が8000e前後となって現行のホ
ーム・ビデオ・システムに於けるいわゆるハイ・バンド
方式の磁性粉として最適となるのである。
In particular, for acicular iron carbide fine particles with a major axis diameter of about 20.1μ, if it is α-Fe powder, the Hc-value is 150.
00e, which can be used as so-called 8i video powder, has an Hc-value of around 8000e, making it optimal as a so-called high band type magnetic powder in current home video systems.

実施例 以下、実施例及び比較例により、本発明の方法及び効果
を詳細に述べる。還元反応及び炭化反応は主として、島
津製作所■の熱重量測定装置TG−30を用いて行った
EXAMPLES Hereinafter, the method and effects of the present invention will be described in detail with reference to Examples and Comparative Examples. The reduction reaction and carbonization reaction were mainly carried out using a thermogravimetric measuring device TG-30 manufactured by Shimadzu Corporation.

〔実施例−1〜3〕 本実施例は、所謂8m/mビデオ用鉄粉の原料被着粉を
所定の温度で還元後、一酸化炭素ガス及び水素ガスの混
合ガスにより炭化反応を行った場合についての本発明の
方法及びその効果の大要を示す例である。
[Examples 1 to 3] In this example, the raw material adhered powder of so-called 8 m/m video iron powder was reduced at a predetermined temperature, and then a carbonization reaction was performed with a mixed gas of carbon monoxide gas and hydrogen gas. 1 is an example illustrating an overview of the method of the present invention and its effects for a case.

く還元鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法等により、P、Si及び共沈成分としてのN i 
−成分を重量比でP / Fe = 0.5 / 10
0、Si/Fe=4、2 / 100及びN i / 
Fe = 8. O/ 100だけ含む針状性オキシ水
酸化鉄微粒子を合成した。
Production of reduced iron powder> P, Si and Ni as a coprecipitated component were
- Weight ratio of components: P/Fe = 0.5/10
0, Si/Fe=4, 2/100 and N i /
Fe=8. Acicular iron oxyhydroxide fine particles containing only O/100 were synthesized.

該微粒子の形状は、窒素ガスの吸着特性から算出した比
表面積(:SA)は105.2 m’/ gr、又6乃
至9万倍の透過電子顕微鏡像から算出した長軸径(:L
)と短軸径(:D)との比、即ち軸比(:L/D)は1
5であった。
The shape of the fine particles has a specific surface area (: SA) of 105.2 m'/gr calculated from the adsorption characteristics of nitrogen gas, and a major axis diameter (: L
) and the minor axis diameter (:D), that is, the axial ratio (:L/D) is 1
It was 5.

次いで、乾燥・粉砕工程を経た後、仮焼(温度=725
℃)し、第1表記載の条件により試料360〜を水素ガ
ス100mVmin、による気相接触還元反応(ガス空
間速度=24NイーH2/に、gr −F’e/Hr、
)を行い還元鉄粉とした。該還元鉄粉を窒素ガス雰囲気
下において、その磁気特性を東英工業社製振動式磁気特
性測定装置: VSM−III型により測定した所、H
c = 14000e、  σs = 148 emu
/gr、 R二0.495であった。
Next, after passing through a drying and pulverizing process, calcining (temperature = 725
℃), and sample 360~ was subjected to a gas phase catalytic reduction reaction using hydrogen gas at 100 mVmin (gas hourly space velocity = 24N eH2/, gr -F'e/Hr,
) to obtain reduced iron powder. When the magnetic properties of the reduced iron powder were measured in a nitrogen gas atmosphere using a vibrating magnetic property measuring device manufactured by Toei Kogyo Co., Ltd.: Model VSM-III, H
c = 14000e, σs = 148 emu
/gr, R2 was 0.495.

く炭化反応〉 次いで、第1表記載の条件により所定の温度、時間及び
混合ガス組成で気相接触炭化反応(ガス空間速度= 2
0 Nm’−mix gas/kgr−Fe/Hr+)
を行い炭化鉄粉とした。
Carbonization reaction> Next, a gas phase catalytic carbonization reaction (gas hourly space velocity = 2
0 Nm'-mix gas/kgr-Fe/Hr+)
to obtain iron carbide powder.

く結果〉 該生成物の炭素及び鉄の分析、窒素ガス法により比表面
積及び磁気特性を表−1に示した。
Results> Table 1 shows the carbon and iron analysis of the product, and the specific surface area and magnetic properties obtained by the nitrogen gas method.

〔実施例−6〜7〕 還元鉄粉の製造は実施例−1と同様の条件で行った。炭
化反応は表−1記載の条件により水素ガスを含まない一
酸化炭素ガス及び窒素ガス組成で行い、その結果を表−
1に示した。
[Examples 6 to 7] Reduced iron powder was produced under the same conditions as in Example 1. The carbonization reaction was carried out using carbon monoxide gas and nitrogen gas composition without hydrogen gas under the conditions listed in Table 1, and the results are shown in Table 1.
Shown in 1.

〔実施例−4〕 実施例−6と同様の条件で炭化反応を行い、得られた生
成物を更に水素ガスにより気相還元反応に供した。その
結果を表−1に示した。
[Example 4] A carbonization reaction was carried out under the same conditions as in Example 6, and the obtained product was further subjected to a gas phase reduction reaction using hydrogen gas. The results are shown in Table-1.

〔実施例−5〕 本実施例は、メタル・ポジション用オーディオ用途の、
炭化鉄を主要成分とした針状性の強磁性微粒子について
の本発明の方法及びその効果の大要を示す例である。
[Example 5] This example is for metal position audio applications.
This is an example showing an overview of the method of the present invention and its effects regarding acicular ferromagnetic fine particles containing iron carbide as a main component.

く炭化鉄粉の製造〉 実施例−1と同様の表面変性粉30 gr、を反応用原
料ガスの予熱器を備え、又外部より温度制御可能な鋼管
製反応器に充填し、表−1記載の条件により還元反応・
炭化反応に供した。その結果を表−1に示した。次いで
、該微粒子を充分トルエンに浸漬した後、該微粒子スラ
リーをホーロー製バット上に1cIrL程の厚味になる
様に移し、大気中でトルエンの飛散処理を加えた。溶剤
臭が無(なった段階で磁性粉を回収し、風乾炭化鉄粉と
した。
Production of iron carbide powder> 30 grams of the same surface-modified powder as in Example 1 was charged into a steel pipe reactor equipped with a preheater for the raw material gas for reaction and whose temperature could be controlled from the outside, and the results were as shown in Table 1. Reduction reaction and
It was subjected to a carbonization reaction. The results are shown in Table-1. Next, after thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 cIrL, and subjected to toluene scattering treatment in the atmosphere. When the solvent odor disappeared, the magnetic powder was collected and made into air-dried iron carbide powder.

〈風乾炭化鉄粉の塗料化、塗工及びテープ特性の評価〉
該風乾炭化鉄粉10 gr、を採取して、下記材料と共
に、内容積550 mlのポットに投入し、米国・レッ
ド・デビル社製ペイント・シェーカーで5時間混合・分
散を続けた。分散メディアとしては、211iIφのα
−アルミナ・ビーズを用いた。
<Evaluation of air-dried iron carbide powder into paint, coating, and tape properties>
10 grams of the air-dried iron carbide powder was collected and put into a pot with an internal volume of 550 ml together with the following materials, and mixed and dispersed for 5 hours using a paint shaker manufactured by Red Devil Co., Ltd., USA. As a distributed medium, α of 211iIφ
- using alumina beads.

・UCC社製塩酢ビ系ポリ−q −VAGH: t、o
gr・三井東圧化学社製ポリウレタン NL−2448: 1.Ogr ・大入化学社製リン酸エステル AP−13: 0.2
 gr・住人化学社製α−アルミナ AKP−30: 
0.2 gr・溶剤 トルエン: 14 gr、 ME
K:14 gr次いで、分散メディアを分離し七磁性塗
料とし、磁気テープ仕様の精密コーターにてアプリケー
ターを利用して12μ厚の東し社製ポリエステル・フィ
ルム(ニルミラー12B−LIO)上に塗工した。その
後、カレンダー・ロール処理して塗膜面の平滑化処理を
加え、50℃にて2日間熱処理を加えてポリウレタン硬
化反応を完結させた。該シートを3.81inに裁断し
て、現行カセット仕様サイズの磁気テープを製造した。
・UCC salt vinyl acetate poly-q-VAGH: t, o
gr・Polyurethane NL-2448 manufactured by Mitsui Toatsu Chemical Co., Ltd.: 1. Ogr ・Phosphate ester manufactured by Oiri Kagakusha AP-13: 0.2
gr・α-Alumina AKP-30 manufactured by Sumima Kagaku Co., Ltd.:
0.2 gr/solvent Toluene: 14 gr, ME
K: 14 gr The dispersion media was then separated to obtain a seven-magnetic paint, which was coated onto a 12μ thick polyester film (Nilmirror 12B-LIO) made by Toshi Co., Ltd. using an applicator with a precision coater equipped with magnetic tape. . Thereafter, the coating surface was smoothed by calender roll treatment, and heat treatment was applied at 50° C. for 2 days to complete the polyurethane curing reaction. The sheet was cut to 3.81 inches to produce a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 HC:11950eSBr=2630 GaussSB
r/Bm=0.746であり、充分な特性値を示した。
The magnetic properties of the magnetic tape are measured using the measuring device described above.
After evaluation, HC:11950eSBr=2630 GaussSB
r/Bm=0.746, indicating sufficient characteristic values.

くオーディオ特性の評価〉 日本コロンビア社製テープ試験器:DENON−031
R(: I EC規定標準ヘッド搭載)を用い、日本磁
気テープ標準規格: MT S−0101(’72)記
載の測定方法に従い、IEC基準Type −I Vテ
ープを基準にしたオーディオ特性の測定・評価を行った
Evaluation of audio characteristics> Tape tester manufactured by Nippon Columbia: DENON-031
Measurement and evaluation of audio characteristics using IEC Standard Type-IV tape as standard, using IEC standard head (equipped with IEC specified standard head) and according to the measurement method described in Japan Magnetic Tape Standard: MT S-0101 ('72). I did it.

低域感度(: 333 Hz感度)は+0.3dB、高
域感度(: 20 kHz感度)は+2.4dB、最大
出力(:3%MOL )は+5.8dB、飽和出力(:
 10 kHz。
Low frequency sensitivity (: 333 Hz sensitivity) is +0.3 dB, high frequency sensitivity (: 20 kHz sensitivity) is +2.4 dB, maximum output (: 3% MOL) is +5.8 dB, saturated output (::
10kHz.

SQL )は+0.7dB、更に聴感補正後の交流バイ
アス・ノイズ(:Nac)は−58,6dBであった。
SQL) was +0.7 dB, and AC bias noise (Nac) after audibility correction was -58.6 dB.

この特性は十二分な高域感度・飽和出力を示し、かつ特
異的に低いノイズを与えるものである。
This characteristic shows sufficient high-frequency sensitivity and saturation output, and provides uniquely low noise.

〔比較例−1〕 本比較例はメタル・ポジション用オーディオ用途の鉄を
主要成分とした強磁性金属粉についての例である。
[Comparative Example-1] This comparative example is an example of a ferromagnetic metal powder containing iron as a main component for metal position audio applications.

く還元鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法等により、P、Si及び共沈成分としてのNi−成
分を重量比でP/Fe =0.5/ 100、S i/
Fe=2.2/100及びNi/Fe =7.0/ 1
00だげ含む針状性オキシ水酸化鉄微粒子を合成した。
Production of reduced iron powder> By the method described in JP-A-57-106527 and JP-A-57-96504, P, Si, and a Ni-component as a coprecipitated component were mixed in a weight ratio of P/Fe = 0.5/100, S i/
Fe=2.2/100 and Ni/Fe=7.0/1
Acicular iron oxyhydroxide fine particles containing as much as 0.00 were synthesized.

該微粒子の形状は、窒素ガスの吸着特性から算出した比
表面積(:SA)は39.8 m7g r、又6乃至9
万倍の透過電子顕微鏡像から算出した長軸径(:L)と
短軸径(=D)との軸比(: L/D >は12であっ
た。
The shape of the fine particles has a specific surface area (SA) of 39.8 m7g r, calculated from the adsorption characteristics of nitrogen gas, and a range of 6 to 9
The axial ratio (: L/D > of the major axis diameter (: L) and the minor axis diameter (=D) calculated from a transmission electron microscope image at a magnification of 10,000 times was 12.

次いで、乾燥・粉砕工程を経た後、仮焼(温度=650
℃)し、実施例−5と同様の装置を使用して、第1表記
載の条件により試料50grを水素ガスによる気相接触
還元反応(ガス空間速度=2ONn/−H2/kgr−
Fe/’Hr、 )を行1.−還元鉄粉とした。
Next, after passing through a drying and pulverizing process, calcination (temperature = 650
℃), and using the same apparatus as in Example 5, 50g of the sample was subjected to gas phase catalytic reduction reaction with hydrogen gas (gas space velocity = 2ONn/-H2/kgr-) under the conditions listed in Table 1.
Fe/'Hr, ) in row 1. -Reduced iron powder.

その結果を表−1に示した。次いで、該微粒子を充分ト
ルエンに浸漬した後、該微粒子スラリーをホーロー製バ
ット上に1(1’m程の厚味になる様に移し、大気中で
トルエンの飛散処理を加えた。溶剤臭が無(なった段階
で磁性粉を回収し、風乾炭化鉄粉とした。
The results are shown in Table-1. Next, after thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1'm, and subjected to toluene scattering treatment in the atmosphere. When the magnetic powder became non-existent, the magnetic powder was collected and made into air-dried iron carbide powder.

〈風乾鉄粉の塗料化・塗工及びテープ特性の評価〉該風
乾鉄粉10 gr、を採取し、実施例−5と同様にして
塗料調製を行い、塗工・塗膜の平滑処理・熱処理・裁断
を加えて現行のカセット仕様サイズの磁気テープとした
<Evaluation of coating/coating and tape properties of air-dried iron powder> 10 gr of the air-dried iron powder was collected, a coating was prepared in the same manner as in Example-5, and coating/film smoothing and heat treatment were performed. - Cutting was done to make the magnetic tape the size of the current cassette specification.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 Hc=11560e、 Br=2570Gauss、 
Br/Bm=0.754という特性値であった。
The magnetic properties of the magnetic tape are measured using the measuring device described above.
As a result of evaluation, Hc=11560e, Br=2570Gauss,
The characteristic value was Br/Bm=0.754.

くオーディオ特性の評価〉 実施例−5と同様にして、IEC基準Type −IV
テープを基準にしたオーディオ特性の測定評価を行った
Evaluation of audio characteristics> In the same manner as in Example-5, IEC standard Type-IV
We measured and evaluated audio characteristics using tape as a standard.

低域感度(:333Hz感度)は+0.5dB、高域感
度(:20kHz感度)は+3.8dB、最大出力(:
3%MOL )は+5.2dB、飽和出力(:10kH
z。
Low frequency sensitivity (:333Hz sensitivity) is +0.5dB, high frequency sensitivity (:20kHz sensitivity) is +3.8dB, maximum output (:
3%MOL) is +5.2dB, saturated output (:10kHz
z.

SQL )は+0.8dB、更に聴感補正後の交流バイ
アス・ノイズ(:Nac)は−55,4dBであった。
SQL) was +0.8 dB, and AC bias noise (Nac) after audibility correction was -55.4 dB.

作用・効果及び産業上の利用可能性 実施例及び比較例の結果から本発明の作用・効果をまと
めると以下の通りとなる。
Actions/Effects and Industrial Applicability The actions/effects of the present invention can be summarized as follows from the results of Examples and Comparative Examples.

即ち、高密度磁気記録に適した磁気記録素材としての針
状性強磁性微粒子において、該微粒子が炭素を所定量含
む鉄を主成分とした微粒子系であり、被着変性された針
状性オキシ水酸化鉄微粒子を還元性ガスによる気相接触
還元反応によって強磁性還元鉄とし、 次いで、(al一酸化炭素ガスと水素ガスとの混合ガス
による気相接触炭化反応、 或(・は、(b)炭化性ガスによる気相接触炭化反応後
、更に還元性ガスによる還元反応、 に供し、強磁性の炭化鉄含有鉄微粒子とする事によって
、 (1)炭化鉄微粒子自体に関しては、原料であるオキシ
水酸化鉄の形状を良く継承した針状性を示しつつ、 (2)炭化度に応じて磁気特性値、特に保磁力Hc−値
を広範囲にコントロールする事が可能であり、(3)磁
性粉粒子が微細であり、尚且つ適性な磁気特性(保磁力
、磁化など)を備えていることにより、高周波数の電磁
変換特性(感度、出力)及びノイズが極めて大きく改良
される事、 (4)製造設備としてはオキシ水酸化鉄を原料とした強
磁性金属粉の製造設備がそのまま使用可能である事、 が判明した。
That is, in the case of acicular ferromagnetic fine particles as a magnetic recording material suitable for high-density magnetic recording, the fine particles are mainly iron-based fine particles containing a predetermined amount of carbon, and the acicular ferromagnetic fine particles are coated with modified acicular ferromagnetic particles. Ferromagnetic reduced iron is made from iron hydroxide fine particles through a gas phase catalytic reduction reaction using a reducing gas, and then through a gas phase catalytic carbonization reaction using a mixed gas of (al carbon monoxide gas and hydrogen gas), or ( ) After the gas-phase catalytic carbonization reaction using a carbonizing gas, the ferromagnetic iron carbide-containing iron fine particles are obtained by subjecting them to a further reduction reaction using a reducing gas. While exhibiting acicular properties well inheriting the shape of iron hydroxide, (2) magnetic property values, especially coercive force Hc-value, can be controlled over a wide range according to the degree of carbonization, and (3) magnetic powder (4) Because the particles are fine and have appropriate magnetic properties (coercive force, magnetization, etc.), high frequency electromagnetic conversion properties (sensitivity, output) and noise are significantly improved. It was found that the manufacturing equipment for ferromagnetic metal powder using iron oxyhydroxide as a raw material can be used as is.

以上の様に、本発明の物質はオーディオ用途及びビデオ
用途として、その特性著しい磁性素材であり、その製造
方法を提供するものである。
As described above, the substance of the present invention is a magnetic material with remarkable characteristics for use in audio and video applications, and provides a method for producing the same.

Claims (8)

【特許請求の範囲】[Claims] (1)針状性の炭化鉄を含有する強磁性微粒子からなる
磁気記録媒体用磁性素材。
(1) A magnetic material for magnetic recording media consisting of ferromagnetic fine particles containing acicular iron carbide.
(2)炭化鉄組成FeCxOyにおけるxの値が、0.
05乃至0.5及びyの値が0.01乃至1.0の範囲
にある特許請求の範囲第1項記載の磁性素材。
(2) The value of x in iron carbide composition FeCxOy is 0.
The magnetic material according to claim 1, wherein the magnetic material has a value of 0.05 to 0.5 and a value of y of 0.01 to 1.0.
(3)微粒子の長軸径が1μ以下、短軸径が0.1μ以
下で、その軸比が10乃至30である特許請求の範囲第
1項記載の磁性素材。
(3) The magnetic material according to claim 1, wherein the fine particles have a long axis diameter of 1 μm or less, a short axis diameter of 0.1 μm or less, and an axial ratio of 10 to 30.
(4)磁気特性値が保磁力として500Oe以上、飽和
磁化として90emu/gr.以上を示す事を特徴とす
る炭化鉄含有磁性素材。
(4) Magnetic property values are 500 Oe or more as coercive force and 90 emu/gr as saturation magnetization. An iron carbide-containing magnetic material characterized by exhibiting the above characteristics.
(5)形状保持成分で被着変性された針状性オキシ水酸
化鉄微粒子を還元性ガスによる気相接触還元反応によっ
て強磁性還元鉄粉とし、(a)次いで炭化性ガスと還元
性ガスとの混合ガスによる気相接触炭化反応によって強
磁性炭化鉄とするかあるいは、(b)まず炭化性ガスに
よる、もしくは炭化性ガスと還元性ガスとの混合ガスに
よる、気相接触炭化反応によって強磁性炭化鉄とした後
、更に該強磁性炭化鉄を還元性ガスによる気相接触還元
反応に供する磁気記録用の針状性炭化鉄含有強磁性微粒
子の製造方法。
(5) Acicular iron oxyhydroxide fine particles that have been modified with a shape-retaining component are made into ferromagnetic reduced iron powder by a gas phase catalytic reduction reaction using a reducing gas, and (a) are then treated with a carbonizing gas and a reducing gas. or (b) ferromagnetic iron carbide is first made into ferromagnetic iron carbide by a vapor phase catalytic carbonization reaction using a carbonizing gas or a mixed gas of a carbonizing gas and a reducing gas. A method for producing acicular iron carbide-containing ferromagnetic fine particles for magnetic recording, which comprises converting the ferromagnetic iron carbide into iron carbide and then subjecting the ferromagnetic iron carbide to a gas phase catalytic reduction reaction using a reducing gas.
(6)還元性ガスが水素を主体とするガスであり、気相
接触還元反応が300乃至500℃で行なわれる特許請
求の範囲第5項記載の製造方法。
(6) The manufacturing method according to claim 5, wherein the reducing gas is a gas mainly composed of hydrogen, and the gas phase catalytic reduction reaction is carried out at 300 to 500°C.
(7)炭化性ガスが一酸化炭素を主体とするガスであり
、かつ還元性ガスが水素を主体とするガスであり、また
該一酸化炭素と水素は1:200〜200:1の間の組
成(CO:H_2体積比)の混合ガスとして供給され、
気相接触炭化反応が200乃至700℃で行なわれる特
許請求の範囲第5項記載の製造方法。
(7) The carbonizing gas is a gas mainly composed of carbon monoxide, and the reducing gas is a gas mainly composed of hydrogen, and the ratio of carbon monoxide and hydrogen is between 1:200 and 200:1. Supplied as a mixed gas with the composition (CO:H_2 volume ratio),
The manufacturing method according to claim 5, wherein the gas phase catalytic carbonization reaction is carried out at 200 to 700°C.
(8)炭化性ガスと還元性ガスとの混合ガスを不活性ガ
スで希釈して気相接触炭化反応を行なう特許請求の範囲
第5項記載の製造方法。
(8) The manufacturing method according to claim 5, wherein a gas phase catalytic carbonization reaction is carried out by diluting a mixed gas of a carbonizing gas and a reducing gas with an inert gas.
JP60036533A 1985-02-27 1985-02-27 Magnetic material and manufacture thereof Pending JPS61196502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036533A JPS61196502A (en) 1985-02-27 1985-02-27 Magnetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036533A JPS61196502A (en) 1985-02-27 1985-02-27 Magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61196502A true JPS61196502A (en) 1986-08-30

Family

ID=12472420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036533A Pending JPS61196502A (en) 1985-02-27 1985-02-27 Magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61196502A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284426A (en) * 1985-10-08 1987-04-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
JPS6317212A (en) * 1986-07-04 1988-01-25 Daikin Ind Ltd Particle containing iron carbide
US4794042A (en) * 1985-10-09 1988-12-27 Tdk Corporation Magnetic recording medium
JPH01103911A (en) * 1987-10-14 1989-04-21 Daikin Ind Ltd Magnetic particulate of iron carbide and production thereof production of same fine particle
JPH01192713A (en) * 1988-01-27 1989-08-02 Daikin Ind Ltd Production of iron carbide fine particles
JPH0230626A (en) * 1988-04-28 1990-02-01 Daikin Ind Ltd Iron carbide fine granule and production thereof
WO1994019276A1 (en) * 1993-02-19 1994-09-01 Daikin Industries, Ltd. Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same
JP2006190842A (en) * 2005-01-06 2006-07-20 Dowa Mining Co Ltd Magnetic metal powder and magnetic recording medium using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284426A (en) * 1985-10-08 1987-04-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
US4794042A (en) * 1985-10-09 1988-12-27 Tdk Corporation Magnetic recording medium
JPS6317212A (en) * 1986-07-04 1988-01-25 Daikin Ind Ltd Particle containing iron carbide
JPH01103911A (en) * 1987-10-14 1989-04-21 Daikin Ind Ltd Magnetic particulate of iron carbide and production thereof production of same fine particle
JPH01192713A (en) * 1988-01-27 1989-08-02 Daikin Ind Ltd Production of iron carbide fine particles
JPH0729765B2 (en) * 1988-01-27 1995-04-05 ダイキン工業株式会社 Iron carbide fine particles and method for producing the same
JPH0230626A (en) * 1988-04-28 1990-02-01 Daikin Ind Ltd Iron carbide fine granule and production thereof
WO1994019276A1 (en) * 1993-02-19 1994-09-01 Daikin Industries, Ltd. Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same
JP2006190842A (en) * 2005-01-06 2006-07-20 Dowa Mining Co Ltd Magnetic metal powder and magnetic recording medium using the same

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5735969A (en) Method of producing acicular magnetic alloy particles
US5466306A (en) Spindle-shaped magnetic iron based alloy particles
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε&#39;iron carbide and method for producing the same
JPS61196502A (en) Magnetic material and manufacture thereof
JPH0145202B2 (en)
JPS61234506A (en) Magnetic material and manufacture thereof
JP2904225B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP2003263719A (en) Magnetic powder for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
US5989516A (en) Spindle-shaped geothite particles
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
EP0433894B1 (en) Process for producing magnetic metal powder for magnetic recording
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPS61154110A (en) Acicular particulates of cementite for magnetic recording and manufacture thereof
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP3171223B2 (en) Method for producing acicular magnetic particle powder