JPS61154110A - Acicular particulates of cementite for magnetic recording and manufacture thereof - Google Patents

Acicular particulates of cementite for magnetic recording and manufacture thereof

Info

Publication number
JPS61154110A
JPS61154110A JP59273712A JP27371284A JPS61154110A JP S61154110 A JPS61154110 A JP S61154110A JP 59273712 A JP59273712 A JP 59273712A JP 27371284 A JP27371284 A JP 27371284A JP S61154110 A JPS61154110 A JP S61154110A
Authority
JP
Japan
Prior art keywords
magnetic
acicular
gas
particulates
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273712A
Other languages
Japanese (ja)
Inventor
Minoru Takahashi
実 高橋
Mitsuyoshi Hashimoto
順義 橋本
Kazufumi Oshima
一史 大島
Kimiteru Tagawa
公照 田川
Kazufuyu Sudou
須藤 和冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59273712A priority Critical patent/JPS61154110A/en
Publication of JPS61154110A publication Critical patent/JPS61154110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to make high density of magnetic recording medium by a method wherein acicular ferromagnetic cementite particulates are made as a main constituent. CONSTITUTION:Acicular ferro-hydroxide particulates are prepared and are designated as acicular ferromagnetic reduced iron powder class by adhesion and denaturalization, sintering and reduction process and secondly, acicular ferromagnetic iron carbide particulates of Fe3C is designated as molecular species by carbonization process. According to the working of this ferromagnetic particulates, particle's size, which is indicated by the same Hc value as the particulates mentioned later, can be designed in fully small in comparison with alpha-Fe particulates. Moreover, even if said particulates are contained carbon more than stoichometry, as Fe3C is formed as a molecular species, saturated magnetization is not lowered largely. This face is extremely favarorable. As a result of this fact, the system which magnetic property is hardly changed, can be realized using particulates system being microminiaturized as raw material powder at the time of medium processing work.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、音声及び映像を主対象とした高密度記録に適
した磁気記録媒体に於ける磁性素材としての強磁性炭化
鉄微粒子及びその製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to ferromagnetic iron carbide fine particles as a magnetic material in magnetic recording media suitable for high-density recording mainly intended for audio and video, and the production thereof. Regarding the method.

〈従来技術〉 磁気記録用磁性素材については、広い記録波長域での高
出力・低ノイズを計る為に、均一性の高い微細形状粒子
で、高い保磁力(He)を有し、飽和磁化(σS)・残
留磁化(σr)共に大きく、かつ角形比(Rs=σr/
σ8)も可及的に大きい磁気特性が基本的に要求され、
更に塗料用樹脂との親和性や分散性、塗膜での配向性・
充填性に優れた特性が要望され、しかも信頼性を保証す
る媒体寿命が充分である事が望まれている。近年は、高
密度記録が社会的に要請され、素材粉としての磁性粉を
始めとして、バインダー樹脂・各種添加剤・更には媒体
加工法等の多岐にわたった改良研究が成されている(:
例えば、明石丘部「磁気テープの進歩」、日本応用磁気
学会誌、7(3)、185(1983)、\所謂長手記
録方式の塗布型媒体を主対象とした高密度記録化の方法
としては、磁性粉の微細化及び保磁力He−値の増大が
とられてきた(:例えば、今岡保部「磁気テープの技術
」、エレクトロニクス、昭和55年3月号、p259)
。しかし乍ら、Hc−値は大きい方が基本的には要求さ
れるものの、磁気ヘッド構成材料の特質との関連性から
一般には制限が設けられ、むやみに増大させる事は出来
ない。
<Prior art> In order to achieve high output and low noise in a wide recording wavelength range, magnetic materials for magnetic recording are made of highly uniform fine particles, have high coercive force (He), and have low saturation magnetization (He). Both σS) and residual magnetization (σr) are large, and the squareness ratio (Rs=σr/
σ8) is also basically required to have as large a magnetic property as possible,
Furthermore, the affinity and dispersibility with paint resins, the orientation and
It is desired that the media have excellent filling properties, and that the media has a sufficient life span to ensure reliability. In recent years, there has been a social demand for high-density recording, and a wide range of improvement research has been carried out, including magnetic powder as a material powder, binder resin, various additives, and even media processing methods (:
For example, see Okabe Akashi, "Advances in Magnetic Tape," Journal of the Japan Society of Applied Magnetics, 7 (3), 185 (1983). , efforts have been made to make the magnetic powder finer and increase the coercive force He- value (for example, Yasube Imaoka, "Magnetic Tape Technology", Electronics, March 1980 issue, p. 259).
. However, although a large Hc-value is basically required, there is generally a limit on the relationship with the characteristics of the material constituting the magnetic head, and it cannot be increased unnecessarily.

従って、磁性粉の許容範囲内での可及的なHe−値の増
大及び微細化が高密度記録実現の為の極めて律速的な要
素技術となっている。
Therefore, increasing the He value as much as possible within the allowable range of magnetic powder and making it finer are extremely rate-limiting elemental technologies for realizing high-density recording.

近年、磁性素材としての磁性粉については、強磁性金属
粉がその優れた磁気特性から、まずオーディオ用磁気テ
ープの素材として実用され、近い将来はビデオ用素材と
しての活用が計られようとしている。Hc−(直及びσ
S−値の充分な高さに基づく優れた磁気的ポテンシャリ
ティが利用されている訳であるが、鉄を主要成分とした
針状性金属粉微粒子の場合、その強磁性発現の主因子は
所謂形状異方性であり、従って、粒子の幾何学的形態即
ち外形サイズ及びそれを構成する内部構造によって強磁
性が影響される事となる。
In recent years, regarding magnetic powder as a magnetic material, ferromagnetic metal powder has first been put to practical use as a material for audio magnetic tapes due to its excellent magnetic properties, and is expected to be used as a video material in the near future. Hc-(direct and σ
The excellent magnetic potential based on a sufficiently high S-value is utilized, but in the case of acicular metal powder particles whose main component is iron, the main factor for the manifestation of ferromagnetism is the so-called shape. It is anisotropic and therefore its ferromagnetism is influenced by the particle geometry, i.e. its external size and its internal structure.

鉄を主要成分とした針状性金属粉微粒子の場合、その製
造方法によっても大きく変わり得る余地があるものの、
大局的には長軸径(:L)及び短軸径(:D)或いはそ
の軸比(:L/D)の値で既述のHa−値はほぼ決まっ
てしまい、例えばL/D : 10前後以上の針状性微
粒子系では、L:1μ前後でHe−値:500乃至70
00e程度、L:0.5μ前後でHa−値: 1000
乃至12000e程度、又L:o、1μ前後で1400
乃至16000e程度が通常は実現されている。
In the case of acicular metal powder particles containing iron as the main component, although there is room for large variations depending on the manufacturing method,
Broadly speaking, the above-mentioned Ha-value is almost determined by the values of the major axis diameter (:L) and minor axis diameter (:D) or their axial ratio (:L/D), for example, L/D: 10 For acicular fine particle systems of around 1 μm or more, L: around 1μ and He-value: 500 to 70.
About 00e, L: around 0.5μ, Ha-value: 1000
About 12000e to 1400 at L:o, around 1μ
A value of about 16,000e to 16,000e is normally achieved.

従って、既述の高密度記録化を計る目的で鉄を主要成分
とした針状性金属粉微粒子を微細化していくと、必然的
にHa−値が増大してしまい、通常の磁気ヘッドを搭載
した磁気記録装置には適用出来なくなり、現実性が無く
なる。そこで、磁性粉として鉄を害要成分とした針状性
微粒子系に対して、粒子サイズと磁気特性、特にHe−
Mとを独立に制御可能な形態設計技術が必要となってき
た。
Therefore, if the acicular metal powder particles containing iron as the main component are made finer for the purpose of achieving high-density recording as mentioned above, the Ha- value will inevitably increase, and if a normal magnetic head is mounted. It is no longer applicable to magnetic recording devices that have been modified, and is no longer practical. Therefore, we investigated the particle size and magnetic properties, especially He-
There has become a need for form design technology that can independently control M.

従来、この種の形態設計技術としては、(1)軸比を極
度に低く設計する方法 や、 (2)多量のNi−成分の導入に基づく合金化微粒子の
方法、 (3)微粒子表層部の有機物による変性方法更に、 (4)窒化鉄を利用する方法 等が知られている。
Conventionally, this type of morphology design technology includes (1) a method of designing an extremely low axial ratio, (2) a method of alloying fine particles based on the introduction of a large amount of Ni-component, and (3) a method of designing the surface layer of fine particles. In addition to methods of modification using organic substances, (4) a method using iron nitride is also known.

(1)は、形状異方性を低下させる事によって、強磁性
発現機構を抑制する事が原理となっている(:例えば、
近角総信「強磁性体の物理学山」、裳華房社版、p15
.1978年)。
The principle of (1) is to suppress the ferromagnetism expression mechanism by reducing the shape anisotropy (for example,
Soshin Chikakumi, “Physics of Ferromagnetic Materials”, Shokabosha edition, p15
.. (1978).

実際、製造方法によって多分に変動する余地があるが、
例えばL/D:5程度の鉄を主要成分とした針状性微粒
子系では、L:0.5μ前後の系でHe −値:600
乃至8000e程度、又L/D:3程度の鉄を主要成分
とした針状性微粒子系では、L : 0.1μ前後の系
でHa−値:500乃至600o・程度となる。
In reality, there is a lot of room for variation depending on the manufacturing method, but
For example, in a needle-like fine particle system with iron as the main component and L/D: about 5, a system with L: about 0.5μ has a He-value of 600.
In an acicular fine particle system containing iron as a main component and having an L/D of about 3 and an L/D of about 3, the Ha-value will be about 500 to 600o.

しかし乍ら、音声及び映像を主対象とした長手方式・塗
布型磁気記録媒体の場合、広い帯域にわたった電磁変換
特性、特に高い出力が必要であり、その為に媒体の残留
磁束密度(:Br)と最大磁束密度(:Bm)との比二
Br/Bm−値、即ちその角型比が充分に大きい事が必
要不可欠な要因の一つとなる(:例えば、村松珊吾[ビ
デオ及びオーディオ用磁気テープの最近の進歩」、日経
エレクトロニクス、1976年5月号、p82)のに対
して、軸比の小さい微粒子系では充分な配向化が達成出
来ず(:例えば、特開昭54−110999゜更に本発
明者等の出願昭59−209748号参照)、本目的に
対しては不適当である。
However, in the case of longitudinal/coated magnetic recording media mainly used for audio and video, electromagnetic conversion characteristics over a wide band, especially high output, are required, and the residual magnetic flux density of the medium (: One of the essential factors is that the ratio between Br) and the maximum magnetic flux density (:Bm), that is, the squareness ratio, is sufficiently large (for example, Sango Muramatsu [Video and Audio ``Recent Advances in Magnetic Tapes'', Nikkei Electronics, May 1976 issue, p. 82), whereas sufficient orientation cannot be achieved with fine particle systems with small axial ratios (e.g., JP-A-110999-1999). Further, see application No. 59-209748 by the present inventors), which is inappropriate for this purpose.

(2)は、所謂蒸発法で製造するFeをホスト・メタル
成分とした合金系微粒子に於いては、Ni−成分が40
重量%程度迄の組成域では、NiによるFe−成分の形
成している体心立方晶(二bcc)の格子置換化に伴な
う磁気的希釈によって磁気異方性が低下する事を積極的
に利用する方法である(二例えば、田崎・高尾・穂木等
r Magnetic Propertiesof F
erromagnetic Metal A11oy 
Fine ParticlesPrepared by
 Evaporation in Inert Gas
*a、IIJ、Jpn、J、Appl、Phys、、 
13(2)、271(1974)(、この方法によって
確かに針状性微粒子サイズとはある程度独立に磁気特性
を制御する事が可能であるが、蒸発法に依らない湿式法
によるFe  Ni共沈粗原料の製造・次いで気相接触
還元反応法による合金化微粒子の製造方法をとった場合
は、bcc−相の均一な磁気的希釈はNi−成分量とし
て精々20重量%程度迄であり、この場合の、例えばH
c−(直の低下量は2000e程度である。従ってL/
D : 10前後以上の針状性微粒子系で、L:′0.
5μ前後の場合、Hc−(直:800乃至1000oe
程度となり、それ以下とはなりにくい。Ni−成分量の
それ以上の導入系では異相としての面心立方晶(:fc
e)が副生じてしまい:その結果見かけ上は8000e
程度以下にHe−値は低下するものの、媒体加工した場
合、その角型比が大きく低下してしまい、この手法は限
られた範囲内での適用に留まる事となる。
(2) shows that in the alloy-based fine particles produced by the so-called evaporation method with Fe as the host metal component, the Ni-component is 40%.
In the composition range up to about 100% by weight, we actively reduce the magnetic anisotropy due to magnetic dilution accompanying the lattice substitution of the body-centered cubic crystal (bibcc) formed by the Fe-component due to Ni. (For example, Tasaki, Takao, Hoki et al.) Magnetic Properties of F
erromagnetic Metal A11oy
Fine ParticlesPrepared by
Evaporation in Inert Gas
*a, IIJ, Jpn, J, Appl, Phys,
13(2), 271 (1974) (Although it is certainly possible to control the magnetic properties to some extent independently of the acicular particle size by this method, FeNi co-precipitation by a wet method that does not depend on the evaporation method When manufacturing coarse raw materials and then manufacturing alloyed fine particles using a gas phase catalytic reduction reaction method, the uniform magnetic dilution of the bcc-phase is limited to about 20% by weight of the Ni-component at most. For example, if H
c-(The amount of direct reduction is about 2000e. Therefore, L/
D: Needle-like fine particles of around 10 or more, L: '0.
If it is around 5μ, Hc-(direct: 800 to 1000oe
It is difficult to go below that level. In systems with a higher Ni content, face-centered cubic crystals (: fc
e) occurs as a side effect: As a result, the apparent value is 8000e.
Although the He- value is reduced to a certain extent, when the medium is processed, the squareness ratio is greatly reduced, and this method can only be applied within a limited range.

(3)は、本発明者等によって始めて見い出され、提案
された方法である(:出願昭58−179300)。
(3) is a method first discovered and proposed by the present inventors (application filed 179300/1982).

粗原料としての針状性オキシ水酸化鉄微粒子をアクリル
系有機物で被着変性した後、300乃至は475°Cで
水素還元すると、該有機物の被着量にもよるが、300
乃至5000e程度のHa−値の低下が、微粒子の形状
破壊を伴なう事なく発現する事を見い出し、提案したも
のである。適用範囲が広く、極めて有力な方法であると
言える。
Acicular iron oxyhydroxide fine particles as a crude raw material are coated and modified with an acrylic organic substance and then reduced with hydrogen at 300 to 475°C.
It was discovered and proposed that a decrease in the Ha value of about 5,000e occurs without destroying the shape of the particles. It can be said to be an extremely effective method with a wide range of applications.

(4)は、主として針状性Fe4N微粒子を利用する方
法で、本発明者の一人が報告している方法である(:田
崎・田川・喜多等r Recording Tapes
 UsingIron Ni tride Fine 
PowdsrJ 、 IEKE、Trans、 Fil
lmg、 、 MAG−17(6)、Nov、 302
6(1981))。本例も、窒化度を制御する事により
、粒子サイズと磁気特性とを独立に設計する事が出来る
極めて有力な製造方法ではあるが、窒化剤にアンモニア
を使用する事となるので、製造設備上の特殊な腐食対策
を講する必要があり、工業的な生産を考えた場合は実際
的ではなかった。
(4) is a method mainly using acicular Fe4N fine particles, and is a method reported by one of the inventors (Tasaki, Tagawa, Kita et al. Recording Tapes
UsingIron Ni tride Fine
PowdsrJ, IEKE, Trans, Fil
lmg, MAG-17(6), Nov, 302
6 (1981)). This example is also an extremely effective manufacturing method that allows particle size and magnetic properties to be designed independently by controlling the degree of nitriding, but since ammonia is used as the nitriding agent, the production equipment It was necessary to take special anti-corrosion measures, which was impractical when considering industrial production.

以上、従来技術を見返して見ても、粒子サイズと磁気特
性を広範囲で独立に制御する、しかも工業的生産が現実
的である製造方法は、驚く程少ない事が解る。
Looking back at the prior art, it can be seen that there are surprisingly few manufacturing methods that independently control particle size and magnetic properties over a wide range and are practical for industrial production.

く本発明の解決しようとする問題点〉 音声及び映像を主対象とした高密度磁気記録媒体用の磁
性素材としての針状性磁性粉に対して、その粒子サイズ
と磁気特性、特に保磁力He−値とを独立に制御する設
計技術は、磁性粉に関する究極の要素技術の−ってあり
、高密度化の為の最も待ち望まれている工業技術の一つ
と位置づける事が出来る。
Problems to be Solved by the Present Invention> Regarding acicular magnetic powder as a magnetic material for high-density magnetic recording media mainly intended for audio and video, the particle size and magnetic properties, especially the coercive force He The design technology that independently controls the magnetic powder value is the ultimate elemental technology for magnetic powder, and can be positioned as one of the most awaited industrial technologies for increasing density.

本発明では、当該分野に於いて、いまだ未解決に近い上
記の基本問題に対して、従来に無い、全く新しい工業的
製造方法及びそれに基づく新規な磁性粉を提供しようと
するものである。
The present invention aims to address the above-mentioned basic problem, which is still largely unsolved in the field, by providing a completely new industrial manufacturing method and a new magnetic powder based thereon.

く問題点を解決する為の手段〉 本発明者等は、上記の問題点の解決を計る為に、種々の
検討を加えた結果、よく知られた湿式法による微細な針
状性オキシ水酸化鉄微粒子を合成し、次いで形状保持成
分類による被着変性処理を施し、以後必要に応じて洗浄
・乾燥・粉砕・仮焼した後、水素ガスを主体とする還元
性ガスにより気相接触還元反応に供し、その後−酸化炭
素ガスを主体とする炭化性ガスにより気相接触炭化反応
を加えた粉体系が、その形状は粗原料としたオキシ水酸
化鉄微粒子のそれを破損・破壊する事なく良く継承した
針状性を示し得る事、同時に気相接触炭化反応の条件に
依存した磁気特性を有する事、特に保磁力He−値が炭
化度に応じて200乃至800oe程度低下する事を見
い出し、本発明に到達した。
Means for Solving the Problems> In order to solve the above problems, the present inventors have conducted various studies, and as a result, the present inventors have developed a method of fine acicular oxyhydroxidation using a well-known wet method. Fine iron particles are synthesized, then subjected to adhesion modification treatment using a shape-retaining component, and then washed, dried, crushed, and calcined as necessary, and then subjected to a gas phase catalytic reduction reaction using a reducing gas mainly composed of hydrogen gas. After that, a powder system subjected to a vapor phase catalytic carbonization reaction using a carbonizing gas mainly composed of carbon oxide gas has a shape similar to that of the iron oxyhydroxide fine particles used as the crude raw material without damaging or destroying it. We discovered that it can exhibit inherited acicular properties, and at the same time have magnetic properties that depend on the conditions of the gas phase catalytic carbonization reaction.In particular, we discovered that the coercive force He- value decreases by about 200 to 800 oe depending on the degree of carbonization. invention has been achieved.

即ち、本発明の方法は、その第一段階として磁気記録用
の鉄を主要成分とした針状性金属粉微粒子を製造し、次
いで第二段階として該金属粉微粒子を炭化する工程を設
ける事から構成される。
That is, the method of the present invention includes, as a first step, producing acicular metal powder particles containing iron as a main component for magnetic recording, and then, as a second step, carbonizing the metal powder particles. configured.

磁気記録用の鉄を主要成分とした針状性金属粉微粒子の
製造は基本的に充分公知となっている方法により得られ
るが、例えば本発明者等が開示している方法等を利用す
る事によって実施する事が可能である。
Acicular metal powder fine particles containing iron as a main component for magnetic recording can basically be produced by well-known methods, but for example, the method disclosed by the present inventors can be used. It is possible to implement it by

即ち、硫酸第一鉄を苛性ソーダ類によって中和し、次に
空気等の酸化性ガスの導入によって該中和ヒドロ・ゲル
の酸化及び結晶化反応を行って針状性のオキシ水酸化鉄
微粒子を合成する。発現する針状性微粒子の形状を制御
する方法としては種々の方法がとられるが、各種金属成
分の水溶性塩類を副成分として導入する所謂共沈法が簡
便でかつ工業的には実際的である。
That is, ferrous sulfate is neutralized with caustic soda, and then an oxidizing gas such as air is introduced to oxidize and crystallize the neutralized hydrogel to form acicular iron oxyhydroxide fine particles. Synthesize. Various methods can be used to control the shape of the acicular fine particles that develop, but the so-called coprecipitation method, in which water-soluble salts of various metal components are introduced as subcomponents, is simple and industrially practical. be.

該針状性のオキシ水酸化鉄微粒子を洗浄した後、はう酸
亜鉛を主体とした形状保持成分の被着変性処理を加え、
次いで必要に応じて洗浄・乾燥・粉砕して還元用原初と
する(:特開昭58−48612)。
After washing the acicular iron oxyhydroxide fine particles, a modification treatment with a shape-retaining component mainly consisting of zinc oxalate is applied.
Then, if necessary, it is washed, dried, and crushed to obtain a raw material for reduction (Japanese Patent Application Laid-Open No. 58-48612).

該原初を、たとえば反応用原料ガスの予熱器を備え、又
外部より温度制御可能な鋼管製反応器等に充填し、30
0〜500℃程度で水素ガスを主とした還元性ガスを導
入して還元反応を続ける事によって、結晶学的には体心
立方晶系(:bce)を形成するα−F6粉を製造する
事が出来る。
The raw material is charged into a steel pipe reactor equipped with a preheater for the raw material gas for reaction and whose temperature can be controlled from the outside, and heated for 30 minutes.
By introducing a reducing gas, mainly hydrogen gas, at around 0 to 500°C and continuing the reduction reaction, α-F6 powder, which forms a body-centered cubic system (bce) in crystallography, is produced. I can do things.

次の炭化反応工程は、以下の様にして実施する事が出来
る。即ち、上記の還元反応が終了した時点で該水素ガス
を主とした還元性ガスの供給を停止し、所定反応温度に
設定した後に一酸化炭素ガスと窒素ガスとの混合ガスの
導入を行う。
The next carbonization reaction step can be carried out as follows. That is, when the above-mentioned reduction reaction is completed, the supply of reducing gas, mainly hydrogen gas, is stopped, and after setting the reaction temperature to a predetermined temperature, a mixed gas of carbon monoxide gas and nitrogen gas is introduced.

該還元反応の終点は、反応器系排出ガスの水分濃度のオ
ン・ライン的分析、例えば露点測定によって知る事が出
来る。
The end point of the reduction reaction can be determined by on-line analysis of the water concentration of the reactor system exhaust gas, such as dew point measurement.

□該炭化反応の温度は200〜500℃が適切である。□The appropriate temperature for the carbonization reaction is 200 to 500°C.

200℃未満の反応では炭化が実質的には進まず、本発
明の目的に合致しない。又500℃を越えた場合は炭化
反応自体は進行するものの、針状性微粒子の焼結が激し
く生じてしまい、磁気記録用の磁性粉としては不適当と
なる。
If the reaction temperature is lower than 200° C., carbonization will not substantially proceed and the object of the present invention will not be met. If the temperature exceeds 500°C, although the carbonization reaction itself will proceed, the acicular fine particles will be severely sintered, making the powder unsuitable as a magnetic powder for magnetic recording.

該炭化反応に於ける炭化材としては、−酸化炭素が最も
炭化能が高く、低温炭化が可能となる点で好ましい。ま
たメタン・エタン・プロパン・ブタン等鉄鋼分野に於い
て通常使用される浸炭材も利用可能であるが、この場合
には炭化促進材として周期律表第■属金属系の炭酸塩類
、例えば炭酸バリウム等を既述の被着変性工程で加える
事により、通常は極めて高温でなければ進行しない、こ
れ等炭化材による炭化反応を上記のごとき500℃以下
に移動させる必要がある。
As the carbonizing material in the carbonization reaction, -carbon oxide is preferred because it has the highest carbonization ability and enables low-temperature carbonization. Carburizing materials commonly used in the steel industry such as methane, ethane, propane, and butane can also be used, but in this case, carbonates of Group II metals of the periodic table, such as barium carbonate, can be used as carbonization accelerators. By adding such substances in the above-mentioned adhesion modification step, it is necessary to move the carbonization reaction caused by these carbonizing materials, which usually does not proceed unless it is extremely high temperature, to a temperature below 500° C. as described above.

一酸化炭素ガスを使用した場合の炭化反応は極めて速く
、炭化度を制御する必要性から、窒素ガス等の不活性ガ
スに同伴させる事が効果的である。
The carbonization reaction when carbon monoxide gas is used is extremely fast, and since it is necessary to control the degree of carbonization, it is effective to entrain it with an inert gas such as nitrogen gas.

−酸化ガスの同伴量としては、50体積%程度以下が炭
化度の制御から言って好ましい。これ以上の同伴量の場
合、炭化反応の進行が糧めて速く、炭化度の制御が定量
的に制御することが困難な傾向が強まってくる。
- The amount of oxidizing gas entrained is preferably about 50% by volume or less from the viewpoint of controlling the degree of carbonization. If the entrained amount is more than this, the carbonization reaction progresses very quickly, and it becomes increasingly difficult to quantitatively control the degree of carbonization.

反応ガスの供給量・速度としては、気体空間速度(:G
H8V)で表示すれば0.1〜100好ましくは10〜
30 NI Co/g’r−F*/Hrの範囲が適当で
ある。この範囲未満では、炭化反応は一応進むものの、
この速度がきわめて遅く、実用的ではないし、この範囲
を越えた場合は反応系の圧損が増大する事となるので反
応操作として好ましくない。
The supply amount and speed of the reaction gas are determined by the gas hourly space velocity (:G
H8V) is 0.1 to 100, preferably 10 to
A range of 30 NI Co/g'r-F*/Hr is suitable. Below this range, although the carbonization reaction progresses,
This rate is extremely slow and impractical, and if it exceeds this range, the pressure drop in the reaction system will increase, which is not preferable as a reaction operation.

本発明における炭化反応は気−固液反応であるから、総
括反応速度は表面反応速度と拡散速度との二つの因子に
より決定される。したがって炭化度を正確に制御するた
めには、この二つの因子を定量的に把握する必要がある
。しかしながら、より実際的な方法としては、炭化度は
、みかけ上炭化材の接触量と反応効率の二つの因子によ
って決まると考えて制御することもできる。この場合前
者は反応ガスの供給速度と反応積算時間からオン・ライ
ン的に算出する事が出来る。また後者の量は、反応器形
式・反応条件(:温度・反応ガスの種−や構成・供給量
及び速度等)・還元鉄粉類の形態(二組成・サイズ・粒
度等)の複雑な函数となるが、実験的には予備実験系列
を実施する事により容易に評価する事が出来、線図とし
て用意しておく事が可能である。反応器系に専用の小型
コンピュータを付帯させ、あらかじめプログラム制御方
式を確立しておく事により、炭化度の実測は出来ないも
のの、その制御は工業的には充分に可能となる。
Since the carbonization reaction in the present invention is a gas-solid-liquid reaction, the overall reaction rate is determined by two factors: the surface reaction rate and the diffusion rate. Therefore, in order to accurately control the degree of carbonization, it is necessary to quantitatively understand these two factors. However, as a more practical method, the degree of carbonization can be controlled by considering that it is determined by two factors: the apparent contact amount of the carbonized material and the reaction efficiency. In this case, the former can be calculated online from the reaction gas supply rate and cumulative reaction time. The latter amount is a complex function of the reactor type, reaction conditions (temperature, reaction gas species and composition, supply amount and speed, etc.), and the form of the reduced iron powder (composition, size, particle size, etc.). However, it can be easily evaluated experimentally by conducting a series of preliminary experiments, and can be prepared as a diagram. By attaching a dedicated small computer to the reactor system and establishing a program control system in advance, although it is not possible to actually measure the degree of carbonization, its control becomes fully possible industrially.

所定の炭化度FeCxのXとして0.1〜0.5程度に
到達した時点で該炭化性ガスの供給を停止し、窒素等の
不活性ガスに切り換え、反応器加熱も停止し、室温迄降
温する。該炭化反応粉体は、極めて微細な粒子から構成
されているので、大気中では自然発火して酸化鉄に戻っ
てしまう可能性を有する事から、分析用の検体を窒素ガ
ス中に封入して回収する以外は、例えばトルエン等の有
機溶剤中に回収し、浸漬保存する。以後、必要に応じて
風乾を施す事により徐酸化処理を加えて安定化させた乾
燥粉体とする事も可能であり、更に所定の処方により塗
料化・塗工化・裁断を経て所望の形状を有する塗布媒体
とする事が出来る。
When the predetermined carbonization degree of X of FeCx reaches about 0.1 to 0.5, the supply of the carbonizing gas is stopped, switched to an inert gas such as nitrogen, heating of the reactor is also stopped, and the temperature is lowered to room temperature. do. Since the carbonized reaction powder is composed of extremely fine particles, there is a possibility that it will spontaneously ignite in the atmosphere and return to iron oxide, so the sample for analysis is sealed in nitrogen gas. Otherwise, the material is collected in an organic solvent such as toluene and preserved by immersion. Thereafter, it is possible to make a stabilized dry powder by air-drying it as needed and applying slow oxidation treatment, and then it can be made into a paint, coated, and cut according to a prescribed formulation to form the desired shape. It is possible to use a coating medium having the following properties.

かくして、針状性のオキシ水酸化鉄微粒子を一次原料と
し、気相接触還元反応による針状性の還元鉄粉を経て、
気相接触炭化反応によって炭化粉体を製造する事が出来
る。後段の気相接触炭化反応は、既述の通り前段の気相
接触還元反応を実施する反応器系がそのまま利用する事
が出来、しかも炭化材としては一酸化炭素を使用する事
から反応設備の腐食等の問題は発生せず、極めて好都合
である。
In this way, acicular iron oxyhydroxide fine particles are used as the primary raw material, and through a gas phase catalytic reduction reaction, acicular reduced iron powder is produced.
Carbonized powder can be produced by gas phase catalytic carbonization reaction. As mentioned above, the gas-phase catalytic carbonization reaction in the second stage can use the same reactor system that carries out the gas-phase catalytic reduction reaction in the first stage, and since carbon monoxide is used as the carbonizing agent, the reaction equipment can be easily used. Problems such as corrosion do not occur, which is extremely convenient.

該炭化粉体の粒子形状を30000乃至90000倍の
電子顕微鏡で観察すると、イメージ上は前段反応での形
成粉体微粒子、即ち鉄を主要成分とした還元金属粉の粒
子形状と全く同一である。即ち、その形状は一次原料と
したオキシ水酸化鉄微粒子の形状を良く継承した針状外
形を有し、約100乃至300A程度の球状超微粒子(
=結晶子・微結晶・クリスタリノト・グレイン等と称さ
れている)が多数集合して針状の炭化粉体形骸粒子のそ
れぞれを構成しているのである。なお、破損・破壊、更
に粒子間結合即ち焼結の類は殆ど見られない0 該針状性の炭化粉体微粒子の形状は、長軸径:Lとして
は1μ以下である事・短軸径:Dとしては0.1μ以下
である事・その軸比:L/Dとしては10乃至30であ
る事が適当である。この形状サイズよりも大きい場合は
、磁気媒体に加工してその電磁変換特性を測定するとノ
イズが極めて大きく適性を持たない。又軸比が10未満
の場合は既述の通り、磁気媒体に加工した時、その磁気
的角型比が充分に大きくならず、やはり適性を持たない
。更に軸比が30以上の場合は、塗料化工程に於ける分
散メディアによって破損を受ける率が極めて高くなって
しまい、実効的でなくなる。
When the particle shape of the carbonized powder is observed under an electron microscope with a magnification of 30,000 to 90,000 times, it appears to be exactly the same as the particle shape of the fine powder particles formed in the previous reaction, that is, the reduced metal powder containing iron as the main component. That is, its shape has an acicular outer shape that closely follows the shape of the iron oxyhydroxide fine particles used as the primary raw material, and it has a spherical ultrafine particle (about 100 to 300A).
(referred to as crystallites, microcrystals, crystallinotes, grains, etc.) are assembled in large numbers to constitute each needle-shaped carbonized powder skeleton particle. In addition, there is almost no damage, destruction, or interparticle bonding, that is, sintering. :D should be 0.1μ or less and its axial ratio:L/D should be 10 to 30. If the shape size is larger than this size, processing it into a magnetic medium and measuring its electromagnetic conversion characteristics will result in extremely high noise, making it unsuitable. If the axial ratio is less than 10, as described above, when processed into a magnetic medium, the magnetic squareness ratio will not be large enough, and the material will not be suitable. Furthermore, if the axial ratio is 30 or more, the rate of damage caused by the dispersion media in the coating process becomes extremely high, making it ineffective.

該針状性の炭化粉体は大気に晒す事なく注意しつつ化学
分析に供して鉄と炭素の量比を決定する事が出来る。F
eCxと表示した場合、X−値としては0.1乃至0.
5が適当である。X−値がこの値未満の場合は、目的と
している強磁性特性、特にHa−値の低下は2000e
未満にとどまる。又、X−値が0.5を越えるとHe−
値の低下は大きくなるものの、磁気媒体に加工した場合
の残留磁束密度:Br−値を規制する要因の一つである
飽和磁化:σ8−値が極度に低下してしまい、磁気記録
媒体の磁性素材粉としては適当でなくなる。
The acicular carbonized powder can be carefully subjected to chemical analysis to determine the ratio of iron to carbon without exposing it to the atmosphere. F
When expressed as eCx, the X-value is 0.1 to 0.
5 is appropriate. If the X-value is less than this value, the desired ferromagnetic properties, especially the Ha-value, will decrease by 2000e.
Stay below. Also, if the X-value exceeds 0.5, He-
Although the decrease in value is large, the saturation magnetization (σ8) value, which is one of the factors regulating the residual magnetic flux density (Br) value when processed into a magnetic medium, is extremely reduced, and the magnetic properties of the magnetic recording medium are reduced. It is no longer suitable as a material powder.

該針状性の炭化粉体を粉末法X−線線回折測測定供し、
結晶性回折ピーク群の回折角度から同定すると、所潤セ
メン多イト種:Fe5Cが検出される。
The acicular carbonized powder is subjected to powder method X-ray diffraction measurement,
When identified from the diffraction angle of the crystalline diffraction peak group, Tokorun Cementite species: Fe5C is detected.

炭化度が低い場合に限りα−F・相が同時に検出される
。炭化度が進んでも、本発明の炭化反応条件では他の炭
化鉄槽、例えばF e 2 C等は形成されていない事
を確認した。化学量論以上の炭素は、Fe5Cの結晶性
を低下させる働きをする事から、主としてセメンタイト
結晶格子を歪ませているものと推定される。
α-F phase is detected simultaneously only when the degree of carbonization is low. It was confirmed that even though the degree of carbonization progressed, other iron carbide tanks, such as Fe 2 C, were not formed under the carbonization reaction conditions of the present invention. Carbon in an amount greater than the stoichiometric amount acts to reduce the crystallinity of Fe5C, and is therefore presumed to mainly distort the cementite crystal lattice.

該針状性炭化鉄粉の磁気特性は、Ha−値としては50
00@以上、σS−値としては100 emu/gr、
以上が適当である。この値未満では目的とする高出力・
高密度磁気記録が達成出来ない。この磁気特性は、−次
原料であるオキシ水酸化鉄微粒子の形態・その変性処方
、更に二次原料となる還元鉄粉類の特性、とりわけそれ
に引き続く炭化反応条件によって制御する事が可能であ
る。
The magnetic properties of the acicular iron carbide powder have an Ha value of 50.
00@ or more, σS-value is 100 emu/gr,
The above is appropriate. Below this value, the desired high output
High-density magnetic recording cannot be achieved. These magnetic properties can be controlled by the morphology and modification recipe of the iron oxyhydroxide fine particles that serve as the secondary raw material, the characteristics of the reduced iron powder that serves as the secondary raw material, and especially the conditions of the subsequent carbonization reaction.

〔作用〕[Effect]

炭化鉄自体はよく知られた化学種であり、α−Feを一
酸化炭素ガスで炭化して得られる事も公知である(たと
えば:H,A、Bahr等r Die Kohleno
xyd −8paltung an Eisenoxy
d und EisenJ、Berichte、 66
゜1238(1933))。その炭化機構についても公
知の事実が多いが、その用途に関しては従来もっばら鉄
鋼板の相組織の設計及び機械的硬度改善の為の所謂浸炭
処理への利用が殆んどである。
Iron carbide itself is a well-known chemical species, and it is also known that it can be obtained by carbonizing α-Fe with carbon monoxide gas (for example: H, A, Bahr, etc.).
xyd-8paltung an Eisenoxy
d und EisenJ, Berichte, 66
゜1238 (1933)). There are many well-known facts about its carbonization mechanism, but most of its uses have conventionally been in so-called carburizing treatment for designing the phase structure of steel sheets and improving mechanical hardness.

炭化鉄を微粒子として合成し、その強磁性的特性を磁気
記録媒体用の磁性素材粉として利用する事は殆ど知られ
ておらず、わずかに米国特許:USP  3,572,
993(Mar、1971:D、B、Rogers)に
見られるのみである。該特許明細書によると、鉄カルボ
ニル体(=特にF e (CO)sを水素及び−酸化炭
素ガスの雰囲気下で280乃至340℃の範囲内で熱分
解を加えて、微粒子タイプのX−相として、このものを
磁性粉とする。X−相は、所謂H’aggの炭化鉄と称
される種であり、Fe2Cと表記される。又、該特許明
細書の記載によればその粒子形状は、0.005乃至0
.16μの球状超微粒子であり、又その磁気特性はHa
−fO!は200乃至10000e、6m−値は85乃
至100 smu/gr、程度とされている。
Little is known about synthesizing iron carbide as fine particles and utilizing its ferromagnetic properties as magnetic material powder for magnetic recording media, and only a few US patents: USP 3,572,
993 (Mar, 1971: D, B, Rogers). According to the patent specification, a fine particle type X-phase is obtained by thermally decomposing an iron carbonyl compound (=especially Fe(CO)s) in a hydrogen and carbon oxide gas atmosphere at a temperature of 280 to 340°C. The X-phase is a species called iron carbide of H'agg, and is expressed as Fe2C.According to the description in the patent specification, the particle shape of is 0.005 to 0
.. It is a spherical ultrafine particle of 16μ, and its magnetic properties are Ha
-fO! is said to be about 200 to 10,000e, and the 6m value is about 85 to 100 smu/gr.

バルク状炭化鉄を磁気記録分野に於ける磁性材料として
取り扱った例も殆んど知られておらず、これもわずかに
特開昭53−26218に見られるのみである。該特開
昭文献では、0.5乃至5.0%の炭素を含む鉄系合金
を溶融し、その融液を遠心急冷し、厚さ約3μ程度のリ
ボン状試料とする。
There are almost no known examples of using bulk iron carbide as a magnetic material in the field of magnetic recording, and this is only found in JP-A-53-26218. In the Japanese Patent Application Laid-open No. 2003-120023, an iron-based alloy containing 0.5 to 5.0% carbon is melted, and the melt is rapidly cooled by centrifugation to form a ribbon-shaped sample with a thickness of about 3 μm.

次いで、該急冷試料を100℃/Hの昇温速度で800
℃迄加熱し、以後同速度で常温迄降温する。
Next, the rapidly cooled sample was heated to 800°C at a heating rate of 100°C/H.
Heat to ℃ and then cool down to room temperature at the same rate.

この熱処理により、該リボン状試料の飽和磁化が増大す
る事が示されている。
It has been shown that this heat treatment increases the saturation magnetization of the ribbon-shaped sample.

炭化鉄微粒子を合成する方法としては、非酸化性雰囲気
下での鉄−シアン化合物の熱分解(=特開昭5O−22
000)、低圧活性ガス中での鉄金属の蒸発による方法
(=特開昭52−84179)、溶融体のガス噴霧によ
る方法(=特開昭54−29305)等が知られている
As a method for synthesizing iron carbide fine particles, thermal decomposition of an iron-cyanide compound in a non-oxidizing atmosphere (= JP-A-5O-22
000), a method by evaporation of iron metal in a low-pressure active gas (=Japanese Patent Application Laid-Open No. 52-84179), a method by gas spraying of a melt (=Japanese Patent Application Laid-Open No. 54-29305), etc. are known.

本発明の方法では、針状性のオキシ水酸化鉄微粒子を用
意し、形状保持成分等の被着変性処理・仮焼・還元工程
により針状性の強磁性還元鉄粉類とし、次いで炭化工程
により分子種としてはF * 3 Cの針状性の強磁性
炭化鉄微粒子とする事を特徴とする。
In the method of the present invention, acicular iron oxyhydroxide fine particles are prepared, and are converted into acicular ferromagnetic reduced iron powder through a modification treatment with a shape-retaining component, calcination, and reduction process, followed by a carbonization process. Therefore, the molecular species is F*3C, which is acicular ferromagnetic iron carbide fine particles.

USP−3,572,993の方法では、鉄カルボニル
体の還元雰囲気下での熱分解によって強磁性の球状超微
粒子が形成され、更にその分子種はFe2Cである。従
って本発明は該特許技術体系とは全く異質の系と言える
。本発明の方法では、特定の針状性微粒子である事が骨
子の一つであり、磁気媒体の特性上欠落する事は出来な
い。
In the method of US Pat. No. 3,572,993, ferromagnetic spherical ultrafine particles are formed by thermal decomposition of an iron carbonyl compound in a reducing atmosphere, and the molecular species thereof is Fe2C. Therefore, the present invention can be said to be a completely different system from the patented technology system. In the method of the present invention, one of the key points is the use of specific acicular fine particles, which cannot be omitted due to the characteristics of the magnetic medium.

特開昭53−26218記載技術は、炭化鉄系の強磁性
としての特性向上を計る為の製造処方であり、本発明と
は意図する所および作用効果上全く異なる。
The technique described in JP-A-53-26218 is a manufacturing recipe for improving the ferromagnetic properties of iron carbide, and is completely different from the present invention in terms of purpose and effect.

更に、特開昭50−22000.52−84179.5
4−29305等は球状粒子の製造方法であり、やはり
本発明とは技術思想が異なると言える。
Furthermore, JP-A-50-22000.52-84179.5
No. 4-29305 and the like are methods for producing spherical particles, and it can be said that the technical idea is different from the present invention.

以上に見てきた様に、本発明の方法は、従来の関連技術
体系とは趣を全く異にするものであり、これ迄の磁気記
録技術分野では例の無い新規な磁性素材粉を提供するも
のである事が解る。
As seen above, the method of the present invention is completely different from conventional related technology systems, and provides a novel magnetic material powder that has never been seen before in the field of magnetic recording technology. I understand that it is something.

針状性の、分子種としてはFe3Cと表記される強磁性
微粒子の作用としては、α−Fe粉微粒子との対比で示
せば、同一のHa−(直を示す粒子サイズを充分に小さ
く設計する事が出来る事である。しかも化学量論以上の
炭素が含まれている場合も、本発明の適用範囲内であれ
ば分子種としてはFe5Cが形成されているので、既述
のF 111 Cの場合とは異なり、飽和磁化が大きく
低下する事はなく、極めて好都合である。
The action of acicular ferromagnetic fine particles whose molecular species is expressed as Fe3C is shown in comparison with α-Fe powder fine particles. Furthermore, even if more than the stoichiometric amount of carbon is contained, Fe5C is formed as the molecular species within the scope of the present invention, so the above-mentioned F 111 C Unlike the case, the saturation magnetization does not decrease significantly, which is extremely convenient.

この結果、媒体加工を施した場合、より微細化を計った
微粒子系を素材粉として使用しつつ、磁気特性上は殆ん
ど変わる事のないシステムにする事が可能となる。この
事の直接的結果として、磁性粉の粒子サイズに強く支配
される磁気記録特性、即ち高域での高磁変換特性(:感
度・出力)及びノイズが極めて大きく改善される事とな
る。
As a result, when media processing is performed, it is possible to use finer particles as the raw material powder while creating a system with almost no change in magnetic properties. As a direct result of this, the magnetic recording characteristics that are strongly controlled by the particle size of the magnetic powder, that is, the high magnetic conversion characteristics (sensitivity and output) in the high range and the noise, are greatly improved.

特に、長軸径:0.1μ程度の針状性炭化鉄微粒子系は
、それがα−Fe粉系の場合であればHa−値は150
00e前後となり、所謂8m/mヒデオ粉として使用さ
れ得るものが、HC−(1iLが8000e前後となっ
て現行のホーム・ビデオ・システムに於けるハイ・バン
ド方式の磁性粉として最適となるのである。
In particular, for acicular iron carbide fine particles with a major axis diameter of about 0.1μ, if it is α-Fe powder, the Ha value is 150.
00e, which can be used as so-called 8m/m video powder, is HC-(1iL, which is around 8000e, making it optimal as a high band magnetic powder in current home video systems. .

〔実施例〕〔Example〕

以下、実施例及び比較例により、本発明の方法及び効果
を詳細に述べる。本実施例では、ハイ・バンド方式とし
てのビデオ特性の評価については、該当するビデオ・デ
ツキのハードウェアそのものが現時点では完全に完成し
ていない事から特に試験結果は記載しないが、オーディ
オ特性評価に於いて、本発明の方法による針状性の強磁
性炭化鉄粉をベースとした磁気テープの高域特性がいち
ぢるしく良好である事から、充分に高いビデオ特性を有
しているものと推定されるのである。
Hereinafter, the method and effects of the present invention will be described in detail with reference to Examples and Comparative Examples. In this example, test results will not be specifically described regarding the evaluation of video characteristics as a high band system, as the hardware itself of the relevant video deck is not completely completed at this time, but the test results for the evaluation of audio characteristics will be Since the high-frequency characteristics of the magnetic tape based on acicular ferromagnetic iron carbide powder obtained by the method of the present invention are remarkably good, it is assumed that the magnetic tape has sufficiently high video characteristics. It is estimated.

〔実施例−1〕 本実施例は、所謂ハイ・ポジション用オーディオ用途の
、炭化鉄を主要成分とした針状性の強磁性微粒子につい
ての本発明の方法及びその効果の大要を示す例である。
[Example-1] This example is an example showing an overview of the method of the present invention and its effects on acicular ferromagnetic fine particles containing iron carbide as a main component for so-called high-position audio applications. be.

く還元鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法等により、P、Si及び共沈成分としてのNi−成
分を重量比でP/Fe=0.3/100.Si/Fe=
1.5/100及びNi/Fe=3.9/100だけ含
む針状性オキシ水酸化鉄微粒子を合成した。
Production of Reduced Iron Powder> By the method described in JP-A-57-106527 and JP-A-57-96504, P, Si, and a Ni component as a coprecipitated component were mixed in a weight ratio of P/Fe=0.3/100. Si/Fe=
Acicular iron oxyhydroxide fine particles containing only 1.5/100 and 3.9/100 of Ni/Fe were synthesized.

該微粒子の形状は、窒素ガスの吸着特性から算出した比
表面積(:SA)は40.5 m”/ gr s又6乃
至9万倍の透過電子顕微鏡像から算出した長軸径(:L
)と短軸径(=D)との比、即ち軸比(: L/D)は
15であった。
The shape of the fine particles has a specific surface area (SA) of 40.5 m''/gr s calculated from the adsorption characteristics of nitrogen gas and a major axis diameter (L
) and the minor axis diameter (=D), that is, the axial ratio (L/D) was 15.

次いで、特開昭58−48612記載の方法をこよりホ
ウ酸亜鉛の被着変性処理を加え(B/Fe−0,6/1
0重量比)、乾燥・粉砕工程を経た後、水素ガスによる
気相接触還元反応(二温度=375℃、ガス空間速度=
2ONm3−シ/kgr  Fe/Hr 、 )により
還元鉄粉とした。
Next, adhesion modification treatment with zinc borate was applied using the method described in JP-A-58-48612 (B/Fe-0, 6/1).
0 weight ratio), after drying and pulverization process, gas phase catalytic reduction reaction with hydrogen gas (temperature = 375°C, gas hourly space velocity =
2ONm3-C/kgr Fe/Hr, ) to obtain reduced iron powder.

該鉄粉を窒素ガス雰囲気下で一部抜き出して、窒素ガス
法により比表面積及び東英工業社製振動式磁気特性測定
装置:VSM−III型による磁性の評価を行ったとこ
ろ、5A=40.1m/gr、、 Hc=11820e
、 ffs=182emu/gr、、 Rs=0.48
7であった。
A portion of the iron powder was extracted under a nitrogen gas atmosphere, and the specific surface area and magnetism were evaluated using a vibrating magnetic property measuring device (Model VSM-III, manufactured by Toei Kogyo Co., Ltd.) using the nitrogen gas method, and 5A = 40. 1m/gr,, Hc=11820e
, ffs=182emu/gr, Rs=0.48
It was 7.

く炭化反応〉 該磁性鉄粉を一酸化炭素と窒素の混合ガス(体積比1:
1)による気相接触炭化反応(=温度=450°C,ガ
ス空間速度= 20 Nm  m1xed gas/k
gr −pe/Hr、)により炭化反応を5時間行りた
Carbonization reaction〉 The magnetic iron powder is heated with a mixed gas of carbon monoxide and nitrogen (volume ratio 1:
1) Gas phase catalytic carbonization reaction (=temperature=450°C, gas space velocity=20 Nm mlxed gas/k
The carbonization reaction was carried out for 5 hours using gr-pe/Hr.

該微粒子を窒素ガス雰囲気下で一部抜き出して、炭素及
び鉄の分析をしたところ、重量比C/Fe=8.9 /
 100 (F e CO4)であった。
When a part of the fine particles was extracted under a nitrogen gas atmosphere and analyzed for carbon and iron, the weight ratio C/Fe=8.9/
100 (F e CO4).

次いで、該微粒子を充分トルエンに浸漬した後、該微粒
子スラリーをホーロー製バット上に1crrL程の厚味
になる様に移し、大気中でトルエンの飛散処理を加えた
。溶剤臭が無くなった段階で磁性粉を回収し、風乾鉄粉
とした。
Next, after thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 crrL, and subjected to toluene scattering treatment in the atmosphere. When the smell of the solvent disappeared, the magnetic powder was collected and made into air-dried iron powder.

該風乾炭化鉄粉の物性評価を行ったところ、5A=35
.2m7/gr、 Hc=8320s 、  σg =
116 emu/gr、、Rs=0.456であった。
When the physical properties of the air-dried iron carbide powder were evaluated, 5A=35
.. 2m7/gr, Hc=8320s, σg=
116 emu/gr, Rs=0.456.

く風乾炭化鉄粉の塗料化・塗工及びテープ特性の評価〉 該風乾炭化鉄粉10 gr、を採取して、下記材料と共
に、内容積550m1のポットに投入し、米国・レッド
・デビル社製ペイント・シェーカーで5時間混合・分散
を続けた。分散メディアとしては、2 m /のα−ア
ルミナ・ビーズを用いた。
Evaluation of coating/coating and tape properties of air-dried iron carbide powder> 10 gr of the air-dried iron carbide powder was collected and placed in a pot with an internal volume of 550 m1 along with the following materials. Mixing and dispersion continued for 5 hours on a paint shaker. As the dispersion media, 2 m/α-alumina beads were used.

・UCC社製塩酢ビ系ポリマー VAGH: 1.2 
gr    ’・三井東圧化学社製ポリウレタンNL−
2448: 0.8gr・大入化学社製リン酸エステル
 AP−13: 0.1 gr・住友化学社製α−アル
ミナ AKP−30: 0.2gr・溶剤 トルエン:
 13 gr、、 MEK : 13 gr。
・Salt vinyl acetate polymer manufactured by UCC VAGH: 1.2
gr'・Polyurethane NL- manufactured by Mitsui Toatsu Chemical Co., Ltd.
2448: 0.8gr, phosphate ester manufactured by Oiri Kagaku Co., Ltd. AP-13: 0.1gr, α-alumina manufactured by Sumitomo Chemical Co., Ltd. AKP-30: 0.2gr, solvent Toluene:
13 gr., MEK: 13 gr.

次いで、分散メディアを分離して磁性塗料とし、磁気テ
ープ仕様の精密コーターにてアプリケーターを利用して
12μ厚の東し社製ポリエステル・フィルム(ニルミラ
ー12B−LIO)上に塗工した。その後、カレンダー
・ロール処理して塗膜面の平滑化処理を加え、50’C
にて2日間熱処理を加えてポリウレタン硬化反応を完結
させた。該シートを3.81i+冨に裁断して、現行カ
セット仕様サイズの磁気テープを製造した。
Next, the dispersion media was separated to obtain a magnetic paint, which was coated onto a 12μ thick polyester film (Nilmirror 12B-LIO) manufactured by Toshi Co., Ltd. using an applicator in a precision coater equipped with magnetic tape. After that, the coating surface was smoothed by calender roll treatment and 50'C
A heat treatment was applied for 2 days to complete the polyurethane curing reaction. The sheet was cut into 3.81i+thickness to produce a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 Ha−7050s 、 Br=2850Gauss、 
Br/Bm=0.772であり、充分な特性値を示した
The magnetic properties of the magnetic tape are measured using the measuring device described above.
After evaluation, Ha-7050s, Br=2850Gauss,
Br/Bm=0.772, indicating sufficient characteristic values.

くオーディオ特性の評価〉 日本コロンビア社製テープ試験器:DENON−031
R(: IEC規定標準ヘッド搭載)を用い、日本磁気
テープ標準規格:MTS−0101(’72)記載の測
定方法に従い、rgc基準Type  IIテープを基
準にしたオーディオ特性の測定・評価を行った。
Evaluation of audio characteristics> Tape tester manufactured by Nippon Columbia: DENON-031
Audio characteristics were measured and evaluated using an RGC standard Type II tape using an RGC (equipped with an IEC standard head) according to the measurement method described in Japan Magnetic Tape Standard: MTS-0101 ('72).

低域感度(:333Hz感度)は+3.5dB、高域感
度(: 12.5 kHz感度)は+3.5dB、最大
出力(=3XMOL )は+7.5dB、飽和出力(:
10kHz、5QL)は−2,5dB、  更に聴感補
正後の交流バイアス・ノイズ(:Nae)は−57,5
dBであった。後述の比較例で明らかとなるが、この特
性は十二分な高域感度・飽和出力を示し、かつ特異的に
低いノイズを与えるものである。
Low frequency sensitivity (: 333 Hz sensitivity) is +3.5 dB, high frequency sensitivity (: 12.5 kHz sensitivity) is +3.5 dB, maximum output (=3XMOL) is +7.5 dB, saturated output (:
10kHz, 5QL) is -2.5dB, and AC bias noise (:Nae) after auditory correction is -57.5
It was dB. As will be made clear in the comparative examples described later, this characteristic shows sufficient high-frequency sensitivity and saturation output, and provides a uniquely low noise.

〔実施例−2〕 本実施例は、メタル・ポジション用オーディオ用途の、
炭化鉄を主要成分とした針状性微粒子についての本発明
の方法及びその効果の大要を示す例である。
[Example-2] This example is for metal position audio applications.
This is an example showing an overview of the method of the present invention and its effects regarding acicular fine particles containing iron carbide as a main component.

く還元鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法によりp、st及び共沈成分としてN i −成分
を重量比でP/Fe=0.7/100.Si/Fe=1
.5/100及びN i / Fe、 = 8.0/ 
100だけ含む針状性オキシ水酸化鉄微粒子を合成した
Production of Reduced Iron Powder> By the method described in JP-A-57-106527 and JP-A-57-96504, p, st and N i - component as coprecipitated component were mixed in a weight ratio of P/Fe=0.7/100. Si/Fe=1
.. 5/100 and N i /Fe, = 8.0/
Acicular iron oxyhydroxide fine particles containing only 100% of iron oxyhydroxide were synthesized.

該微粒子の形状は、SAは73.Oyj/ g r 、
、又透過電子顕微鏡像からのL/Dは12でありた。次
いで、乾燥・粉砕工程を経た後、仮焼(温度=725℃
)し、水素ガスによる気相接触還元反応(:温度=42
5℃、ガス空間速度−2oN、、”−Hg、/kgr−
Fe、4(r、)tにより還元鉄粉とした。
The shape of the fine particles has an SA of 73. Oyj/gr,
, and L/D was 12 from a transmission electron microscope image. Next, after passing through a drying and pulverizing process, calcination (temperature = 725°C)
) and gas phase catalytic reduction reaction using hydrogen gas (temperature=42
5℃, gas space velocity -2oN, "-Hg, /kgr-
Fe, 4(r,)t was used to obtain reduced iron powder.

該鉄粉を窒素ガス雰囲気下で一部抜き出して、SA及び
既述の装置による磁性の評価を行ったところ、5A=6
0.5m’/gr、、Hc=14320e、7FI=1
54 emu/ gr、 、 Rs =0.502であ
った。
When a part of the iron powder was extracted under a nitrogen gas atmosphere and magnetic properties were evaluated using SA and the above-mentioned apparatus, it was found that 5A=6
0.5m'/gr,, Hc=14320e, 7FI=1
54 emu/gr, Rs = 0.502.

く炭化反応〉 該磁性鉄粉を一酸化炭素と窒素の混合ガス(体積比1:
1)による気相接触炭化反応(:温度=380°C,ガ
ス空間速度=zoN、、’−mix@d gas/kg
r  Fs。
Carbonization reaction〉 The magnetic iron powder is heated with a mixed gas of carbon monoxide and nitrogen (volume ratio 1:
1) Gas phase catalytic carbonization reaction (: temperature = 380°C, gas space velocity = zoN, '-mix@d gas/kg
r Fs.

Hr、)により炭化反応を8時間行った。The carbonization reaction was carried out for 8 hours using Hr, ).

該微粒子を窒素ガス雰囲気下で一部抜き出して、炭素及
び鉄の分析をしたところ、重量比C/Fe=3.6/1
00(FeCo、17)であった。
When a part of the fine particles was extracted under a nitrogen gas atmosphere and analyzed for carbon and iron, the weight ratio C/Fe was 3.6/1.
00 (FeCo, 17).

次いで、該微粒子を充分トルエンに浸漬した後該微粒子
スラリーをホーロー製バット上に1cIL程の厚味にな
る様に移し、大気中でトルエンの飛散処理を加えた。溶
剤臭が無くなった段階で磁性粉を回収し、風乾炭化鉄粉
とした。
Next, the fine particles were sufficiently immersed in toluene, and then the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 cIL, and subjected to toluene scattering treatment in the atmosphere. When the solvent odor disappeared, the magnetic powder was collected and used as air-dried iron carbide powder.

該風乾炭化鉄粉の物性評価を行ったところ、5A=53
.4774/gr、、Hc=13000e、σg=13
4emu/gr、。
When the physical properties of the air-dried iron carbide powder were evaluated, 5A=53
.. 4774/gr,, Hc=13000e, σg=13
4emu/gr.

Rm = 0.492であった。Rm = 0.492.

〈風乾炭化鉄粉の塗料化、塗工及びテープ特性の評価〉 該風乾炭化鉄粉10 gr、を採取して、下記材料と共
に、内容積550+1!幼ポツトに投入し、米国・レッ
ド・デビル社製ペイント・シェーカーで5時間混合・分
散を続けた。分散メディアとしては、2111Ifのα
−アルミナ・ビーズを用いた。
<Evaluation of coating, coating, and tape properties of air-dried iron carbide powder> Take 10 gr of the air-dried iron carbide powder and add it together with the following materials to make an internal volume of 550+1! The mixture was poured into a small pot, and mixed and dispersed for 5 hours using a paint shaker manufactured by Red Devil Co., Ltd., USA. As a distributed media, 2111If α
- using alumina beads.

−UCC社製塩酢ビ系ポリマー VAGH: 1.Og
r・三井東圧化学社製ポリウレタンNL−2448: 
1.Ogr・大入化学社製リン酸エステル AP  1
3 : 0.21r・住友化学社製α−アルミナ AK
P  30 : 0.2gr・溶剤 トルエン: 1’
4 gr、、 MEK: 14gr。
- Salt vinyl acetate polymer manufactured by UCC Co., Ltd. VAGH: 1. Og
r.Mitsui Toatsu Chemical Co., Ltd. polyurethane NL-2448:
1. Ogr/Oiri Kagakusha phosphate ester AP 1
3: 0.21r α-alumina AK manufactured by Sumitomo Chemical Co., Ltd.
P30: 0.2gr・Solvent Toluene: 1'
4 gr., MEK: 14 gr.

次いで、分散メディアを分離して磁性塗料とし、磁気テ
ープ仕様の精密コーターにてアプリケーターを利用して
12μ厚の東し社製ポリエステル・フィルム(ニルミラ
ー12B−LIO)上に塗工した。
Next, the dispersion media was separated to obtain a magnetic paint, which was coated onto a 12μ thick polyester film (Nilmirror 12B-LIO) manufactured by Toshi Co., Ltd. using an applicator in a precision coater equipped with magnetic tape.

その後、カレンダー・ロール処理して塗膜面の平滑化処
理を加え、50℃にて2日間熱処理を加えてポリウレタ
ン硬化反応を完結させた。該シートを3.81mmに裁
断して、現行カセット仕様サイズの磁気テープを製造し
た。
Thereafter, the coating surface was smoothed by calender roll treatment, and heat treatment was applied at 50° C. for 2 days to complete the polyurethane curing reaction. The sheet was cut to 3.81 mm to produce a magnetic tape having the size specified by the current cassette.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 Hc=12090e、 Br=2890Gauas、 
Br/Bm=0.806であり、充分な特性値を示した
The magnetic properties of the magnetic tape are measured using the measuring device described above.
As a result of evaluation, Hc=12090e, Br=2890 Gauas,
Br/Bm=0.806, showing sufficient characteristic values.

くオーディオ特性の評価〉 実施例−1と同様にして、IEC基準T’ype−IV
テープを基準にしたオーディオ特性の測定・評価を行っ
た。
Evaluation of audio characteristics> In the same manner as in Example-1, IEC standard T'ype-IV
We measured and evaluated audio characteristics based on tape.

低域感度(:333Hz感度)は+1.2 d B、高
域感度(:20kHz感度)は+3.5dB、最大出力
(:3%MOL)は+7.5dB、飽和出力(: 10
kHz、5QL)は+1.5 a B、更に聴感補正後
の交流バイアス・ノイズ(:Nac)は−58,0dB
であった。
Low frequency sensitivity (:333Hz sensitivity) is +1.2 dB, high frequency sensitivity (:20kHz sensitivity) is +3.5dB, maximum output (:3%MOL) is +7.5dB, saturated output (:10
kHz, 5QL) is +1.5 a B, and after auditory correction AC bias noise (:Nac) is -58.0 dB
Met.

後述の比較例で明らかとなるが、この特性は十二分な高
域感度・飽和出力を示し、かつ特異的に低いノイズを与
えるものである。
As will be made clear in the comparative examples described later, this characteristic shows sufficient high-frequency sensitivity and saturation output, and provides a uniquely low noise.

〔比較例−1〕 本比較例はハイ・ポジション用オーディオ用途の鉄の主
要成分とした強磁性金属粉であり、原料のα−オキシ水
酸化鉄の軸比(:L/D)が短い場合の例である。
[Comparative Example-1] This comparative example is a ferromagnetic metal powder that is the main component of iron for high-position audio applications, and when the axial ratio (:L/D) of the raw material α-iron oxyhydroxide is short. This is an example.

く還元鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法によりP、Si及び共沈成分としてのNi−成分を
重量比でP/Fs=0.3/100.Si/Fe=0.
5/100及びNi/Fs=1.5/100だけ含む針
状性オキシ水酸化鉄微粒子を合成した。
Production of reduced iron powder> By the method described in JP-A-57-106527 and JP-A-57-96504, P, Si and a Ni component as a coprecipitated component were mixed in a weight ratio of P/Fs=0.3/100. Si/Fe=0.
Acicular iron oxyhydroxide fine particles containing Ni/Fs=1.5/100 and Ni/Fs=1.5/100 were synthesized.

該微粒子の形状は、SAは28.0i/gr、、  又
透過電子顕微鏡像からのL/Dは5であった。次いで、
特開昭58−48612記載の方法によりホウ酸亜鉛の
被着変性処理を加え(B/F e =0.6/ 100
重量比)、乾燥・粉砕工程を経た後、水素ガスによる気
相接触還元反応(:温度=375℃、ガス空間速度= 
2 ONm H2/kgr−Fe、Hr、)により還元
鉄粉とした。
Regarding the shape of the fine particles, SA was 28.0i/gr, and L/D was 5 from a transmission electron microscope image. Then,
Zinc borate adhesion modification treatment was added by the method described in JP-A-58-48612 (B/F e =0.6/100
Weight ratio), after drying and pulverization process, gas phase catalytic reduction reaction with hydrogen gas (temperature = 375°C, gas hourly space velocity =
2 ONm H2/kgr-Fe, Hr) to obtain reduced iron powder.

該鉄粉を窒素ガス雰囲気下で一部抜き出して、SA及び
既述の装置による磁性の評価を行ったところ、5A=2
2.0m”/gr、、Hc=7870e、(Fg=18
5emu/gr 、 、 Rs = 0.450であっ
た。
A portion of the iron powder was extracted under a nitrogen gas atmosphere and evaluated for magnetism using SA and the above-mentioned apparatus, and it was found that 5A=2
2.0m”/gr,, Hc=7870e, (Fg=18
5 emu/gr, Rs = 0.450.

く還元鉄粉の風乾〉 該微粒子を充分トルエンに浸漬した後、該微粒子スラリ
ーをホーロー製バット上に1cIn程の厚味になる様に
移し、大気中でトルエンの飛散処理を加えた。溶剤臭が
無くなった段階で磁性粉を回収し、風乾鉄粉とした。
Air Drying of Reduced Iron Powder> After the fine particles were sufficiently immersed in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 cIn, and subjected to toluene scattering treatment in the atmosphere. When the smell of the solvent disappeared, the magnetic powder was collected and made into air-dried iron powder.

該風乾鉄粉の物性評価を行ったところ、5A=21.5
m/ gr、 、 Ha =8200s 、0g = 
165 emu/gr−rRs = 0.444であっ
た。
When the physical properties of the air-dried iron powder were evaluated, 5A=21.5
m/gr, , Ha =8200s, 0g =
165 emu/gr-rRs = 0.444.

〈風乾鉄粉の塗料化・塗工及びテープ特性の評価〉 該風乾鉄粉10gr、  を採取し、実施例−1と同様
にして塗料調製を行い、塗工・塗膜の平滑処理・熱処理
・裁断を加えて現行のカセット仕様サイズの磁気テープ
とした。
<Evaluation of coating/coating and tape properties of air-dried iron powder> 10g of the air-dried iron powder was collected, a coating was prepared in the same manner as in Example-1, and coating/film smoothing/heat treatment/ After cutting, it was made into a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 He−6530e 、 Br=2760Gauss、 
Br/Bm=0.611という特性値であった。
The magnetic properties of the magnetic tape are measured using the measuring device described above.
As a result of evaluation, He-6530e, Br=2760 Gauss,
The characteristic value was Br/Bm=0.611.

くオーディオ特性の評価〉 実施例−1と同様にして、IEC基準Type−IIテ
ープを基準にしたオーディオ特性の測定・評価を行りた
Evaluation of audio characteristics> In the same manner as in Example-1, audio characteristics were measured and evaluated using IEC standard Type-II tape as a reference.

低域感度(=333Hz333Hz感、4 d B1高
域感度(:12.5kH感度)は+3.0 d B、最
大出力(:3%MOL)は+7.5dB、飽和出力(:
10kHz、5QL)は−3,5d B更に聴感補正後
の交接バイアス・ノイズ(:Nac)は−54,0d 
Bであった。
Low range sensitivity (=333Hz333Hz feeling, 4 dB1 high range sensitivity (: 12.5kHz sensitivity) is +3.0 dB, maximum output (: 3% MOL) is +7.5 dB, saturated output (:
10kHz, 5QL) is -3.5d B, and after auditory correction, the intersection bias noise (:Nac) is -54.0d
It was B.

〔比較例−2〕 本比較例はハイ・ポジション用オーディオ用途の鉄及び
ニッケルの合金を主要成分とした強磁性金属粉の例であ
る。
[Comparative Example-2] This comparative example is an example of a ferromagnetic metal powder whose main components are an alloy of iron and nickel for high-position audio applications.

く還元鉄粉の製造〉 実施例−2と同様の方法により重量比でP/Fe=5.
5/100.Si/Fe=1.5/Zoo及びNi/F
e=36/100だけ含む針状性α−オキシ水酸化鉄微
粒子を合成した。
Production of reduced iron powder> By the same method as in Example-2, the weight ratio of P/Fe was 5.
5/100. Si/Fe=1.5/Zoo and Ni/F
Acicular α-iron oxyhydroxide fine particles containing only e=36/100 were synthesized.

該微粒子の形状は、SAは31.1 m/ g r 、
、又透過電子顕微鏡像からのL/Dは15であった。次
いで、乾燥・粉砕工程を経た後、仮焼(温度=725℃
)し、水素ガスによる気相接触還元反応に温度=425
℃、ガス空間速度−2ONm3−Hffi/kgr−F
e、Hr、)により還元鉄粉とした。
The shape of the fine particles is as follows: SA is 31.1 m/g r;
, and L/D was 15 from a transmission electron microscope image. Next, after passing through a drying and pulverizing process, calcination (temperature = 725°C)
), and temperature = 425 for gas phase catalytic reduction reaction with hydrogen gas.
°C, gas space velocity -2ONm3-Hffi/kgr-F
e, Hr,) to obtain reduced iron powder.

該鉄粉を窒素ガス雰囲気下で一部抜き出して、SA及び
既述の装置による磁性の評価を行ったところ、5A=2
8.2m/gr、、Hc=7620e、σg=149゜
emu/gr 、 、 Rs = 0.452であった
A portion of the iron powder was extracted under a nitrogen gas atmosphere and evaluated for magnetism using SA and the above-mentioned apparatus, and it was found that 5A=2
8.2 m/gr, , Hc = 7620e, σg = 149゜emu/gr, , Rs = 0.452.

く還元鉄粉の風乾〉 該微粒子を充分トルエンに浸漬した後、該微粒子スラリ
ーをホーロー製バット上に1cm程の厚味になる様に移
し、大気中でトルエンの飛散処理を加えた。溶剤臭が無
くなった段階で磁性粉を回収し、風乾鉄粉とした。
Air Drying of Reduced Iron Powder> After thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to toluene scattering treatment in the atmosphere. When the smell of the solvent disappeared, the magnetic powder was collected and made into air-dried iron powder.

該風乾鉄粉の物性評価を行ったところ、5A=27.5
77//gr、、 Hc=7820e、σs=124e
mu/gr、。
When the physical properties of the air-dried iron powder were evaluated, 5A=27.5
77//gr,, Hc=7820e, σs=124e
mu/gr.

Rs = 0.447であった。Rs = 0.447.

く風乾鉄粉の塗料化・塗工及びテープ特性の評価〉 該風乾鉄粉10 gr、を採取し、実施例−1と同様に
して塗料調製を行い、塗工・塗膜の平滑処理・熱処理・
裁断を加えて現行のカセット仕様サイズの磁気テープと
した。
Making paint from air-dried iron powder, coating, and evaluation of tape properties〉 10 gr of the air-dried iron powder was collected, and a paint was prepared in the same manner as in Example-1, followed by coating, smoothing of the coating, and heat treatment.・
After cutting, it was made into a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 Hc=6930e 、 Br=1824Gauss、 
Br/Bm=0.698という特性値であった。
The magnetic properties of the magnetic tape are measured using the measuring device described above.
As a result of evaluation, Hc=6930e, Br=1824 Gauss,
The characteristic value was Br/Bm=0.698.

くオーディオ特性の評価〉 実施例−1と同様にして、IEC基準Type−IIテ
ープを基準にしたオーディオ特性の測定・評価を行った
Evaluation of Audio Characteristics> In the same manner as in Example-1, the audio characteristics were measured and evaluated using the IEC standard Type-II tape as a reference.

低域感度(’ 333Hz感度)は+2.0 a B、
高域感度(: 12.5kH感度)は+3.0 d B
、最大出力(:3%MOL)は+5.5 d B1飽和
出力(: 10kHz、5QL)は−3,5dB1更に
聴感補正後の交流バイアス・ノイズ(二Nae)は−5
5,5dBであった。
Low frequency sensitivity ('333Hz sensitivity) is +2.0 a B,
High frequency sensitivity (: 12.5kHz sensitivity) is +3.0 dB
, the maximum output (: 3% MOL) is +5.5 d B1 saturation output (: 10 kHz, 5QL) is -3.5 dB1, and the AC bias noise (2 Nae) after auditory correction is -5
It was 5.5 dB.

〔比較例−3〕 本比較例はメタル・ポジション用オーディオ用途の鉄を
主要成分とした強磁性金属粉の例である。
[Comparative Example-3] This comparative example is an example of a ferromagnetic metal powder containing iron as a main component for metal position audio applications.

く還元鉄粉の用意〉 実施例−1記載の還元鉄粉の粒子形状・磁気特性が現行
のメタル・ポジション用オーディオ用途の磁性粉として
適当であるので、このものを利用する事とした。
Preparation of Reduced Iron Powder Since the particle shape and magnetic properties of the reduced iron powder described in Example 1 are suitable as magnetic powder for current metal position audio applications, this powder was used.

く還元鉄粉の風乾〉 該微粒子を充分トルエンに浸漬した後、該微粒子スラリ
ーをホーロー製バット上に1cWL程の厚味になる様に
移し、大気中でトルエンの飛散処理を加えた。溶剤臭が
無くなった段階で磁性粉を回収し、風乾鉄粉とした。
Air Drying of Reduced Iron Powder> After thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1 cWL, and subjected to toluene scattering treatment in the atmosphere. When the smell of the solvent disappeared, the magnetic powder was collected and made into air-dried iron powder.

該風乾鉄粉の物性評価を行ったところ、5A=33.5
g/g、r、、 Hc=12950e 、 ffs=1
54emu/gr、。
When the physical properties of the air-dried iron powder were evaluated, 5A = 33.5
g/g, r,, Hc=12950e, ffs=1
54 emu/gr.

Rs=0.491であった。Rs=0.491.

く風乾鉄粉の塗料化・塗工及びテープ特性の評価〉 該風乾鉄粉10gr、を採取し、実施例−2と同様にし
て塗料調製を行い、塗工・塗膜の平滑処理・熱処理・裁
断を加えて現行のカセット仕様サイズの磁気テープとし
た。
Making paint from air-dried iron powder, coating, and evaluation of tape properties> 10g of the air-dried iron powder was collected, a paint was prepared in the same manner as in Example-2, and coating, smoothing of the coating film, heat treatment, After cutting, it was made into a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を既述の測定装置にて測定・評
価したところ、 Hc=l 2000e 、 Br=3010Gauss
、 Br/Bm=0.805という特性値であった。
When the magnetic properties of the magnetic tape were measured and evaluated using the above-mentioned measuring device, Hc=l 2000e, Br=3010 Gauss
, Br/Bm=0.805.

くオーディオ特性の評価〉 実施例−2と同様にして、IEC基準Type−IVテ
ープを基準にしたオーディオ特性の測定・評価を行った
Evaluation of Audio Characteristics> In the same manner as in Example-2, the audio characteristics were measured and evaluated using the IEC standard Type-IV tape as a reference.

低域感度(:333Hz感度)は+1.3 d B、高
域感度(:20kHz感度)は+2.8 d B、最大
出力(=3%MOL)は7.0dB、飽和出力(:10
kHz、5QL)は+1.0 dB 。
Low frequency sensitivity (:333Hz sensitivity) is +1.3 dB, high frequency sensitivity (:20kHz sensitivity) is +2.8 dB, maximum output (=3%MOL) is 7.0dB, saturated output (:10
kHz, 5QL) is +1.0 dB.

更に聴感補正後の交流バイアス・ノイズ(:Nac)は
−56,0d Bであった。
Furthermore, the alternating current bias noise (Nac) after auditory correction was -56.0 dB.

〔効 果〕〔effect〕

実施例及び比較例の結果から本発明の作用・効果をまと
めると以下の通りとなる。
The effects and effects of the present invention can be summarized as follows from the results of Examples and Comparative Examples.

即ち、高密度磁気記録に適した磁気記録素材としての針
状性強磁性微粒子において、該微粒子が炭素を所定量含
む鉄を主成分とした微粒子系であり、被着変性された針
状性オキシ水酸化鉄微粒子を還元性ガスによる気相接触
還元反応によって強磁性還元鉄とし、次いで炭化性ガス
による気相接触炭化反応によって強磁性炭化鉄微粒子と
する事によって、 (1)炭化鉄微粒子自体に関しては、原料であるオキシ
水酸化鉄の形状を良く継承した針状性を示 。
That is, in the case of acicular ferromagnetic fine particles as a magnetic recording material suitable for high-density magnetic recording, the fine particles are mainly iron-based fine particles containing a predetermined amount of carbon, and the acicular ferromagnetic fine particles are coated with modified acicular ferromagnetic particles. By converting iron hydroxide fine particles into ferromagnetic reduced iron through a gas phase catalytic reduction reaction using a reducing gas, and then into ferromagnetic iron carbide fine particles through a gas phase catalytic carbonization reaction using a carbonizing gas, (1) Regarding the iron carbide fine particles themselves: exhibits an acicular shape that closely follows the shape of iron oxyhydroxide, the raw material.

しつつ、 (2)炭化度に応じて磁気特性値、特に保磁力Hc値ヲ
広範囲にコントロールする事が可能であり、(3)磁性
粉粒子が微細であり、尚且つ適性な磁気特性(保磁力、
磁化など)を備えていることにより、高周波数の電磁変
換特性(感度、出力)及びノイズが極めて大きく改良さ
れる事、(4)製造設備としてはオキシ水酸化鉄を原料
とした強磁性金属粉の製造設備がそのまま使用可能であ
る事、 が判明した。
(2) It is possible to control the magnetic property values, especially the coercive force Hc value, over a wide range according to the degree of carbonization, and (3) the magnetic powder particles are fine and have appropriate magnetic properties (coercive force Hc value). magnetic force,
(4) The manufacturing equipment uses ferromagnetic metal powder made from iron oxyhydroxide as raw material. It was found that the manufacturing equipment can be used as is.

以上の様に、本発明の物質はオーディオ用途及びビデオ
用途として、その特性著しい磁性素材であり、その製造
方法を提供するものである。
As described above, the substance of the present invention is a magnetic material with remarkable characteristics for use in audio and video applications, and provides a method for producing the same.

Claims (7)

【特許請求の範囲】[Claims] (1)針状性の強磁性炭化鉄微粒子を主体とする磁気記
録媒体用磁性素材。
(1) A magnetic material for magnetic recording media mainly consisting of acicular ferromagnetic iron carbide fine particles.
(2)炭化鉄組成FeCxにおけるxの値が、0.1乃
至0.5の範囲にある特許請求の範囲第1項記載の磁性
素材。
(2) The magnetic material according to claim 1, wherein the value of x in iron carbide composition FeCx is in the range of 0.1 to 0.5.
(3)炭化鉄微粒子の長軸径が1μ以下、短軸径が0.
1.μ以下で、その軸比が10乃至30である特許請求
の範囲第1項記載の磁性素材。
(3) The long axis diameter of iron carbide fine particles is 1μ or less, and the short axis diameter is 0.
1. 2. The magnetic material according to claim 1, wherein the magnetic material is less than μ and has an axial ratio of 10 to 30.
(4)磁気特性値が保磁力として500Oe以上、飽和
磁化として100emu/gr.以上を示す強磁性の炭
化鉄微粒子よりなる特許請求の範囲第1項記載の磁性素
材。
(4) Magnetic property values are 500 Oe or more as coercive force and 100 emu/gr as saturation magnetization. A magnetic material according to claim 1, comprising ferromagnetic iron carbide fine particles exhibiting the above.
(5)形状保持成分で被着変性された針状性オキシ水酸
化鉄微粒子を還元性ガスによる気相接触還元反応によっ
て強磁性還元鉄粉とし、次いで炭化性ガスによる気相接
触炭化反応によって強磁性炭化鉄とする、針状性で強磁
性を示す磁気記録用炭化鉄微粒子の製造方法。
(5) The acicular iron oxyhydroxide particles modified with a shape-retaining component are made into ferromagnetic reduced iron powder through a gas phase catalytic reduction reaction using a reducing gas, and then strengthened through a gas phase catalytic carbonization reaction using a carbonizing gas. A method for producing magnetic iron carbide fine particles for magnetic recording, which are acicular and exhibit ferromagnetism.
(6)還元性ガスが水素を主体とするガスであり、気相
接触還元反応が300乃至500℃で行なわれる特許請
求の範囲第5項記載の製造方法。
(6) The manufacturing method according to claim 5, wherein the reducing gas is a gas mainly composed of hydrogen, and the gas phase catalytic reduction reaction is carried out at 300 to 500°C.
(7)炭化性ガスが一酸化炭素を主体とするガスであり
、気相接触炭化反応が300乃至500℃で行なわれる
特許請求の範囲第5項記載の製造方法。
(7) The manufacturing method according to claim 5, wherein the carbonizing gas is a gas mainly composed of carbon monoxide, and the gas phase catalytic carbonization reaction is carried out at 300 to 500°C.
JP59273712A 1984-12-27 1984-12-27 Acicular particulates of cementite for magnetic recording and manufacture thereof Pending JPS61154110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273712A JPS61154110A (en) 1984-12-27 1984-12-27 Acicular particulates of cementite for magnetic recording and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273712A JPS61154110A (en) 1984-12-27 1984-12-27 Acicular particulates of cementite for magnetic recording and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61154110A true JPS61154110A (en) 1986-07-12

Family

ID=17531504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273712A Pending JPS61154110A (en) 1984-12-27 1984-12-27 Acicular particulates of cementite for magnetic recording and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61154110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223080A (en) * 2007-03-12 2008-09-25 Toshiba Corp Method for manufacturing core-shell type magnetic nanoparticle
CN103895142A (en) * 2014-03-04 2014-07-02 中原工学院 Preparation device and process of semimetal friction plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199533A (en) * 1983-04-25 1984-11-12 Daikin Ind Ltd Magnetic powder
JPS6016808A (en) * 1983-07-05 1985-01-28 Daikin Ind Ltd Magnetic material containing iron carbide
JPS6071509A (en) * 1983-09-17 1985-04-23 Daikin Ind Ltd Needlelike particle containing iron carbide
JPS60122712A (en) * 1983-12-07 1985-07-01 Daikin Ind Ltd Surface treated needlelike particle containing iron carbide and magnetic coating composition containing said particle
JPS60124023A (en) * 1983-12-07 1985-07-02 Daikin Ind Ltd Magnetic recording medium
JPS60141611A (en) * 1983-12-28 1985-07-26 Daikin Ind Ltd Acicular particle of iron carbide and its preparation
JPS61106408A (en) * 1984-10-25 1986-05-24 Daikin Ind Ltd Preparation of acicular particle containing iron carbide
JPS61111921A (en) * 1984-11-01 1986-05-30 Daikin Ind Ltd Production of acicular particle containing iron carbide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199533A (en) * 1983-04-25 1984-11-12 Daikin Ind Ltd Magnetic powder
JPS6016808A (en) * 1983-07-05 1985-01-28 Daikin Ind Ltd Magnetic material containing iron carbide
JPS6071509A (en) * 1983-09-17 1985-04-23 Daikin Ind Ltd Needlelike particle containing iron carbide
JPS60122712A (en) * 1983-12-07 1985-07-01 Daikin Ind Ltd Surface treated needlelike particle containing iron carbide and magnetic coating composition containing said particle
JPS60124023A (en) * 1983-12-07 1985-07-02 Daikin Ind Ltd Magnetic recording medium
JPS60141611A (en) * 1983-12-28 1985-07-26 Daikin Ind Ltd Acicular particle of iron carbide and its preparation
JPS61106408A (en) * 1984-10-25 1986-05-24 Daikin Ind Ltd Preparation of acicular particle containing iron carbide
JPS61111921A (en) * 1984-11-01 1986-05-30 Daikin Ind Ltd Production of acicular particle containing iron carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223080A (en) * 2007-03-12 2008-09-25 Toshiba Corp Method for manufacturing core-shell type magnetic nanoparticle
CN103895142A (en) * 2014-03-04 2014-07-02 中原工学院 Preparation device and process of semimetal friction plate

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε&#39;iron carbide and method for producing the same
JPS61196502A (en) Magnetic material and manufacture thereof
JPS61154110A (en) Acicular particulates of cementite for magnetic recording and manufacture thereof
JPS61234506A (en) Magnetic material and manufacture thereof
JP2003263719A (en) Magnetic powder for magnetic recording
JP2904225B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP4143714B2 (en) Method for producing ferromagnetic iron alloy powder
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JPH04168703A (en) Manufacture of needle-shaped magnetic iron oxide particle and powder for magnetic recording
JP2011096312A (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP4469994B2 (en) Iron nitride magnetic powder with excellent weather resistance
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
EP0433894B1 (en) Process for producing magnetic metal powder for magnetic recording
JP2767056B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP4839459B2 (en) Ferromagnetic iron alloy powder for magnetic recording media
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPH0349026A (en) Magnetic powder of acicular alloy and production thereof and magnetic recording medium formed by using this powder
JP2583070B2 (en) Magnetic recording media
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS5961903A (en) Manufacture of acicular magnetic metal powder
JP4625983B2 (en) Ferromagnetic iron alloy powder for magnetic recording media
US7473469B2 (en) Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JPS62156202A (en) Ferromagnetic metallic powder treated with amines