JPS61234506A - Magnetic material and manufacture thereof - Google Patents

Magnetic material and manufacture thereof

Info

Publication number
JPS61234506A
JPS61234506A JP60075285A JP7528585A JPS61234506A JP S61234506 A JPS61234506 A JP S61234506A JP 60075285 A JP60075285 A JP 60075285A JP 7528585 A JP7528585 A JP 7528585A JP S61234506 A JPS61234506 A JP S61234506A
Authority
JP
Japan
Prior art keywords
gas
iron
magnetic
fine particles
iron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60075285A
Other languages
Japanese (ja)
Inventor
Kazufuyu Sudou
須藤 和冬
Kimiteru Tagawa
公照 田川
Shigeo Koba
繁夫 木場
Kazufumi Oshima
一史 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60075285A priority Critical patent/JPS61234506A/en
Publication of JPS61234506A publication Critical patent/JPS61234506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable the remarkable reduction of noise while restraining the decline of output of the electromagnetic conversion characteristics to the possible minimum by forming the material out of the ferromagnetic minute particles including the iron carbide having a needle-form property. CONSTITUTION:The surface of alpha-oxy-iron hydroxide or that in which an element selected from Al, Si and etc. was coprecipitated is coated with the element selected from B, Al, Si and etc. for avoidance of sintering, maintenance of shape, control of coersive force, improvement in erosion resistance, and etc. Then the dried surface-modified alpha-oxy-iron hydroxide is milled and calcined into a surface-modified alpha-oxy-iron hydroxide. Next, the surface-modified powder is dilluted by a mixed gas of a reducable gas and a carbonizable gas. If necessary by an inert gas, to cause a gas-phase contact reaction and accordingly, needle-form minute particles including iron carbide showing ferromagnetic property are manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は磁性素材及びその゛製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a magnetic material and a manufacturing method thereof.

該素材は、音声及び映像を主対象とした高密度記録に適
した磁気記録媒体に於ける磁性素材として好適に使用で
きる。
This material can be suitably used as a magnetic material in a magnetic recording medium suitable for high-density recording mainly for audio and video.

〈従来技術〉 磁気テープ、磁気記録媒体として有用な磁性粉末は、か
ってγ一酸化鉄が主体であった。近年VTR用や高級オ
ーディオ用の高密度記録媒体が望まれるようになり、オ
キシ水酸化鉄あるいは酸    −化鉄な主体とする粉
末を還元性ガスによる気相接触還元反応によって得られ
る金属鉄もしくはコバルト或いはニッケルと鉄との合金
を主体とする高い保磁力を有する磁性粉末が用いられる
様になってきた。金属磁性微粒子の保磁力は形状異方性
が強い為、粒子サイズ、針状性等に依存するが、テープ
記録用としては再生ヘッド、消去ヘッドの能力との兼合
いで適性な保磁力が必要である。磁気記録用媒体はオー
ディオ用、ビデオ用を問わず広い記録周波数帯域での高
出力化、低ノイズ化が要求される。即ち磁性粉末として
はその形状は微細化の傾向にある=加えて塗料用樹脂と
の親和性や分散性、塗膜の配向性・充填性を更に向上さ
せる事が望まれ、バインダー樹脂・各種添加剤の改良及
び塗料分散・媒体加工技術の改良研究が成されている(
=例えば、明石丘部「磁気テープの進歩」、日本応用磁
気学会誌、7(3)、185 (1983) 、 )。
<Prior Art> Magnetic powders useful as magnetic tapes and magnetic recording media were once mainly composed of γ iron monoxide. In recent years, demand has increased for high-density recording media for VTRs and high-end audio, and metallic iron or cobalt, which is obtained by gas-phase catalytic reduction reaction of iron oxyhydroxide or iron oxide powder with a reducing gas, has recently become desirable. Alternatively, magnetic powders having a high coercive force and mainly composed of an alloy of nickel and iron have come to be used. The coercive force of metal magnetic fine particles has strong shape anisotropy, so it depends on the particle size, acicularity, etc., but for tape recording, an appropriate coercive force is required in consideration of the capabilities of the playback head and erase head. It is. Magnetic recording media, whether used for audio or video, are required to have high output and low noise over a wide recording frequency band. In other words, the shape of magnetic powder tends to become finer.In addition, it is desired to further improve the affinity and dispersibility with paint resins, as well as the orientation and filling properties of coating films, and binder resins and various additives. Research is being carried out to improve the paint dispersion and media processing technology.
= For example, Akashi Okabe, "Advances in magnetic tape," Journal of the Japan Society of Applied Magnetics, 7(3), 185 (1983), ).

従って、磁性粉の許容範囲内での可及的なHc−値の増
大及び微細化が高密度記録実現の為の極めて律速的な要
素技術となっている。
Therefore, increasing the Hc value as much as possible within the permissible range of magnetic powder and making it finer are extremely rate-limiting elemental technologies for realizing high-density recording.

鉄を主要成分とした針状性金属粉微粒子の場合、その製
造方法によっても太き(変わり得る余地があるものの、
大局的には長軸径(:L)及び短軸径(=D)或いはそ
の軸比(: L/D ’)の値で既述のHe−値はほぼ
決まってしまい、例えばL/D:10前後以上の針状性
微粒子系ではL:1μ前後でHc−値:500乃至70
00e程度、L:0.5μ前後でHc−値: 1000
乃至12000e程度、又L:0.1μ前後で1400
乃至16000e程度が通常は実現されている。
In the case of acicular metal powder particles whose main component is iron, the thickness may vary depending on the manufacturing method (although there is room for change).
Overall, the He- value mentioned above is almost determined by the values of the major axis diameter (L) and minor axis diameter (=D) or their axial ratio (L/D'), for example, L/D: For acicular fine particle systems of around 10 or more, L: around 1μ and Hc-value: 500 to 70
About 00e, L: around 0.5μ, Hc-value: 1000
From about 12000e to about 1400 at L: 0.1μ
A value of about 16,000e to 16,000e is normally achieved.

従来、磁性粉の形状を保持し、又適性な保磁力を有しつ
つ、粒子サイズを微細化する技術としては (1)軸比を極度に低(設計する方法 (2)多量のNi−成分の導入に基づく合金化微粒子の
方法 更に、 (3)S i、B、P、C及びN等の導入に基づく半金
属合金化微粒子の方法 等が知られている。
Conventionally, the techniques for reducing the particle size while maintaining the shape of magnetic powder and having an appropriate coercive force include (1) a method of designing an extremely low axial ratio (2) a method of designing a large amount of Ni-component. Further, (3) a method for producing semimetallic alloyed particles based on the introduction of Si, B, P, C, N, etc. is also known.

(1)に於いては形状異方性を低下させる事によって、
強磁性発現機構を抑制する事が原理であり、また(2)
に於いてはNiによるFe−成分の形成している体心立
方晶(:bcc)の格子置換化に伴なう磁気的希釈によ
って磁気異方性が低下する事を積極的に利用する方法で
あるが、テープ媒体に加工すると充分な配向化が達成で
きず、媒体の残留磁束密度(:Br)と最大磁束密度(
:Bm)との比: Br / Bm−値、即ちその角型
比が大きく低下してしまう欠点がある。
In (1), by reducing the shape anisotropy,
The principle is to suppress the ferromagnetic expression mechanism, and (2)
This is a method that actively utilizes the fact that the magnetic anisotropy decreases due to the magnetic dilution caused by the lattice substitution of the body-centered cubic crystal (:bcc) formed by the Fe-component due to Ni. However, when processed into a tape medium, sufficient orientation cannot be achieved, and the residual magnetic flux density (:Br) and maximum magnetic flux density (
:Bm): There is a drawback that the Br/Bm value, that is, the squareness ratio thereof is greatly reduced.

(3)に於いてはその出発物質を各種オキシ水酸化鉄と
し、B、Si及びPを含む化合物を表面変性しても水素
ガスを主体とする気相接触反応によっては該酸化物迄に
停まりそれらの導入は不可能である。高価なボランガス
、シランガス、ホスフィンガスによる気相接触反応を行
なう事となる。残るN及びCのみがその原料ガスが廉価
であり、気相接触反応によって鉄中に導入する事が可能
であるが、Nの導入には窒化剤にアンモニアを使用する
事となるので、製造設備上の特殊な腐食対策な講する必
要があり、工業的な生産を考えた場合は実際的ではなか
った。
In (3), the starting material is various iron oxyhydroxides, and even if a compound containing B, Si, and P is surface-modified, the oxides can be stopped by a gas phase catalytic reaction mainly using hydrogen gas. Therefore, their introduction is impossible. A gas phase catalytic reaction using expensive borane gas, silane gas, and phosphine gas will be performed. Only the remaining N and C can be introduced into the iron by gas phase catalytic reaction because their raw material gases are inexpensive, but since ammonia is used as a nitriding agent to introduce N, the production equipment It was necessary to take special anti-corrosion measures, which was impractical when considering industrial production.

く本発明の解決しようと る間 点〉 音声及び映像を主対象とした高密度磁気記録媒体用の磁
性素材としての針状性磁性粉に対して、その粒子サイズ
と磁気特性、特に保磁力Hc−値とを独立に制御する設
計技術は、磁性粉に関する究極の要素技術の一つである
。これには高密度化の為の最も待ち望まれている工業技
術の一つと位置づける事が出来る。
[Problems to be Solved by the Present Invention] Regarding acicular magnetic powder as a magnetic material for high-density magnetic recording media mainly intended for audio and video, its particle size and magnetic properties, especially coercive force Hc - The design technology that independently controls the value is one of the ultimate elemental technologies regarding magnetic powder. This can be positioned as one of the most awaited industrial technologies for increasing density.

既に、本発明者等によって「還元鉄を炭化性ガスで気相
接触反応により炭化鉄微粒子を製造する方法」及び「還
元鉄を還元性ガス及び炭化性ガスで気相接触反応により
炭化鉄微粒子を製造する方法」が提案されている。しか
しながら、これらの技術に於いては還元鉄を製造した後
、炭化反応を行なう為、工程が複雑になり、生産性も低
(なり極めて好ましくない。
The present inventors have already published a method for producing iron carbide fine particles by a gas phase catalytic reaction of reduced iron with a carbonizing gas and a method for producing iron carbide fine particles by a gas phase catalytic reaction of reduced iron with a reducing gas and a carbonizing gas. A manufacturing method has been proposed. However, in these techniques, a carbonization reaction is performed after producing reduced iron, which makes the process complicated and the productivity low (which is extremely undesirable).

本発明では炭化鉄微粒子の製造に於いて、原料オキシ水
酸化鉄或いは酸化鉄を同時に還元・炭化反応を行なう事
及び副生ずる酸化鉄量及び炭素量を極めて少量にする事
を主目的としている。
In the production of iron carbide fine particles, the present invention aims to simultaneously reduce and carbonize the raw material iron oxyhydroxide or iron oxide, and to minimize the amount of iron oxide and carbon produced as by-products.

く基本的着想〉 本発明者等は、上記の問題点の解決を計る為に、種々の
検討を加え、その特性の改良を研究し続けている間に炭
化性ガスと共に還元性ガスを同伴共存させ、還元反応と
炭化反応を同時に行゛なう事により酸化鉄及び炭素の生
成量の少ない磁性素材として好適な炭化鉄を製造するこ
とができることを見い出した。この方法によって効率良
く炭化反応が進むので還元鉄粉の保磁力(Hc)に比べ
て、炭化度に応じて8000e程度迄低下でき、尚且飽
和磁化(σS)も高く保持する事が可能になりた。
Basic Idea> In order to solve the above problems, the inventors of the present invention have conducted various studies, and while continuing to research improvements in their properties, they have discovered that reducing gas can coexist with carbonizing gas. It has been discovered that iron carbide, which is suitable as a magnetic material and produces less iron oxide and carbon, can be produced by simultaneously carrying out a reduction reaction and a carbonization reaction. With this method, the carbonization reaction proceeds efficiently, so compared to the coercive force (Hc) of reduced iron powder, it can be lowered to about 8000e depending on the degree of carbonization, and it is also possible to maintain a high saturation magnetization (σS). .

即ち、より微細な粒子を適性なHeまで低下制御しても
、媒体テープの電磁変換特性の出力の低下は最小限に抑
えつつ、ノイズは飛躍的に低下させる事の可能な画期的
な技術を見い出したわけである。
In other words, even if finer particles are controlled to be reduced to an appropriate level of He, this is an epoch-making technology that can dramatically reduce noise while minimizing the decrease in the output of the electromagnetic conversion characteristics of the media tape. This is what we found.

〈発明の開示〉 磁気記録用のγ一酸化鉄或いは鉄を主要成分とした針状
性金属粉微粒子の原料、即ち焼結回避・形状保持等の為
に表面変性されたオキシ水酸化鉄或いは酸化鉄をそのま
ま炭化鉄製造原料として用いる事も可能である。
<Disclosure of the Invention> Raw material for acicular metal powder fine particles containing gamma iron monoxide or iron as a main component for magnetic recording, i.e., iron oxyhydroxide or oxidized iron oxide whose surface has been modified to avoid sintering, maintain shape, etc. It is also possible to use iron as it is as a raw material for producing iron carbide.

例えば比表面積20〜150rf/gr、のα−オキシ
水酸化鉄もしくはAI!、S i、 p、 ’ri、 
Cr、Mn、Co、Ni、Zn等の元素から選ばれた少
なくとも一種の元素が共沈したα−オキシ水酸化鉄に焼
結回避・形状保持・保磁力制御・耐蝕性の向上等の為に
、B、 Al1%S i、 p、 T i、 Zn、 
Cr。
For example, α-iron oxyhydroxide or AI with a specific surface area of 20 to 150 rf/gr! , S i, p, 'ri,
At least one element selected from elements such as Cr, Mn, Co, Ni, and Zn is co-precipitated into α-iron oxyhydroxide to avoid sintering, maintain shape, control coercive force, improve corrosion resistance, etc. , B, Al1%S i, p, T i, Zn,
Cr.

Mn5Co、Ni、Cu、Zr、Sn、Pb、Ca、B
a等の元素から選ばれた少なくとも一種の元素を表面被
着し、乾燥した表面変性α−オキシ水酸化鉄を粉砕し必
要に応じて300〜800℃において仮焼し表面変性α
一酸化鉄とする。
Mn5Co, Ni, Cu, Zr, Sn, Pb, Ca, B
The surface of the dried surface-modified α-iron oxyhydroxide is coated with at least one element selected from the elements such as a, and the dried surface-modified α-iron oxyhydroxide is crushed and calcined at 300 to 800°C as necessary to form the surface-modified α-iron oxyhydroxide.
Use iron monoxide.

次いで該表面変性粉を還元性ガス、炭化性ガスの混合ガ
スで、必要に応じて不活性ガスで希釈して気相接触反応
(以下、単に炭化反応という)に供する事によって強磁
性を示す炭化鉄含有の針状微粒子を製造する事ができる
Next, the surface-modified powder is subjected to a gas phase contact reaction (hereinafter simply referred to as carbonization reaction) with a mixed gas of a reducing gas and a carbonizing gas, diluted with an inert gas if necessary, to produce carbonization that exhibits ferromagnetism. Iron-containing acicular fine particles can be produced.

該炭化反応を行なわしめる温度は200〜700℃が適
切である。200℃未満の反応では炭化が実質的には進
まず、本発明の目的に合致しない。又700℃を越えた
場合は炭化反応自体は進行するものの、針状性微粒子の
焼結が激しく生じてしまい、磁気記録用の磁性粉として
は不適当となる。又、該炭化反応の時間は5〜600 
min、程度が適切である。これ未満の場合では、再現
性良く炭化反応を制御できないし、これを越えると経済
的に不適当である。
The appropriate temperature for carrying out the carbonization reaction is 200 to 700°C. If the reaction temperature is lower than 200° C., carbonization will not substantially proceed and the object of the present invention will not be met. If the temperature exceeds 700°C, although the carbonization reaction itself will proceed, the acicular fine particles will be severely sintered, making the powder unsuitable as a magnetic powder for magnetic recording. Moreover, the time of the carbonization reaction is 5 to 600
min, the degree is appropriate. If it is less than this, the carbonization reaction cannot be controlled with good reproducibility, and if it exceeds this, it is economically unsuitable.

反応ガスの供給量・速度としては、気体空間速度(:G
H8V)で表示すれば0.1〜100好ましくは10〜
30 N1−m1x gas/gr−Fe/Hrの範囲
が適当である。この範囲未満では、炭化反応は進むもの
の速度が遅く、実用的ではないし、この範囲を越えた場
合は反応系の圧損が増大する事となるので反応操作とし
て好ましくない。
The supply amount and speed of the reaction gas are determined by the gas hourly space velocity (:G
H8V) is 0.1 to 100, preferably 10 to
A range of 30 N1-m1x gas/gr-Fe/Hr is suitable. If it is less than this range, the carbonization reaction will proceed but at a slow rate, which is not practical, and if it exceeds this range, the pressure drop in the reaction system will increase, which is not preferable as a reaction operation.

生成物の組成は気相接触反応における接触条件や該原料
粉についての原料条件等によって異なり、例えば水素ガ
ス等の還元性ガスを含まない炭化性ガス或いは炭化性ガ
ス及び不活性ガスの混合ガスによっては酸化鉄−炭化鉄
−炭素系の生成物となる。該生成物を粉末X−線回折測
定に供し、結晶性回折ピーク群の回折角度から同定する
と、炭化鉄としては所謂セメンタイト種(F’e3C,
ASTM−23−1113)が検出され、又酸化鉄とし
てはマグネタイト種(Fe50<、 ASTM 19 
629 )が検出される。一方、水素ガス等の還元性ガ
スを含むガス組成で炭化反応を行なうと酸化鉄及び炭素
の生成量が少なく、条件によってはα−Fe相が同時に
検出される場合もある。
The composition of the product varies depending on the contact conditions in the gas phase catalytic reaction and the raw material conditions for the raw material powder. becomes an iron oxide-iron carbide-carbon based product. When the product was subjected to powder X-ray diffraction measurement and identified from the diffraction angle of the crystalline diffraction peak group, the iron carbide was found to be so-called cementite species (F'e3C,
ASTM-23-1113) was detected, and as iron oxide, magnetite species (Fe50<, ASTM 19
629) is detected. On the other hand, when the carbonization reaction is performed with a gas composition containing a reducing gas such as hydrogen gas, the amount of iron oxide and carbon produced is small, and depending on the conditions, the α-Fe phase may be detected at the same time.

還元性ガスとしては主として水素ガス、炭化性ガスとし
てはメタン、プロパン等の炭化水素系のガスを用いる事
も可能であるが比較的低温で炭化できる一酸化炭素ガス
が最も好ましい。また、不活性ガスを同伴させることが
できる。水素ガスと一酸化炭素ガスの体積比(co:H
z)は10:1〜1 : 1000の間にある事が望ま
しい。一酸化炭素濃度が小さい場合、炭化反応が進行し
難いし、逆に太きいと既述の酸化鉄及び炭素の生成量が
多くなる。
Although it is possible to use mainly hydrogen gas as the reducing gas and a hydrocarbon gas such as methane or propane as the carbonizing gas, carbon monoxide gas, which can be carbonized at a relatively low temperature, is most preferred. Moreover, an inert gas can be entrained. Volume ratio of hydrogen gas and carbon monoxide gas (co:H
z) is preferably between 10:1 and 1:1000. If the carbon monoxide concentration is small, it is difficult for the carbonization reaction to proceed, and conversely, if the carbon monoxide concentration is large, the amount of iron oxide and carbon produced as described above increases.

なお、混合ガスに同伴させる不活性ガスとしてはヘリウ
ムガス、アルゴンガス及び二酸化炭素ガス等を使用する
事も可能であるが比較的廉価な窒素ガスが最も好ましい
。この場合の体積比(CO:N2 )はたとえば1:1
〜1 : 500程度が適当であり、この量を変化させ
ることにより主として炭化反応の反応速度を制御する事
ができる。
Although it is possible to use helium gas, argon gas, carbon dioxide gas, etc. as the inert gas to be entrained in the mixed gas, nitrogen gas is most preferable since it is relatively inexpensive. The volume ratio (CO:N2) in this case is, for example, 1:1
~1: About 500 is appropriate, and by changing this amount, the reaction rate of the carbonization reaction can be mainly controlled.

該炭化反応において水素ガスの有無の顕著な差異は結晶
学的には酸化鉄相の生成量の大小だけであるが磁性材料
として位置付けた場合、酸化鉄相及び炭素の生成に伴な
ってその飽和磁化(σS)或いは媒体加工後のテープの
残留磁束密度(Br )に大きな差異が現れ、磁気記録
媒体としては最も重要なものの一つである記録密度に影
響して(る。
In the carbonization reaction, the only noticeable difference between the presence and absence of hydrogen gas is the amount of iron oxide phase produced from a crystallographic point of view, but when positioned as a magnetic material, its saturation increases with the production of iron oxide phase and carbon. A large difference appears in the magnetization (σS) or the residual magnetic flux density (Br) of the tape after media processing, which affects the recording density, which is one of the most important factors in a magnetic recording medium.

得られた組成物をFeCxOyと表示した場合、Xの値
は0.05乃至0.5及びyの値は0.01乃至1.0
の範囲にある事が適当である。
When the obtained composition is expressed as FeCxOy, the value of X is 0.05 to 0.5 and the value of y is 0.01 to 1.0.
It is appropriate that the value be within the range of .

X−値が0.05未満の場合は、目的としている強磁性
特性、特にHc−値の低下は2000e未満にととまる
。又、X−値が0.5を越えるとHc−値の低下は還元
性ガスとの気相接触反応によって製造された金属鉄微粒
子のそれに比して太き(なるものの、磁気媒体に加工し
た場合の残留磁束密度二Br−値を規制する要因の一つ
である飽和磁化:σS−値が極度に低下してしまい、磁
気記録媒体の磁性素材粉としては適当でな(なる。yの
値としてはy≦1.0となっても反強磁性のウスタイト
種(FeO)の生成は認められず、マグネタイト種が確
認される事により可及的に小さい値が望ましいが上記の
範囲が実際的と言える。
When the X-value is less than 0.05, the desired ferromagnetic properties, especially the Hc-value, are reduced to less than 2000e. In addition, when the X-value exceeds 0.5, the decrease in the Hc-value is thicker than that of metallic iron fine particles produced by gas-phase contact reaction with a reducing gas (although Saturation magnetization, which is one of the factors that regulates the residual magnetic flux density 2Br- value in the case of Even if y≦1.0, the formation of antiferromagnetic wustite species (FeO) is not observed, and magnetite species are confirmed, so a value as small as possible is desirable, but the above range is practical. I can say that.

該炭化粉体の粒子形状を30000乃至90000倍の
電子顕微鏡で観察すると、イメージにおいてその形状は
一次原料としたオキシ水酸化鉄微粒子の形状を良く継承
した外形を有し、約100乃至300X程度の球状超微
粒子(:結晶子・微結晶・クリスタリット・グレイン等
と称されている)が多数集合して針状の炭化粉体形骸粒
子のそれぞれを構成しているのである。なお、破損・破
壊、更に粒子間結合即ち焼結の類は殆ど見られない。
When the particle shape of the carbonized powder is observed under an electron microscope with a magnification of 30,000 to 90,000 times, the image shows that the shape closely follows the shape of the iron oxyhydroxide fine particles used as the primary raw material, and has a shape of approximately 100 to 300 times. A large number of spherical ultrafine particles (referred to as crystallites, microcrystals, crystallites, grains, etc.) are assembled to form each needle-shaped carbonized powder skeleton particle. Incidentally, there is hardly any damage, destruction, or interparticle bonding, that is, sintering.

か(して、針状性のオキシ水酸化鉄微粒子を一次原料と
し、水素ガス共存下の気相接触炭化反応によって炭化−
粉体な製造する事が出来る。気相接触炭化反応は炭化材
としては一酸化炭素を使用する事から反応設備の腐食等
の問題は発生せず、極めて好都合である。
(Then, acicular iron oxyhydroxide fine particles are used as the primary raw material, and carbonization is carried out by a gas phase catalytic carbonization reaction in the coexistence of hydrogen gas.
It can be manufactured in powder form. Since the gas phase catalytic carbonization reaction uses carbon monoxide as the carbonization agent, problems such as corrosion of reaction equipment do not occur, and it is extremely convenient.

該針状性炭化鉄粉の磁気特性は、Hc−値としては50
00e以上、σS−値としてはF30 emu /gr
1以上が適当である。この値未満では目的とする高出力
・高密度磁気記録が達成出来ない。この磁気特性は、−
次原料であるオキシ水酸化鉄微粒子の形態・その変性処
方、更に引き続く炭化反応条件によって制御する事が可
能である。
The magnetic properties of the acicular iron carbide powder have an Hc-value of 50
00e or more, σS-value is F30 emu/gr
1 or more is appropriate. If the value is less than this value, the desired high-output, high-density magnetic recording cannot be achieved. This magnetic property is −
It is possible to control the morphology of the next raw material, iron oxyhydroxide fine particles, its modification recipe, and the conditions of the subsequent carbonization reaction.

く土り1〉 本発明の作用を従来技術のそれと対比させ、その位置づ
けを明確にしながら説明する。
Summary 1> The function of the present invention will be explained by comparing it with that of the prior art and clarifying its position.

炭化鉄自体はよ(知られた化学種であり、α−Feを一
酸化炭素ガスで炭化して得られる事自体も公知である(
たとえば: H,A、 Bahr等「Die Kohl
en−oxyd −Spaltung an Eise
noxyd und Eisen J、Bericht
e、 66、1238(1933))。その炭化機構に
ついても公知の事実が多いが、その用途に関しては従来
は、もっばら鉄鋼板の相組織の設計及び機械的硬度改善
の為の所謂浸炭処理への利用が殆んどである。
Iron carbide itself is a well-known chemical species, and it is also known that it can be obtained by carbonizing α-Fe with carbon monoxide gas.
For example: H. A. Bahr et al. “Die Kohl
en-oxyd-Spaltung an Eise
Noxyd und Eisen J, Bericht.
e, 66, 1238 (1933)). Although there are many well-known facts about its carbonization mechanism, most of its uses have so far been for the so-called carburizing treatment for designing the phase structure of steel plates and improving their mechanical hardness.

炭化鉄を微粒子として合成し、その強磁性的特性を磁気
記録媒体用の磁性素材粉として利用する事は殆ど知られ
ておらず、わずかに米国特許:USP 3,572,9
93 (Mar、 1971 :D、 B、 Roge
rs )に見られるのみである。該特許明細書によると
、鉄カルボニル体(=特にFe(Co)、 )を水素及
び一酸化炭素ガスの雰囲気下で280乃至340℃の範
囲内で熱分解を加えて、微粒子タイプのχ−相として、
このものを磁性粉とする。χ−相は、所謂H’a g 
gの炭化鉄と称される種であり、Fe2Cと表記される
。又、該特許明細書の記載によればその粒子形状は、0
.005乃至0.1μの球状超微粒子であり、又その磁
気特性は、Hc−値は200乃至10000e。
Very little is known about synthesizing iron carbide as fine particles and utilizing its ferromagnetic properties as magnetic material powder for magnetic recording media, and only a few US patents are available: USP 3,572,9.
93 (Mar, 1971: D, B, Roge
rs). According to the patent specification, a fine particle type χ-phase is obtained by thermally decomposing an iron carbonyl compound (=especially Fe(Co)) at a temperature of 280 to 340°C in an atmosphere of hydrogen and carbon monoxide gas. As,
This material is called magnetic powder. The χ-phase is the so-called H'a g
It is a species called iron carbide of g, and is written as Fe2C. Also, according to the description in the patent specification, the particle shape is 0.
.. They are spherical ultrafine particles with a size of 0.005 to 0.1μ, and their magnetic properties include Hc-values of 200 to 10,000e.

σS−値は85乃至100 emu/gr、程度とされ
ている。
The σS value is approximately 85 to 100 emu/gr.

バルク状炭化鉄を磁気記録分野に於ける磁性材料として
取り扱った例も殆んど知られておらず、これもわずかに
特開昭53−26218に見られるのみである。該特開
昭文献では、0.5乃至5.0%の炭素を含む鉄系合金
を溶融し、その融液を遠心急冷し、厚さ約3μ程度のリ
ボン状試料とする。次いで、該急冷試料を100’C/
Hの昇温速度で800℃迄加熱し、以後同速度で常温迄
降温する。この熱処理により、該リボン状試料の飽和磁
化が増大する事が示されている。
There are almost no known examples of using bulk iron carbide as a magnetic material in the field of magnetic recording, and this is only found in JP-A-53-26218. In the Japanese Patent Application Laid-open No. 2003-120023, an iron-based alloy containing 0.5 to 5.0% carbon is melted, and the melt is rapidly cooled by centrifugation to form a ribbon-shaped sample with a thickness of about 3 μm. Then, the quenched sample was heated to 100'C/
The sample is heated to 800° C. at a heating rate of H, and thereafter cooled to room temperature at the same rate. It has been shown that this heat treatment increases the saturation magnetization of the ribbon-shaped sample.

炭化鉄微粒子を合成する方法としては、非酸化性雰囲気
下での鉄−シアン化合物の熱分解法(=特開昭50−2
2000 )、低圧活性ガス中での鉄金属の蒸発による
方法(=特開昭52−84179 )、溶融体のガス噴
霧による方法(:特開昭54−29305 )等が知ら
れている。
As a method for synthesizing iron carbide fine particles, the thermal decomposition method of iron-cyanide compounds in a non-oxidizing atmosphere (= JP-A-50-2
2000), a method by evaporation of iron metal in a low-pressure active gas (Japanese Patent Laid-Open No. 52-84179), a method by gas spraying of a melt (Japanese Patent Laid-Open No. 54-29305), and the like.

本発明の方法では、針状性のオキシ水酸化鉄微粒子を用
意し、形状保持成分等の被着変性処理・仮焼工程を経て
、炭化工程(および還元工程)により分子種としてはF
e5Cの針状性の強磁性炭化鉄微粒子とする事を特徴と
する。
In the method of the present invention, acicular iron oxyhydroxide fine particles are prepared, subjected to a modification treatment and calcination process to which a shape-retaining component is adhered, and then subjected to a carbonization process (and a reduction process) to reduce the molecular species to F.
It is characterized by e5C needle-like ferromagnetic iron carbide fine particles.

USP 3,572,993の方法では、鉄カルボニル
体の還元雰囲気下での熱分解によって強磁性の球状超微
粒子が形成され、更にその分子種はFe2Cである。従
って本発明は該特許技術体系とは全(異質の系と言える
。本発明の方法では、特定の針状性微粒子である事が骨
子の一つであり、磁気媒体の特性上欠落する事は出来な
い。
In the method of USP 3,572,993, ferromagnetic spherical ultrafine particles are formed by thermal decomposition of iron carbonyl bodies in a reducing atmosphere, and the molecular species thereof is Fe2C. Therefore, the present invention can be said to be completely different from the patented technology system. In the method of the present invention, one of the key points is to use specific acicular fine particles, and there are no defects due to the characteristics of the magnetic medium. Can not.

特開昭53−26218記載技術は、炭化鉄系の強磁性
としての特性向上を計る為の製造処方であり、本発明と
は意図する所および作用効果上全く異なる。
The technique described in JP-A-53-26218 is a manufacturing recipe for improving the ferromagnetic properties of iron carbide, and is completely different from the present invention in terms of purpose and effect.

更に、特開昭50−22000.52−84179.5
4−29305等は球状粒子の製造方法であり、やはり
本発明とは技術思想が異なると言える。
Furthermore, JP-A-50-22000.52-84179.5
No. 4-29305 and the like are methods for producing spherical particles, and it can be said that the technical idea is different from the present invention.

針状性のオキシ水酸化鉄或いは酸化鉄を一酸化炭素との
気相接触反応に供する技術としては特公昭39−500
9、特開昭59−199533等がある。しかしながら
、前者は一酸化炭素ガスと接触後、酸化反応を行なう、
所謂r一酸化鉄の製造方法であり、本発明とはその意図
する所が異なる。後者の対象とする生成主体の炭化鉄は
Fe5 C2種であり、本発明の主要生成物のセメンタ
イト種(Fe、C)  とは組成に関しても、又結晶学
的にも異なる。更に、気相接触炭化反応に於いても還元
性ガスである水素ガスを含まない一酸化炭素ガスを用い
る為、既述の様に酸化鉄及び炭素の生成量が多くなり実
用性に乏しく、特に本発明の概念に於いては最も好まし
くない方法であると言える。
A technique for subjecting acicular iron oxyhydroxide or iron oxide to a gas phase contact reaction with carbon monoxide is disclosed in Japanese Patent Publication No. 39-500.
9, Japanese Unexamined Patent Publication No. 59-199533, etc. However, the former undergoes an oxidation reaction after coming into contact with carbon monoxide gas.
This is a method for producing so-called r-iron monoxide, and its purpose is different from the present invention. The iron carbide mainly produced in the latter case is Fe5C2, which is different from the cementite species (Fe, C) of the main product of the present invention in terms of composition and crystallography. Furthermore, since carbon monoxide gas that does not contain hydrogen gas, which is a reducing gas, is used in the gas phase catalytic carbonization reaction, as mentioned above, the amount of iron oxide and carbon produced is large, making it impractical. This can be said to be the least preferable method in terms of the concept of the present invention.

以上に見てきた様に、本発明の方法は、従来の関連技術
体系とは趣旨を全く異にするものであり、これ迄の磁気
記録技術分野では例の無い新規な磁性素材粉を提供する
ものである事が解る。
As seen above, the method of the present invention is completely different in purpose from conventional related technology systems, and provides a novel magnetic material powder that has not been seen before in the field of magnetic recording technology. I understand that it is something.

針状性の、分子種としてはFe5Cと表記される強磁性
微粒子の作用としては、α−Fe粉微粒子との対比で示
せば、同一のHe−値を示す粒子サイズを充分に小さく
設計する事が出来る事である。しかも化学量論以上の炭
素が含まれている場合も、本発明の適用範囲内であれば
分子種としてはFe5Cが形成されているので、既述の
Fe2Cの場合とは異なり、飽和磁化が大きく低下する
事はなく、極めて好都合である。
The effect of acicular ferromagnetic fine particles whose molecular species is expressed as Fe5C is that the particle size that exhibits the same He value can be designed to be sufficiently small when compared with α-Fe powder fine particles. This is something that can be done. Moreover, even if more than the stoichiometric amount of carbon is contained, as long as the present invention is applicable, Fe5C will be formed as a molecular species, so unlike the case of Fe2C mentioned above, the saturation magnetization will be large. There is no decline, which is extremely convenient.

この結果、媒体加工を施した場合、より微細化を計りだ
微粒子系を素材粉として使用しつつ、磁気特性上は殆ん
ど変わる事のないシステムにする事が可能となる。この
事の直接的結果として、磁性粉の粒子サイズに強く支配
される磁気記録特性、即ち高域での電磁変換特性(=感
度・出力)及びノイズが極めて大きく改善される事とな
る。
As a result, when media processing is performed, it is possible to create a system in which the magnetic properties remain almost the same, while using finer particles as the raw material powder. As a direct result of this, the magnetic recording characteristics that are strongly controlled by the particle size of the magnetic powder, that is, the electromagnetic conversion characteristics (=sensitivity/output) and noise in high frequencies, are greatly improved.

〈実施例〉 以下、実施例及び比較例により、本発明の方法及び効果
を詳細に述べる。主として、炭化反応は島津製作所■の
熱重量測定装置TG−30を用いて行なった。
<Example> Hereinafter, the method and effects of the present invention will be described in detail with reference to Examples and Comparative Examples. The carbonization reaction was mainly carried out using a thermogravimetric measuring device TG-30 manufactured by Shimadzu Corporation.

〔実施例−1〜3〕 本実施例は、所謂オーディオ・メタルポジション用鉄粉
の原料被着粉を一酸化炭素ガス及び水素ガスの混合ガス
により気相接触炭化反応を行なった場合についての本発
明の方法及びその効果の大要を示す例である。
[Examples 1 to 3] This example describes a case in which a gas phase catalytic carbonization reaction is performed on a raw material adhering powder for so-called audio metal position iron powder using a mixed gas of carbon monoxide gas and hydrogen gas. This is an example showing an overview of the method of the invention and its effects.

く表面変性オキシ水酸化鉄粉の製造〉 特開昭57−106527及び57−96504記載の
方法等により、P4Si及び共沈成分としてのNi−成
分を重量比でP/Fe := 0.2 / 100 、
 Si / Fe = 1.8/100及びNi / 
Fe = 1.5 / 100だけ含む針状性オキシ水
酸化鉄微粒子を合成した。
Production of surface-modified iron oxyhydroxide powder> By the method described in JP-A-57-106527 and JP-A-57-96504, P4Si and a Ni-component as a coprecipitated component were mixed in a weight ratio of P/Fe:=0.2/ 100,
Si/Fe = 1.8/100 and Ni/
Acicular iron oxyhydroxide fine particles containing Fe = 1.5/100 were synthesized.

該微粒子の形状は、窒素ガスの吸着特性から算出した比
表面積(:SA)は38.6 mンgr、又6乃至9万
倍の透過電子顕微鏡像から算出した長軸径(:L)と短
軸径(:D)との比、即ち軸比(:L/D)は20であ
った。
The shape of the fine particles has a specific surface area (SA) of 38.6 mgr calculated from the adsorption characteristics of nitrogen gas, and a major axis diameter (L) calculated from a transmission electron microscope image of 60,000 to 90,000 times. The ratio to the short axis diameter (:D), that is, the axial ratio (:L/D) was 20.

次いで、乾燥・粉砕工程を経た後、仮焼(温度=700
℃)した。
Next, after passing through a drying and pulverizing process, calcining (temperature = 700
℃).

〈炭化反応〉 第1表記載の条件により所定の温度、時間及び混合ガス
組成で気相接触炭化反応(ガス空間速度= 20 Nm
−m1x gas/kgr −Fe/Hr、 )を行久
ッた。
<Carbonization reaction> Gas phase catalytic carbonization reaction (gas hourly space velocity = 20 Nm) at the specified temperature, time and mixed gas composition under the conditions listed in Table 1.
-m1x gas/kgr -Fe/Hr, ) was carried out for a long time.

く結果〉 該生成物の炭素及び鉄の分析及び窒素ガス法により比表
面積測定の結果を第1表に示した。又、該生成物の磁気
特性な東英工業社製振動式磁気特性測定装置VSM−I
ll型により測定した結果も第1表に示した。更に、実
施例−3の該生成物のX−線回折パターン(ターゲット
:Cr、フィルター:v)を第1図に示した。
Results> Table 1 shows the results of carbon and iron analysis of the product and specific surface area measurement using the nitrogen gas method. In addition, the magnetic properties of the product were measured using a vibrating magnetic property measuring device VSM-I manufactured by Toei Kogyo Co., Ltd.
The results measured by type II are also shown in Table 1. Furthermore, the X-ray diffraction pattern (target: Cr, filter: v) of the product of Example-3 is shown in FIG.

〔比較例−1〜2〕 上記の実施例に於いて使用した原料粉を水素ガスによる
所謂気相接触還元反応に供した場合(比較例−1)、及
び水素ガスを含まない一酸化炭素ガス及び窒素ガス組成
で気相接触炭化反応を行なった場合(比較例−2)の結
果を表−1に示した。
[Comparative Examples-1 to 2] When the raw material powder used in the above examples was subjected to a so-called gas phase catalytic reduction reaction using hydrogen gas (Comparative Example-1), and when carbon monoxide gas containing no hydrogen gas Table 1 shows the results of the gas phase catalytic carbonization reaction (Comparative Example 2) with a nitrogen gas composition.

〔実施例−4〕 実施例−1と類似の条件でP/Fe = 0.3 / 
100 %Si/Fe = 3.0 / Zoo、 N
i /Fe = 2.8 / 100だげ含む針状性オ
キシ水酸化鉄微粒子を合成した。
[Example-4] P/Fe = 0.3 / under similar conditions as Example-1
100%Si/Fe = 3.0/Zoo, N
Acicular iron oxyhydroxide fine particles containing i/Fe = 2.8/100 were synthesized.

該微粒子の形状は、比表面積(: SA) 68.7r
rt/gr 。
The shape of the fine particles has a specific surface area (SA) of 68.7r
rt/gr.

又透過電子顕微鏡像から算出した軸比(: L/D )
は14であった。次いで、乾燥・粉砕工程を経た原料粉
の気相接触炭化反応の条件とその結果を第1表に示した
Also, the axial ratio (: L/D) calculated from the transmission electron microscope image
was 14. Next, Table 1 shows the conditions and results of the gas phase catalytic carbonization reaction of the raw material powder that has undergone the drying and pulverization process.

〔実施例−5〕 本実施例は、ハイ・ポジション用オーディオ用途の、炭
化鉄を主要成分とした針状性の強磁性微粒子についての
本発明の方法及びその効果の大要を示す例である。
[Example-5] This example is an example showing an overview of the method of the present invention and its effects on acicular ferromagnetic fine particles containing iron carbide as a main component for high-position audio applications. .

く炭化鉄粉の製造〉 実施例−1と同様の表面変性粉を反応用原料ガスの予熱
器を備え、又外部より温度制御可能な鋼管製反応器に充
填し、第1表記載の条件により気相接触炭化反応に供し
た。その結果を表−1に示した。
Production of iron carbide powder> The same surface-modified powder as in Example 1 was charged into a steel pipe reactor equipped with a preheater for the raw material gas for reaction and whose temperature could be controlled from the outside, and then heated under the conditions listed in Table 1. It was subjected to gas phase catalytic carbonization reaction. The results are shown in Table-1.

次いで、該微粒子を充分トルエンに浸漬した後、該微粒
子スラリーをホーロー製バット上に1cIIL程Ω厚味
になる様に移し、大気中でトルエンの飛散処理を加えた
。溶剤臭が無くなった段階で磁性粉を回収し、風乾炭化
鉄粉とした。
Next, after thoroughly immersing the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of approximately 1 cIIL Ω, and subjected to toluene scattering treatment in the atmosphere. When the solvent odor disappeared, the magnetic powder was collected and used as air-dried iron carbide powder.

〈風乾炭化鉄粉の塗料化、塗工及びテープ特性の評価〉
該風乾炭化鉄粉10 gr、を採取して、下記材料と共
に、内容積550 mlのポットに投入し、米国・レッ
ド・デビル社製ペイント・シェーカーで5時間混合・分
散を続けた。分散メディアとしては、2nφのα−アル
ミナ・ビーズを用いた。
<Evaluation of air-dried iron carbide powder into paint, coating, and tape properties>
10 grams of the air-dried iron carbide powder was collected and put into a pot with an internal volume of 550 ml together with the following materials, and mixed and dispersed for 5 hours using a paint shaker manufactured by Red Devil Co., Ltd., USA. As the dispersion media, 2nφ α-alumina beads were used.

−UCC社製塩酢ビ系ポリ? −VAGH: 1.Og
r・三井東圧化学社製ポリウレタン NL−2448: 1.Ogr ・大人化学社製リン酸エステルAP−13: 0.2g
r・住友化学社製゛α−アルミナAKP−30: 0.
2 gr・溶剤トルエン: 14gr、、MEK:14
gr次いで、分散メディアを分離して磁性塗料とし、磁
気テープ仕様の精密コーターにてアプリケーターを利用
して12μ厚の東し社製ポリエステル・フィルム(=ル
ミラー128−LIO)上に塗工した。その後、カレン
ダー・ロール処理して塗膜面の平滑化処理を加え、50
℃にて2日間熱処理を加えてポリウレタン硬化反応を完
結させた。該シートを3.81inに裁断して、現行カ
セット仕様サイズの磁気テープを製造した。
- UCC salt vinyl acetate poly? -VAGH: 1. Og
r.Polyurethane NL-2448 manufactured by Mitsui Toatsu Chemical Co., Ltd.: 1. Ogr ・Phosphate ester AP-13 manufactured by Otona Kagaku Co., Ltd.: 0.2g
r・α-Alumina AKP-30 manufactured by Sumitomo Chemical Co., Ltd.: 0.
2gr/solvent toluene: 14gr, MEK: 14
Then, the dispersion media was separated to obtain a magnetic paint, which was coated onto a 12μ thick polyester film manufactured by Toshi Co., Ltd. (Lumirror 128-LIO) using a precision coater equipped with magnetic tape and an applicator. After that, the coating surface was smoothed by calender roll treatment, and
The polyurethane curing reaction was completed by heat treatment at ℃ for 2 days. The sheet was cut to 3.81 inches to produce a magnetic tape of the current cassette specification size.

該磁気テープの磁気特性を、既述の測定装置にて測定・
評価したところ、 Hc=7300e 、 Br=2660 Gauss 
、 Br/Bm=0.75であり、充分な特性値を示し
た。
The magnetic properties of the magnetic tape are measured using the measuring device described above.
As a result of evaluation, Hc=7300e, Br=2660 Gauss
, Br/Bm=0.75, showing sufficient characteristic values.

〈オーディオ特性の評価〉 日本コロンビア社製テープ試験器:DENON−031
R(: IEC規定標準ヘッド搭載)を用い、日本磁気
テープ標準規格: MTS−0101(’72)記載の
測定方法に従い、IDC基準Type −Uテープを基
準にしたオーディオ特性の測定・評価を行なった。
<Evaluation of audio characteristics> Tape tester manufactured by Nippon Columbia: DENON-031
Audio characteristics were measured and evaluated using IDC standard Type-U tape as a standard, using the R (equipped with an IEC-specified standard head) and in accordance with the measurement method described in Japan Magnetic Tape Standard: MTS-0101 ('72). .

その結果、・低域感度(: 333Hz感度)は+3.
6dB、高域感度(: 12.5kHz感度)は+3.
5dB1最大出力(=3%MOL )は+7.6dB、
飽和出力(=10 kHz、sOL )は−2,5dB
、更に聴感補正後の交流バイアス・ノイズ(: Nac
 )は−57,8dBであり、十二分な高域感度・飽和
出力を示し、かつ特異的に低いノイズを与えるものであ
る。
As a result, the low frequency sensitivity (333Hz sensitivity) was +3.
6dB, high frequency sensitivity (12.5kHz sensitivity) +3.
5dB1 maximum output (=3%MOL) is +7.6dB,
Saturation output (=10 kHz, sOL) is -2.5 dB
, and AC bias noise after auditory correction (: Nac
) is -57.8 dB, which shows sufficient high-frequency sensitivity and saturation output, and gives a uniquely low noise.

く    ・     び     の   口   
 〉実施例及び比較例の結果から本発明の作用・効果を
まとめると以下の通りとなる。
mouth of mouth
> The effects and effects of the present invention can be summarized as follows based on the results of Examples and Comparative Examples.

即ち、高密度磁気記録に適した磁気記録素材としての針
状性強磁性微粒子において、該微粒子が炭素を所定量含
む鉄を主成分とした微粒子系であり、被着変性された針
状性オキシ水酸化鉄微粒子を還元性ガス及び炭化性ガス
の混合ガスにより気相接触炭化反応に供し、強磁性の炭
化鉄含有鉄微粒子とする事によって、 (1)炭化鉄微粒子自体に関しては、原料であるオキシ
水酸化鉄の形状を良く継承した針状性を示しつつ、 (2)炭化度に応じて磁気特性値、特に保磁力Hc値を
広範囲にコントロールする事が可能であり、(3)磁性
粉粒子が微細であり、尚且つ適性な磁気特性(保磁力、
磁化など)を備えていることにより、高周波数の電磁変
換特性(感度、出力)及びノイズが極めて太き(改良さ
れる事、 (4)製造設備としてはオキシ水酸化鉄を原料とした強
磁性金属粉の製造設備がそのまま使用可能である事、 が判明した。
That is, in the case of acicular ferromagnetic fine particles as a magnetic recording material suitable for high-density magnetic recording, the fine particles are mainly iron-based fine particles containing a predetermined amount of carbon, and the acicular ferromagnetic fine particles are coated with modified acicular ferromagnetic particles. By subjecting iron hydroxide fine particles to a gas phase catalytic carbonization reaction with a mixed gas of a reducing gas and a carbonizing gas to form ferromagnetic iron carbide-containing iron fine particles, (1) As for the iron carbide fine particles themselves, While exhibiting acicular properties well inheriting the shape of iron oxyhydroxide, (2) it is possible to control the magnetic property values, especially the coercive force Hc value, in a wide range according to the degree of carbonization, and (3) magnetic powder The particles are fine and have suitable magnetic properties (coercive force,
(4) As for manufacturing equipment, ferromagnetism made from iron oxyhydroxide is used as a raw material. It has been found that the metal powder manufacturing equipment can be used as is.

以上の様に、本発明の物質はオーディオ用途及びビデオ
用途として、その特性著しい磁性素材であり、その製造
方法を提供するものである。
As described above, the substance of the present invention is a magnetic material with remarkable characteristics for use in audio and video applications, and provides a method for producing the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例−3における生成物のX−線回折パター
ン図である。
FIG. 1 is an X-ray diffraction pattern diagram of the product in Example-3.

Claims (8)

【特許請求の範囲】[Claims] (1)針状性の炭化鉄を含有する強磁性微粒子からなる
磁気記録媒体用磁性素材。
(1) A magnetic material for magnetic recording media consisting of ferromagnetic fine particles containing acicular iron carbide.
(2)炭化鉄組成FeC_xO_yにおけるxの値が、
0.05乃至0.5及びyの値が0.01乃至1.0の
範囲にある特許請求の範囲第1項記載の磁性素材。
(2) The value of x in iron carbide composition FeC_xO_y is
The magnetic material according to claim 1, wherein the value of y is in the range of 0.05 to 0.5 and 0.01 to 1.0.
(3)微粒子の長軸径が1μ以下、短軸径が0.1μ以
下で、その軸比が10乃至30である特許請求の範囲第
1項記載の磁性素材。
(3) The magnetic material according to claim 1, wherein the fine particles have a long axis diameter of 1 μm or less, a short axis diameter of 0.1 μm or less, and an axial ratio of 10 to 30.
(4)磁気特性値が保磁力として500Oe以上、飽和
磁化として80emu/gr.以上を示す炭化鉄含有特
許請求の範囲第1項記載の磁性素材。
(4) Magnetic property values are 500 Oe or more as coercive force and 80 emu/gr as saturation magnetization. A magnetic material according to claim 1 containing iron carbide which shows the above.
(5)形状保持成分で被着変性された針状性オキシ水酸
化鉄微粒子を炭化性ガス及び還元性ガスの混合ガスによ
る気相接触炭化反応に供する磁気記録用の針状性炭化鉄
含有強磁性微粒子の製造方法。
(5) Acicular iron carbide-containing steel for magnetic recording in which acicular iron oxyhydroxide fine particles that have been adhered and modified with a shape-retaining component are subjected to a vapor phase catalytic carbonization reaction using a mixed gas of a carbonizing gas and a reducing gas. Method for producing magnetic fine particles.
(6)還元性ガスが水素を主体とするガスであり、炭化
性ガスは一酸化炭素を主体とするガスである特許請求の
範囲第5項記載の方法。
(6) The method according to claim 5, wherein the reducing gas is a gas mainly composed of hydrogen, and the carbonizing gas is a gas mainly composed of carbon monoxide.
(7)一酸化炭素と水素の体積比(CO:H_2)が1
:1000〜10:1の間の組成比であり、気相接触炭
化反応が200乃至700℃で行なわれる特許請求の範
囲第6項の方法。
(7) The volume ratio of carbon monoxide and hydrogen (CO:H_2) is 1
7. The method according to claim 6, wherein the composition ratio is between 1000 and 10:1, and the gas phase catalytic carbonization reaction is carried out at 200 to 700°C.
(8)一酸化炭素と水素の混合ガスを不活性ガスで希釈
して気相接触炭化反応を行なう特許請求の範囲第7項記
載の方法。
(8) The method according to claim 7, wherein the gas phase catalytic carbonization reaction is carried out by diluting a mixed gas of carbon monoxide and hydrogen with an inert gas.
JP60075285A 1985-04-11 1985-04-11 Magnetic material and manufacture thereof Pending JPS61234506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075285A JPS61234506A (en) 1985-04-11 1985-04-11 Magnetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075285A JPS61234506A (en) 1985-04-11 1985-04-11 Magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61234506A true JPS61234506A (en) 1986-10-18

Family

ID=13571797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075285A Pending JPS61234506A (en) 1985-04-11 1985-04-11 Magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61234506A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284426A (en) * 1985-10-08 1987-04-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
JPS6286537A (en) * 1985-10-11 1987-04-21 Tdk Corp Magnetic disk
JPS6317212A (en) * 1986-07-04 1988-01-25 Daikin Ind Ltd Particle containing iron carbide
JPH01103911A (en) * 1987-10-14 1989-04-21 Daikin Ind Ltd Magnetic particulate of iron carbide and production thereof production of same fine particle
JPH01192713A (en) * 1988-01-27 1989-08-02 Daikin Ind Ltd Production of iron carbide fine particles
EP0340689A2 (en) * 1988-04-28 1989-11-08 Daikin Industries, Limited Iron carbide fine particles and process for preparing the same
WO1994019276A1 (en) * 1993-02-19 1994-09-01 Daikin Industries, Ltd. Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284426A (en) * 1985-10-08 1987-04-17 Konishiroku Photo Ind Co Ltd Magnetic recording medium
JPS6286537A (en) * 1985-10-11 1987-04-21 Tdk Corp Magnetic disk
JPS6317212A (en) * 1986-07-04 1988-01-25 Daikin Ind Ltd Particle containing iron carbide
JPH01103911A (en) * 1987-10-14 1989-04-21 Daikin Ind Ltd Magnetic particulate of iron carbide and production thereof production of same fine particle
JPH01192713A (en) * 1988-01-27 1989-08-02 Daikin Ind Ltd Production of iron carbide fine particles
JPH0729765B2 (en) * 1988-01-27 1995-04-05 ダイキン工業株式会社 Iron carbide fine particles and method for producing the same
EP0340689A2 (en) * 1988-04-28 1989-11-08 Daikin Industries, Limited Iron carbide fine particles and process for preparing the same
JPH0230626A (en) * 1988-04-28 1990-02-01 Daikin Ind Ltd Iron carbide fine granule and production thereof
WO1994019276A1 (en) * 1993-02-19 1994-09-01 Daikin Industries, Ltd. Compound-deposited needle-shaped fine particles, method of manufacturing the same, and use of the same
US5552072A (en) * 1993-02-19 1996-09-03 Daikin Industries Ltd. Coated acicular fine particulate materials, processes for preparing same and use thereof

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US4886714A (en) Platelike magnetic powder and a recording medium which uses the platelike magnetic powder
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε&#39;iron carbide and method for producing the same
JPS61234506A (en) Magnetic material and manufacture thereof
JPH0145202B2 (en)
JPS61196502A (en) Magnetic material and manufacture thereof
US5552073A (en) Ferromagnetic fine particles of ε iron carbide and method for producing the same
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
US6753084B2 (en) Spindle-shaped magnetic alloy particles for magnetic recording, and magnetic recording medium
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JP2003263719A (en) Magnetic powder for magnetic recording
EP0361698A1 (en) Carbon-containing magnetic metal powder
JP2607459B2 (en) Hexagonal ferrite magnetic powder for magnetic recording and method for producing the same
US5989516A (en) Spindle-shaped geothite particles
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPH03253505A (en) Production of ferromagnetic metal powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH09227126A (en) Production of hematite particle and production of ferromagnetic powder using the same particle and magnetic recording medium
JP2965606B2 (en) Method for producing metal magnetic powder
JPS61154110A (en) Acicular particulates of cementite for magnetic recording and manufacture thereof
KR920004999B1 (en) Ferrous type magnetic body and its manufacturing method and magnatic medium using it
JPH0696921A (en) Manufacture of iron oxide magnetic particle and manufacture of magnetic recording medium