JPS61265865A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS61265865A
JPS61265865A JP60108640A JP10864085A JPS61265865A JP S61265865 A JPS61265865 A JP S61265865A JP 60108640 A JP60108640 A JP 60108640A JP 10864085 A JP10864085 A JP 10864085A JP S61265865 A JPS61265865 A JP S61265865A
Authority
JP
Japan
Prior art keywords
light
film
thickness
shielding film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108640A
Other languages
Japanese (ja)
Inventor
Shinichi Teranishi
信一 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60108640A priority Critical patent/JPS61265865A/en
Publication of JPS61265865A publication Critical patent/JPS61265865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Abstract

PURPOSE:To improve the leakage of light due to the effect such as the multiple reflection and the like of the light which is made incident obliquely as well as to reduce the quantity of smear by a method wherein no electrode material such as polysilicon and the like is used on the part located under the edge of a light-shielding film, the insulating material such as an oxide film is used on the above-mentioned part, and the thickness of said insulating film is brought into the specific measurement or less. CONSTITUTION:The film thickness of an N-type region 15 and the thermally oxided film 100 located on the first polysilicon is set at 1,000Angstrom , and an aluminum light- shielding film 9 is formed on the thermally oxided film 100. An oxide protective film 19 of 5,000Angstrom thickness is formed as the top layer. The distance between a storage region and the N-type region 15 on the edge part of the light-shielding film 9 is 1,000Angstrom , no polysilicon electrode is present between the above-mentioned two regions, and an oxide film is present there. The light-shielding film 9 is formed in such a manner that is envelopes the polysilicon electrode and the thickly formed thermally oxided film 13 located on a channel stopper 6. When the distance between the edge part of the light-shielding film 9 and a silicon substrate 11 is set at (lambda/2n)Angstrom or above, the creeping of light can be prevented completely.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は固体撮像素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a solid-state image sensor.

(従来技術とその問題点) 固体撮像素子では高輝度被写体を撮像したときにスミア
現象が生ずるという欠点があり、スミア量を小さくする
努力がなされてきている。
(Prior art and its problems) Solid-state imaging devices have a drawback in that a smear phenomenon occurs when a high-brightness object is imaged, and efforts have been made to reduce the amount of smear.

石原保雄等がテレビジ璽ン学会誌37巻1983年78
2ページから787ページで「縦形オーバーフロー構造
CCDイメージセンサ−」という題名で説明しているイ
ンターラインCODイメージセンナ(IL −C0D)
は従来もつともスミア量が少さい固体撮像素子の一つで
あった。第2図はIL−CODの模式的平面図である。
Yasuo Ishihara et al., Journal of the Television Society, Volume 37, 1983, 78
Interline COD image sensor (IL-C0D) described on pages 2 to 787 under the title "Vertical overflow structure CCD image sensor"
was one of the conventional solid-state image sensors with the lowest amount of smear. FIG. 2 is a schematic plan view of the IL-COD.

水平方向と垂直方向に規則的に蓄積領域1が配列されて
いる。PN接合の逆バイアス容量を光電変換された信号
電荷の蓄積に利用している。蓄積領域1の列の一方側に
近接して垂直CCDレジス°り2が設けられており、こ
の垂直CODレジスタ2と蓄積領域lとの間にトランス
7アゲート部3が設けられている。
Storage regions 1 are regularly arranged in the horizontal and vertical directions. The reverse bias capacitance of the PN junction is used to accumulate photoelectrically converted signal charges. A vertical CCD register 2 is provided adjacent to one side of the column of storage regions 1, and a transformer 7 agate section 3 is provided between the vertical COD register 2 and the storage region 1.

垂直CODレジスタ2の電荷転送方向の端部には水平C
ODレジスタ4が設けられており、水平CODレジスタ
4の電荷転送方向の端部には出力部5が設けられている
。このIL−CCDでは光電変換された信号電荷は蓄積
領域lに蓄積される。
At the end of the vertical COD register 2 in the charge transfer direction, there is a horizontal C
An OD register 4 is provided, and an output section 5 is provided at the end of the horizontal COD register 4 in the charge transfer direction. In this IL-CCD, photoelectrically converted signal charges are accumulated in an accumulation region l.

フィールド期間、または7レ一ム期間毎にトランスフア
ゲート部3がオン状態になジ、蓄積領域1より垂直CO
Dレジスタ2へ信号電荷は転送されさらに垂直CODレ
ジスタ2と水平CODレジスタ4の働きにより出力部5
へ転送され、固体撮像素子外部へ出力される。
The transfer gate section 3 is turned on every field period or every 7 frame periods, and the vertical CO is removed from the storage region 1.
The signal charge is transferred to the D register 2 and further output to the output section 5 by the functions of the vertical COD register 2 and the horizontal COD register 4.
and output to the outside of the solid-state image sensor.

第3図は第2図のIL−CODの2次元的に配列された
繰フ返しセル部の平面図である。点状の模様が施された
釣り針状のパターンはチャネルストッパ6であり、蓄積
領域1どおしそ分離したp蓄積領域lと垂直CCDレジ
スタ2を分離している。
FIG. 3 is a plan view of a two-dimensionally arranged repeating cell portion of the IL-COD of FIG. 2. FIG. A fishhook pattern with a dotted pattern is a channel stopper 6, which separates the vertical CCD register 2 from the p storage region 1, which is separated from the storage region 1.

破線で囲まれ破線の右上がクハッチを施した部分は第1
ポリシリコン電極7である。第1ポリシリコン電極7は
垂直CODレジスタ2の電極として、またトランスファ
ゲート部3の電極として用いられている。
The part surrounded by the dashed line and the top right of the dashed line is the 1st part.
This is a polysilicon electrode 7. The first polysilicon electrode 7 is used as an electrode of the vertical COD register 2 and as an electrode of the transfer gate section 3.

1点鎖線で囲まれ、1点鎖線の左上がりのノ・ツチを施
した部分Fii2ポリシリコン電極8である。
This is the portion Fii2 polysilicon electrode 8 surrounded by a dashed dotted line and marked with a notch extending upward to the left of the dashed dotted line.

第2ポリシリコン電極8は垂直CODレジスタ2の電極
として用いられてbる。
The second polysilicon electrode 8 is used as an electrode of the vertical COD register 2.

チャネルストッパ6でなく、第1ポリシリコン電極7と
第2ポリシリコン電極8とで覆われていない部分はS種
領域1である。2点鎖線で囲まれ、2点Mlの右上がり
のノ・、チを施した部分はアルミ2ウムの′it光膜9
である。短冊状の/くターンであり、垂直CODレジス
タ2とトランス7アゲート部3を遮光している。遮光膜
9の縁10はチャネルストッパ6やM1ポリシリコン電
揖7や第2ポリシリ、コン電極8の縁よp出来るかぎ9
0.5  μmから1μmはみだし、蓄積領域l上にあ
るように設計されており、遮光効果を高めている。
The portion that is not covered by the channel stopper 6 and is not covered by the first polysilicon electrode 7 and the second polysilicon electrode 8 is the S type region 1. The part surrounded by the two-dot chain line and marked with , , and on the upper right of the two points Ml is the aluminum 2ium 'it optical film 9.
It is. It is a strip-shaped turn and shields the vertical COD register 2 and the agate portion 3 of the transformer 7 from light. The edge 10 of the light-shielding film 9 is a key 9 that can be connected to the edge of the channel stopper 6, the M1 polysilicon electrode 7, the second polysilicon electrode, and the contact electrode 8.
It is designed to protrude by 0.5 μm to 1 μm and be located above the accumulation region l, thereby enhancing the light shielding effect.

第4図は第3因のI−1’に沿う部分的断面図である。FIG. 4 is a partial cross-sectional view along I-1' of the third factor.

N8!!のシリコン基板11の一方の主面に。N8! ! on one main surface of the silicon substrate 11.

蓄積領域lでは接合の栗石が小さく、トランスファゲー
ト部3や垂直CCDレジスタ2では接合の深さが大きい
Pウェル12が形成されている。
In the storage region l, the junction depth is small, and in the transfer gate section 3 and the vertical CCD register 2, a P well 12 with a large junction depth is formed.

チャネルストッパ6は選択酸化法により膜厚の大きい熱
酸化膜13が形成笛れており、その直下にP′″領域1
4が形成されている。蓄積領域1では接合の深さが小さ
いPウェルし上にN型領域15が形成されている。この
N型領域15とPウェルルまた仲P′″領域14との間
のPN接合の逆バイアス容量に信号電荷を蓄積する。垂
直CODレジスタ2は埋め込み型でNuの埋め込み層1
6が形成されている。
The channel stopper 6 has a thick thermal oxide film 13 formed by a selective oxidation method, and the P''' region 1 is formed directly below the thermal oxide film 13.
4 is formed. In the storage region 1, an N-type region 15 is formed above a P well having a small junction depth. Signal charges are accumulated in the reverse bias capacitance of the PN junction between this N-type region 15 and the P-well or middle P'' region 14.
6 is formed.

以上のように、シリコン基板中にはPウェル12、P0
領域14、べ型領域15、埋め込み層16が形成されて
いる。トランスファゲート部3と埋め込み層16上には
膜厚1000Aの熱酸化膜101を介して第1ポリシリ
コン電極7が形成されている。第1ポリシリコン電極上
には膜厚2000 A  の熱酸化膜100が形成され
ている。蓄積領域1のN型領域15上には膜厚2000
Aの熱酸化M100が形成されている。熱酸化膜100
上には高濃度リンガラス層17が形成されておりデバイ
ス表面の平坦化に役だっている。高濃度リンガラス層1
7の膜厚は平均1μm程度である。高濃度リンガラス層
エフの上に膜厚5000Aのシリコン酸化膜18が気相
化学反応成長で形成されている。酸化膜18の上に膜厚
1μmのアルミニウムの遮光M9が形成されてい〜 る。さらに最上層には膜厚5000 Aの酸化膜の保護
膜19が気相化学反応成長で形成されている。
As described above, there are P wells 12 and P0 in the silicon substrate.
A region 14, a trapezoidal region 15, and a buried layer 16 are formed. A first polysilicon electrode 7 is formed on the transfer gate portion 3 and the buried layer 16 via a thermal oxide film 101 having a thickness of 1000 Å. A thermal oxide film 100 with a thickness of 2000 Å is formed on the first polysilicon electrode. A film with a thickness of 2000 mm is formed on the N-type region 15 of the storage region 1.
Thermal oxidation M100 of A is formed. Thermal oxide film 100
A high-concentration phosphorus glass layer 17 is formed thereon and is useful for flattening the device surface. High concentration phosphorus glass layer 1
The film thickness of No. 7 is approximately 1 μm on average. A silicon oxide film 18 having a thickness of 5000 Å is formed on the high concentration phosphorus glass layer F by vapor phase chemical reaction growth. A light shielding layer M9 made of aluminum and having a thickness of 1 μm is formed on the oxide film 18. Furthermore, a protective film 19 of an oxide film having a thickness of 5000 Å is formed on the uppermost layer by vapor phase chemical reaction growth.

このIL−CODでは蓄積領域1を接合の深さの小さl
nPウェル12に形成することによってブルーミング現
象を防止し、シリコン中での電荷の拡散によって生ずる
スミアを抑圧している。
In this IL-COD, the storage region 1 is formed with a small junction depth l.
Forming in the nP well 12 prevents the blooming phenomenon and suppresses smear caused by charge diffusion in silicon.

しかし、光学レンズからIL−CODへ入射してくる光
の入射角はデバイス面の法線に対して0度から40度程
度まである。第4図に示すように、アルミニウムの遮光
[9とN型領域工5との間には絶縁膜が1.7μm程度
ある。このため斜めに入射した光はN型領域15へ入射
せずにチャネルストッパ6やトランスファゲート部3や
垂直CODレジスタ2へ達することがある。とりわけ多
重反射が生じる場合顕著である。このような元によって
生じた電荷はスミア成分となる。
However, the angle of incidence of light entering the IL-COD from the optical lens ranges from about 0 degrees to about 40 degrees with respect to the normal to the device surface. As shown in FIG. 4, there is an insulating film of about 1.7 μm between the aluminum light shielding layer 9 and the N-type region 5. As shown in FIG. Therefore, obliquely incident light may reach the channel stopper 6, transfer gate section 3, or vertical COD register 2 without being incident on the N-type region 15. This is particularly noticeable when multiple reflections occur. Charges generated by such sources become smear components.

以上がスミアの生ずる原因であり、このスミアは高輝度
被写体を撮像した場合、再生画面上で高輝度被写体の上
下垂直方向白い帯状の偽信号となって現われ、見苦しく
している。
The above is the cause of smear, and when a high-brightness object is imaged, this smear appears on the playback screen as a white band-shaped false signal in the vertical direction above and below the high-brightness object, making it unsightly.

第4図のIL−CODとは別の型式のIL−CCDにつ
いて説明する。松本博打等がテレビジ璽ン学会誌37巻
1983年776ページから781ページで「高抵抗M
CZ基板を用いたMO8形センサーCCD撮像素子」と
いう題名で説明しているIL−CODは蓄積領域KMO
8型ダイオードを用いている。
A different type of IL-CCD from the IL-COD shown in FIG. 4 will be explained. Hiroshi Matsumoto et al. published ``High Resistance M
The IL-COD explained under the title "MO8 type sensor CCD image sensor using CZ substrate" is the storage area KMO.
An 8-type diode is used.

第5図は繰り返しセル部の部分的断面図であり、第4図
に相当する図である。
FIG. 5 is a partial cross-sectional view of the repeating cell portion, and corresponds to FIG. 4.

P型のシリコン基板加が用いられる。一方の主面にチャ
ネルストッパとしてP型領域21、埋め込み型の垂直C
ODレジスタの埋め込み層16、埋め込み層16i取り
囲み、接触電位差の効果を利用してスミアを防止するた
めのバリア領域22、プルーミングを防止するためのN
9型のオーバーフロートレインnとP型のオーバーフロ
ーコントロール部24が形成されている。以上が半導体
基板20の中に形成されている。トランスファゲート部
と埋め込み層16の上には膜厚1000 A程度の熱酸
化膜101を介して第1ポリシリコン電極7が形成され
ている。第1ポリシリコン電極7上と蓄積領域上には膜
厚1700Aの熱酸化膜」00を介して膜厚500人の
第3ポリシリコン電極25が形成されている。第3ポリ
シリコン電極石上には膜厚1μm程度のアルミニウムの
遮光膜19が形成されている。
A P-type silicon substrate is used. A P-type region 21 as a channel stopper on one main surface, a buried vertical C
A buried layer 16 of the OD register, a barrier region 22 surrounding the buried layer 16i, a barrier region 22 for preventing smearing by utilizing the effect of contact potential difference, and an N layer for preventing pluming.
A 9-type overflow train n and a P-type overflow control section 24 are formed. The above is formed in the semiconductor substrate 20. A first polysilicon electrode 7 is formed on the transfer gate portion and buried layer 16 with a thermal oxide film 101 having a thickness of about 1000 Å interposed therebetween. A third polysilicon electrode 25 with a thickness of 500 Å is formed on the first polysilicon electrode 7 and the storage region with a thermal oxide film 00 having a thickness of 1700 Å interposed therebetween. An aluminum light-shielding film 19 having a thickness of about 1 μm is formed on the third polysilicon electrode stone.

遮光膜9は遮光の他に第3ポリシリコン電極251C対
する配線の役割もある。このIL−CODではオーバー
フロードレインオドオーバーフローコントロール部の働
きKよってブルーミング現象を防止している。バリア領
域nの働きによってシリコン中での電荷の拡散によって
生ずるスミアを抑圧している。
In addition to blocking light, the light shielding film 9 also serves as a wiring for the third polysilicon electrode 251C. In this IL-COD, the blooming phenomenon is prevented by the function of the overflow drain control section. The barrier region n suppresses smear caused by charge diffusion in the silicon.

しかし、ft、学レンズからII、−CCDへ入射して
くる光の入射角はデバイス面の法MK対して0度から4
0度程度まである。第5図に示すように、遮光膜9がな
い、すなわち開口部では上から第3ポリシリコン電極2
5、熱酸化膜」00、シリコン基板20の構造になって
いる。このために斜めに入射した光の一部は第3ポリシ
リコン電極5とシリコン基板加によって多重反射されな
がら熱酸化膜100・ 101中を伝わって−く。熱酸
化jllHoo。
However, the incident angle of light entering the ft, II, -CCD from the school lens is 0 degrees to 4 degrees with respect to the normal MK of the device surface.
It is up to about 0 degrees. As shown in FIG. 5, there is no light shielding film 9, that is, at the opening, the third polysilicon electrode 2 is placed from above.
5. The structure includes a thermal oxide film 00 and a silicon substrate 20. For this reason, a portion of the obliquely incident light is transmitted through the thermal oxide films 100 and 101 while being reflected multiple times by the third polysilicon electrode 5 and the silicon substrate. Thermal oxidation jllHoo.

IQIの中を伝わっていく光の一部は垂直CODレジス
タ2へ入射しスミアの原因となっていた。
A part of the light traveling through the IQI was incident on the vertical COD register 2, causing smear.

このスミアは高輝度被写体を撮像した場合特に再生画像
を見苦しくしていた。
This smear made the reproduced image unsightly, especially when a high-brightness subject was imaged.

(発明の目的) 本発明は、このような従来の欠点を除去し、スミア現象
を抑制し、良好な再生画像を実現できる固体撮像素子を
提供することンこある。
(Object of the Invention) An object of the present invention is to provide a solid-state imaging device that can eliminate such conventional drawbacks, suppress smear phenomena, and realize good reproduced images.

(発明の構成) この発明によれば、半導体基板に配列された複数個の蓄
積領域と、少なくとも一部が遮光膜でおおわれ前記蓄積
領域に蓄積された信号電荷を読み出す領域とを有する固
体撮像素子において、前記遮光膜の端の少なくとも一部
と前記半導体基板との間が絶縁物であり、かつ、入射光
の波長を1人前記絶縁物の屈折率をnとしたとき、前記
絶縁物の厚さが(λ/2n)A以下であることを特徴と
する固体撮像素子が得られる。
(Structure of the Invention) According to the present invention, a solid-state image sensor has a plurality of storage regions arranged on a semiconductor substrate, and a region at least partially covered with a light-shielding film to read signal charges stored in the storage regions. In this case, an insulator is formed between at least a part of the edge of the light shielding film and the semiconductor substrate, and the thickness of the insulator is A solid-state imaging device characterized in that the length is (λ/2n)A or less can be obtained.

(本発明の概要) この発明は、上述の構成をとることKよフ従来技術の問
題点を解決した。シリコンなどの半導体基板に形成され
た固体撮像素子において、アルミニウムなどの遮光膜の
縁の部分の直下にはポリシリコン電極がなく、かつ酸化
膜の膜厚が小さいことが望ましく、入射光の波長をλÅ
、酸化膜の屈折率をnとしたときに(λ/2n)A 以
下がよい。
(Summary of the present invention) The present invention solves the problems of the prior art by adopting the above-mentioned configuration. In a solid-state image sensor formed on a semiconductor substrate such as silicon, it is desirable that there is no polysilicon electrode directly under the edge of a light-shielding film such as aluminum, and that the oxide film has a small thickness. λÅ
, where n is the refractive index of the oxide film, it is preferably (λ/2n)A or less.

このような構造の固体撮像素子では斜めに入射してくる
元に対しても遮光性が大きく改善され、スミア量が小さ
くなる。
In a solid-state imaging device having such a structure, the light-shielding property is greatly improved even against obliquely incident sources, and the amount of smear is reduced.

〔実施例〕〔Example〕

以下本発明の実施例について図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明の一実施例のIL−CCDの模式的平面図は第2
図と同じであり、2次元的に配列された繰り返しセル部
の平面図#i!3図と同じである。
A schematic plan view of an IL-CCD according to an embodiment of the present invention is shown in FIG.
Same as the figure, a plan view #i of a two-dimensionally arranged repeating cell part! It is the same as Figure 3.

第1図は第3図はI −I’に沿う部分的断面図である
。第1図において、第2.3.4図と同一機能を持つ構
成要素は同一記号で示しである。
FIG. 1 and FIG. 3 are partial cross-sectional views along I-I'. In FIG. 1, components having the same functions as those in FIG. 2.3.4 are indicated by the same symbols.

第1図において、シリコン基板11内の構造は第4図の
ものと同じである。第1ポリシリコン電極7と第2ポリ
シリコン電極8の構造も第4図のものと同じである。N
型領域15と第lポリシリコン上の熱酸化gi 00の
膜厚を100OAとする。
In FIG. 1, the structure inside silicon substrate 11 is the same as that in FIG. The structures of the first polysilicon electrode 7 and the second polysilicon electrode 8 are also the same as those in FIG. N
The thickness of the thermally oxidized gi 00 on the mold region 15 and the first polysilicon is 100 OA.

熱酸化膜100の上にアルミニウムの遮光M9が形成さ
れている。さらに最上層〈は膜厚5000 Aの酸化膜
の保!I膜19が気相化学反応成長で形成されている。
A light shielding layer M9 made of aluminum is formed on the thermal oxide film 100. Furthermore, the top layer is an oxide film with a thickness of 5000 A! The I film 19 is formed by vapor phase chemical reaction growth.

第1図からもわかるようK、遮光膜Jの縁の部分では蓄
積領域のNfi領域15との距離が100OAであり、
その間にはポリシリコン電極はなく、酸化膜である。遮
光膜9がポリシリコン電極やチャネルストッパ6上の厚
−熱酸化膜13を包み込む形状−なってbる。
As can be seen from FIG. 1, at the edge of the light-shielding film J, the distance from the storage region Nfi region 15 is 100 OA.
There is no polysilicon electrode between them, but an oxide film. The light shielding film 9 has a thickness on the polysilicon electrode and the channel stopper 6, and has a shape that wraps around the thermal oxide film 13.

遮光M9の縁の部分でのシリコン基板までの距離、すな
わちN型領域15上の熱酸化J[100の膜厚を変えた
ときのスミア量を第6図に示す。入射光の波長は550
0Aである。図から明らかなように酸化膜厚が小さいほ
どスミア量は小さす、酸化膜厚が0.5μm以上のとき
はスミア量の変化は小さい。
FIG. 6 shows the amount of smear when the distance to the silicon substrate at the edge of the light shielding M9, that is, the film thickness of the thermally oxidized J [100] on the N-type region 15 is changed. The wavelength of the incident light is 550
It is 0A. As is clear from the figure, the smaller the oxide film thickness, the smaller the amount of smear, and when the oxide film thickness is 0.5 μm or more, the change in the amount of smear is small.

しかし酸化膜厚が0.5μm以下になると急速にスミア
量は小さくなり、特に0.3μm以下では特に顕著に小
さくなることがわかる。酸化膜厚が小さいとホIJシリ
コン電極と遮光噴量の容量が大きくなることと、ポリシ
リコン電極と遮光膜間のシ、−トが増加するという欠点
がある。
However, it can be seen that when the oxide film thickness becomes 0.5 μm or less, the amount of smear decreases rapidly, and particularly when the oxide film thickness decreases to 0.3 μm or less, it decreases significantly. If the oxide film thickness is small, there are disadvantages in that the capacity of the IJ silicon electrode and the light shielding jet amount becomes large, and the number of sheets between the polysilicon electrode and the light shielding film increases.

平行な鏡面間を光が反射しながら進む場合を考える。シ
リコン面とアルミニウムの遮光膜が鏡面Kfiたる。こ
の場合、カットオフ波長λcAが存在し、λ(Aより長
い波長の元は減衰する。平行な鏡面間の距離を1人、屈
折率をnとすると、λ(=2nt  の関係がある。第
6図の場合、熱酸化giooの屈折率n = 1.46
、入射光の波長が550OAであるので 熱酸化膜厚が
1900A以下では完全に光の回り込みは防止できるは
ずである。
Consider the case where light travels between parallel mirror surfaces while being reflected. The silicon surface and the aluminum light shielding film form a mirror surface Kfi. In this case, there is a cutoff wavelength λcA, and elements with wavelengths longer than λ(A are attenuated.If the distance between parallel mirror surfaces is 1 person and the refractive index is n, then there is a relationship of λ(=2nt. In the case of Figure 6, the refractive index of thermal oxidation gioo is n = 1.46
Since the wavelength of the incident light is 550 OA, if the thermal oxide film thickness is 1900 Å or less, it should be possible to completely prevent the light from going around.

しかし、第6図では、完全圧スミア量がゼロになってい
ない。これは第3図からもわかるように、遮光膜9の縁
のナベての部分が光の回り込みを防止できる構造になっ
ていないからであろう。すなわち、遮光膜9の縁の直下
にポリシリコン電極が存在する部分があるからであろう
However, in FIG. 6, the full pressure smear amount is not zero. This is probably because, as can be seen from FIG. 3, the round edge of the light shielding film 9 does not have a structure that prevents light from going around. That is, this is probably because there is a portion where the polysilicon electrode exists directly under the edge of the light shielding film 9.

スミアを小さくするKは、可能な限りデリシリコン電極
やチャネルストッパの厚い酸化膜を遮光膜が包み込む形
状になることが望ましい。すなわち可能な限]遮光膜の
縁の部分とシリコン基板との距離を(λ/2n)A以下
とし、その間を絶縁物のみにすることが望ましい。
To reduce smear, it is desirable that the light-shielding film wraps the thick oxide film of the silicon electrode and channel stopper as much as possible. In other words, it is desirable that the distance between the edge of the light-shielding film and the silicon substrate be less than (λ/2n)A, and that only an insulating material be provided between them.

(発明の効果) 以上、一実施例をもとく1本発明について具体的に説明
したことから明らかなように、本発明によれば、遮光膜
の緑の部分の下ではなるべくポリシリコン等の電極材が
ないようにし、酸化膜のような絶縁物とし、この絶縁物
の膜厚を(λ/2n)A以下にする構造にすると、斜め
に入射した光の多重反射等の効果による光の漏れ込みが
改善されスミア量が減少する。
(Effects of the Invention) As is clear from the above detailed explanation of one embodiment of the present invention, according to the present invention, under the green part of the light-shielding film, an electrode made of polysilicon or the like is formed as much as possible. If the structure is such that an insulator such as an oxide film is used, and the thickness of this insulator is less than (λ/2n)A, light leakage will occur due to effects such as multiple reflections of obliquely incident light. This improves the amount of smear and reduces the amount of smear.

この発明は窓明き屋のフレームトランス77方式COD
イメージセンサやMO8型イメージセンナやCPDWイ
メージセンサ等、−次元センナ、2次元センナを問わず
適用できる。
This invention is Mado Akiya's frame transformer 77 method COD.
It can be applied to image sensors, MO8 type image sensors, CPDW image sensors, etc., regardless of whether they are -dimensional sensors or two-dimensional sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の固体撮像素子の部分断面図、
第2図は固体撮像素子の模式的平面図、第3図は固体撮
像素子のaり返しセル部の平面図・N4,5図は従来の
固体撮像素子の部分’eIif面図、第6因は遮光膜と
半導体基板との間の酸化膜の膜厚の変化に対するスミア
量の変化を示す図である。 l・・・・・・蓄積領域、  2・・・・・・垂直CC
Dレジスタ。 3・・・・・・トランス7アグート部、 4・旧・・水
平CODレジスタ% 5・・・・・・出力部、  6・
・・・・・チャネルストッパ、  7・・・・・・第1
ポリシリコン電極、  9・・・・・・遮光膜、 1工
・・・・・・シリコン基板、 13・旧・・熱酸化膜、
100・・・・・・熱酸化膜。 代理人弁理士 内 原  晋・パ・ 栴/図 第2図 %5図 に′、t”、X、、′l) −−−7肩51幻ンリコン
寄り本η1−J−ム4′」 へ7;] LA−)−−−θ 第2本°リシリコシ電冬ら【゛乙−
7赴梗 第4図 第6図
FIG. 1 is a partial cross-sectional view of a solid-state image sensor according to an embodiment of the present invention;
Fig. 2 is a schematic plan view of a solid-state image sensor, Fig. 3 is a plan view of the A cell part of the solid-state image sensor, and Figs. 2 is a diagram showing a change in the amount of smear with respect to a change in the thickness of an oxide film between a light shielding film and a semiconductor substrate. FIG. l...Accumulation area, 2...Vertical CC
D register. 3...Transformer 7 Agut section, 4.Old...Horizontal COD register% 5...Output section, 6.
...Channel stopper, 7...1st
Polysilicon electrode, 9... Light shielding film, 1... Silicon substrate, 13. Old... Thermal oxide film,
100...Thermal oxide film. Agent Patent Attorney Susumu Uchihara Pa. / Figure 2 Figure % 5', t'', 7; ] LA-) --- θ 2nd edition ° Rishirikoshi Denfuyu et al.
7 Expedition Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に配列された複数個の蓄積領域と、少なく
とも一部が遮光膜でおおわれ前記蓄積領域に蓄積された
信号電荷を読み出す領域とを有する固体撮像素子におい
て、前記遮光膜の端の少なくとも一部と前記半導体基板
との間が絶縁物でありかつ、入射光の波長をλÅ、前記
絶縁物の屈折率をnとしたとき、前記絶縁物の厚さが(
λ/2n)Å以下であることを特徴とする固体撮像素子
In a solid-state image sensor having a plurality of accumulation regions arranged on a semiconductor substrate and a region at least partially covered with a light-shielding film and reading out signal charges accumulated in the accumulation regions, at least a portion of an edge of the light-shielding film is provided. and the semiconductor substrate, and when the wavelength of the incident light is λÅ and the refractive index of the insulator is n, the thickness of the insulator is (
A solid-state imaging device characterized in that it is λ/2n) Å or less.
JP60108640A 1985-05-20 1985-05-20 Solid-state image pickup element Pending JPS61265865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108640A JPS61265865A (en) 1985-05-20 1985-05-20 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108640A JPS61265865A (en) 1985-05-20 1985-05-20 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS61265865A true JPS61265865A (en) 1986-11-25

Family

ID=14489915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108640A Pending JPS61265865A (en) 1985-05-20 1985-05-20 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS61265865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142859A (en) * 1986-12-05 1988-06-15 Matsushita Electronics Corp Solid-state image sensing device
JPS63208269A (en) * 1987-02-25 1988-08-29 Hitachi Ltd Solid-state image sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142859A (en) * 1986-12-05 1988-06-15 Matsushita Electronics Corp Solid-state image sensing device
JPS63208269A (en) * 1987-02-25 1988-08-29 Hitachi Ltd Solid-state image sensing device

Similar Documents

Publication Publication Date Title
KR950021707A (en) Solid state imaging device and manufacturing method thereof
JPH04223371A (en) Solid-state image sensing device
JPH08148665A (en) Solid image pickup element
JPH04199874A (en) Solid state image sensing device
JPS61265865A (en) Solid-state image pickup element
JPS6124273A (en) Solid-state image pickup element
JPS6118172A (en) Solid-state image picking device
US20100187582A1 (en) Solid-state imaging device having transmission gates which pass over part of photo diodes when seen from the thickness direction of the semiconductor substrate
JPH0424964A (en) Solid-state image sensing device
JP2506697B2 (en) Solid-state imaging device
JPH0449787B2 (en)
US7755091B2 (en) Solid state image pickup device
JP2606834B2 (en) Solid-state imaging device and method of manufacturing the same
JPS62134966A (en) Interline type ccd image pickup element
JPH01168059A (en) Solid state image sensor
JPS60244063A (en) Solid-state image pickup element
JPH0294664A (en) Solid-state image sensing element
JPH01107567A (en) Solid state image sensor
JP2922688B2 (en) Infrared solid-state image sensor
JPS62299067A (en) Infrared ray detector
JPH06163864A (en) Solid-state image pickup device
JP2008047608A (en) Single-plate solid-state image sensing element
JP2848435B2 (en) Solid-state imaging device
JPH033269A (en) Ccd image pickup element
JP3191967B2 (en) Solid-state imaging device