JPS62299067A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS62299067A
JPS62299067A JP61141332A JP14133286A JPS62299067A JP S62299067 A JPS62299067 A JP S62299067A JP 61141332 A JP61141332 A JP 61141332A JP 14133286 A JP14133286 A JP 14133286A JP S62299067 A JPS62299067 A JP S62299067A
Authority
JP
Japan
Prior art keywords
infrared rays
reflected
reflecting film
light receiving
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141332A
Other languages
Japanese (ja)
Inventor
Shinichi Teranishi
信一 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61141332A priority Critical patent/JPS62299067A/en
Publication of JPS62299067A publication Critical patent/JPS62299067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make a reproduced picture image with excellent resolution while averting the effect of a distant scattering body by means of providing a reflecting film on the overall surface of device photodetectors. CONSTITUTION:A reflecting film 9 is provided on the overall surface of a pic ture element. Any infrared rays a or b aribtrarily entered into the main surface of a p type silicon substrate 6 even if not absorbed into photodetectors 15 are reflected by the reflecting film 9 without fail. The reflected infrared rays are entered into the photodetector 15 once passed through before they are reflected by the reflecting film 9 or the adjoining photodetector 15 at the farthest. Through these procedures, the quantum effect can be heightened by making use of reflected infrared rays without being affected by a distant scattering body 16 or deteriorating the resolution.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は赤外線検出装置に関する。4〔従来の技術〕 従来のシヨ・7トキバリアダイオードを用いた赤外線C
ODイメージセンサ(SB−I RCCD)について\
W、F、Kosonocky  (コソノッキー)等の
S P I E (The 5ociety of P
hoto−Optical Instrumentat
ion Engineers) +4431167ペー
ジ、1983年の論文をもとに説明する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to an infrared detection device. 4 [Conventional technology] Infrared C using conventional barrier diodes
About OD image sensor (SB-I RCCD)
S P I E (The 5ociety of P) such as W, F, Kosonocky
photo-Optical Instrumentat
ion Engineers) +4431167 pages, explanation based on a 1983 paper.

第2図は、SB−IRCODの模式的平面図である。受
光部1には逆バイアスされたショットキバリアダイオー
ドが用いられており、水平方向と垂直方向に規則的に配
列されている。受光部1の列の一方側に近接して垂直C
ODレジスタ2が設けられており、この垂直CCDレジ
スタ2と受光部1との間にトランスフアゲ−[・部3が
設けられている。垂直CCDレジスタ2とトランスファ
ゲート部3とは信号読み出し部を構成し、受光部1と読
み出し部とで画素が構成される。さらに、垂直CCDレ
ジスタ2の電荷転送方向の端部には水平CCDレジスタ
4が設けられており、水平CODレジスタ4の電荷転送
方向の端部には出力部5が設けられている。
FIG. 2 is a schematic plan view of SB-IRCOD. The light receiving section 1 uses reverse biased Schottky barrier diodes, which are regularly arranged in the horizontal and vertical directions. Vertical C adjacent to one side of the row of light receiving sections 1
An OD register 2 is provided, and a transfer gate section 3 is provided between the vertical CCD register 2 and the light receiving section 1. The vertical CCD register 2 and the transfer gate section 3 constitute a signal readout section, and the light receiving section 1 and the readout section constitute a pixel. Further, a horizontal CCD register 4 is provided at the end of the vertical CCD register 2 in the charge transfer direction, and an output section 5 is provided at the end of the horizontal COD register 4 in the charge transfer direction.

第3図は、第2図の5B−IRCCDの単位画素の水平
方向の模式的断面図である。p型シリコン基板6の一主
面に白金シリサイド層7が形成されている。逆バイアス
耐圧を高めるために白金シリサイド層7のエツジ部と接
する領域には、n型のガードリング部8が形成されてい
る。白金シリサイド層7の上方には、アルミニウムの反
射膜9が酸化膜10を介して設けられている。白金シリ
サイド層7とトランスフアゲ−目1とを電気的に接続す
る目的で、n十領域12が形成されている。白金シリサ
イド層7とn十領域12とは、オーム接触している。ト
ランスファゲート11の下のチャネルは表面型である。
3 is a schematic horizontal cross-sectional view of a unit pixel of the 5B-IRCCD shown in FIG. 2. FIG. A platinum silicide layer 7 is formed on one main surface of a p-type silicon substrate 6 . In order to increase the reverse bias breakdown voltage, an n-type guard ring portion 8 is formed in a region in contact with the edge portion of the platinum silicide layer 7. An aluminum reflective film 9 is provided above the platinum silicide layer 7 with an oxide film 10 interposed therebetween. An n+ region 12 is formed for the purpose of electrically connecting the platinum silicide layer 7 and the transfer gate 1. The platinum silicide layer 7 and the n+ region 12 are in ohmic contact. The channel under transfer gate 11 is of a surface type.

トランスファゲート11に隣接して垂直CCDレジスタ
用の駆動ゲート13とn型の埋め込み層14とが形成さ
れている。
Adjacent to the transfer gate 11, a drive gate 13 for a vertical CCD register and an n-type buried layer 14 are formed.

第2図および第3図で示した5B−IRCCDでは、裏
面より赤外線が入射し、白金シリサイド層7に赤外線が
吸収され、エネルギーの大きいエレクトロンやホールが
生成される。p型シリコン基板6と白金シリサイド層7
とがなすショットキバリアダイオードのショソトキバリ
アハイトは0.2〜0.27eVであるが、このバリア
ハイドを赤外線によって励起されたホットホールが越え
、p型シリコン基板6へ注入され、エレクトロンとホー
ルが分離され、白金シリサイド層7に残ったエレクトロ
ンが信号電荷となる。信号電荷は白金シリサイド層7と
これとオーム接触しているn十領域12とに蓄積される
。フィールド期間またはフレーム期間毎にトランスファ
ゲート部3がオン状態になり、白金シリサイド層7とn
+領域12とにより垂直CODレジスタ2へ信号電荷は
転送され、さらに垂直CCDレジスタ2と水平CCDレ
ジスタ4の働きにより出力部5へ転送され、固定撮像素
子外部へ出力される。
In the 5B-IRCCD shown in FIGS. 2 and 3, infrared rays enter from the back surface, are absorbed by the platinum silicide layer 7, and generate high-energy electrons and holes. p-type silicon substrate 6 and platinum silicide layer 7
The Schottky barrier height of the Schottky barrier diode made by Toga is 0.2 to 0.27 eV, but hot holes excited by infrared rays cross this barrier hide and are injected into the p-type silicon substrate 6, where electrons and holes are generated. The separated electrons remaining in the platinum silicide layer 7 become signal charges. Signal charges are accumulated in the platinum silicide layer 7 and the n+ region 12 in ohmic contact therewith. The transfer gate section 3 is turned on every field period or frame period, and the platinum silicide layer 7 and n
The signal charge is transferred to the vertical COD register 2 by the + region 12, and further transferred to the output section 5 by the functions of the vertical CCD register 2 and the horizontal CCD register 4, and output to the outside of the fixed image sensor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の赤外線検出装置において、アルミニウム
の反射膜9は、裏面より入射した赤外線のうちで白金シ
リサイド屓7に吸収されなかったものを反射し、再度白
金シリサイド層7に入射させることによって量子効率の
向上を図る目的で設けられている。
In the conventional infrared detection device described above, the aluminum reflective film 9 reflects the infrared rays that are not absorbed by the platinum silicide layer 7 from among the infrared rays incident from the back surface, and makes the infrared rays incident on the platinum silicide layer 7 again, thereby increasing the quantum efficiency. It was established for the purpose of improving the quality of life.

第4図は多数の画素を含む従来の赤外線検出装置の模式
的断面図である。簡単のために、白金シリサイド層7の
うちでp型シリコン基板6と対向し赤外線に感度を持つ
受光部15とアルミニウムの反射膜9とを示した。さら
にSB−I RCCDCCDチップれた所に、赤外線を
散乱する散乱体16が設けられている。散乱体16とし
ては、SB−1RCCDチツプをマウントしたケースの
キャップや冷却器のヘッドなどが考えられる。
FIG. 4 is a schematic cross-sectional view of a conventional infrared detection device including a large number of pixels. For the sake of simplicity, a light-receiving section 15 that faces the p-type silicon substrate 6 and is sensitive to infrared rays in the platinum silicide layer 7 and an aluminum reflective film 9 are shown. Furthermore, a scatterer 16 for scattering infrared rays is provided at a location below the SB-I RCCD CCD chip. As the scatterer 16, the cap of the case on which the SB-1RCCD chip is mounted, the head of a cooler, etc. can be considered.

第4図において矢印aとbは赤外線の光路を示している
。光路aは受光部15で吸収されなかった赤外線がアル
ミニウムの反射膜9で反射され、再び受光部15へ入射
する場合を示している。最初に通過した受光部15と同
じかせいぜい隣の受光部15に反射光は入射する。これ
に対して、光路すは受光部15で吸収されなかった赤外
線がアルミニウムの反射膜9の隙間を通過し、遠方の散
乱体16によって反射され、再び受光部15へ入射する
場合を示している。光路すの場合、最初に通過した受光
部15のある画素から大きく離れた画素の受光部15へ
入射することもある。このように従来の赤外線検出装置
では、光路すのような遠方の散乱体による反射の影響が
あるために、5B−IRCCDの再生画素の像がボケで
、解像度が大きく劣化するという欠点があった。
In FIG. 4, arrows a and b indicate the optical path of infrared rays. Optical path a shows a case where infrared rays that are not absorbed by the light receiving section 15 are reflected by the aluminum reflective film 9 and enter the light receiving section 15 again. The reflected light enters the same or at most the next light receiving part 15 as the light receiving part 15 that it passed through first. In contrast, the optical path shows the case where the infrared rays that were not absorbed by the light receiving section 15 pass through the gap in the aluminum reflective film 9, are reflected by the distant scatterer 16, and enter the light receiving section 15 again. . In the case of an optical path, the light may enter the light receiving section 15 of a pixel far away from the pixel of the light receiving section 15 through which it first passes. As described above, conventional infrared detection devices have the disadvantage that the image of the reproduced pixel of the 5B-IRCCD is blurred and the resolution is significantly degraded due to the influence of reflection from distant scatterers such as light paths. .

この発明の目的は上記の欠点を除去し、解像度のよい赤
外線検出装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide an infrared detection device with good resolution.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、半導体基板の一主面に受光部と信号読み出
し部とを有する画素が配列された裏面照射型赤外線検出
装置において、画素表面全面に反射膜が設けられている
ことを特徴とする。
The present invention is a back-illuminated infrared detection device in which pixels having a light receiving section and a signal readout section are arranged on one main surface of a semiconductor substrate, and is characterized in that a reflective film is provided on the entire surface of the pixel.

〔作用〕[Effect]

この発明の赤外線検出装置では、二次元ないしは一次元
に画素が配列されている受光面上の全面にアルミニウム
などの金属製反射膜が形成されているために、受光部で
吸収されなかった赤外線は必ず反射膜によって反射され
る。このために、反射赤外線は反射前に通過した画素と
同じ画素かせいぜい隣接した画素に入射し、解像度を劣
化させることなく、反射赤外線を利用することで量子効
率を高くすることができる。
In the infrared detection device of the present invention, a reflective film made of metal such as aluminum is formed on the entire surface of the light-receiving surface where pixels are arranged two-dimensionally or one-dimensionally, so that infrared rays that are not absorbed by the light-receiving section are It is always reflected by a reflective film. For this reason, the reflected infrared rays are incident on the same pixel or at most an adjacent pixel to which the reflected infrared rays passed before reflection, and quantum efficiency can be increased by using the reflected infrared rays without degrading the resolution.

〔実施例〕〔Example〕

以下、図面を用いてこの発明の一実施例の説明を行う。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の5BIRCCDの単位画
素の水平方向の模式的断面図である。
FIG. 1 is a schematic horizontal cross-sectional view of a unit pixel of a 5 BIRCCD according to an embodiment of the present invention.

このSB−I RCCDの模式的平面図は第2図と同様
である。なお、第1図において、第3図と同一の参照番
号は同一の構成要素を示す。この装置ではデバイス表面
に酸化膜10aを介して全面にアルミニウムの反射膜9
が形成され、さらに反射膜9の上の保護膜のための酸化
膜10bが形成されている。
A schematic plan view of this SB-I RCCD is similar to FIG. 2. Note that in FIG. 1, the same reference numbers as in FIG. 3 indicate the same components. In this device, an aluminum reflective film 9 is provided on the entire surface of the device via an oxide film 10a.
is formed, and an oxide film 10b serving as a protective film on the reflective film 9 is further formed.

第5図は多数の画素を含む本実施例の模式的断面図であ
る。図において第4図と同一記号は同一の構成要素を示
している。このSB−I RCCDでは矢印線aとbで
示すように、p型シリコン基板6の主面に対してどのよ
うな角度で入射した赤外線に対しても、受光部15で吸
収されなかったものは必ず反射膜9で反射される。反射
した赤外光は反射前に通過した受光部と同じ受光部かせ
いぜい隣接した受光部に入射する。従って、遠方の散乱
体16の影響を受けず、解像度を劣化させることなく、
反射赤外線を利用することで量子効率を高くすることが
できる。
FIG. 5 is a schematic cross-sectional view of this embodiment including a large number of pixels. In the figure, the same symbols as in FIG. 4 indicate the same components. In this SB-I RCCD, as shown by arrow lines a and b, infrared rays that are incident on the main surface of the p-type silicon substrate 6 at any angle are not absorbed by the light receiving section 15. It is always reflected by the reflective film 9. The reflected infrared light enters the same light receiving section through which it passed before reflection, or at most an adjacent light receiving section. Therefore, without being affected by the distant scatterer 16 and without deteriorating the resolution,
Quantum efficiency can be increased by using reflected infrared rays.

以上の実施例では5B−I RCCDの場合を説明した
が、走査回路はCCDレジスタに限らず、MOS型やそ
の他の方式であってもよい。また、ショットキバリアダ
イオード型のセンサのみでなく、狭バンドキャンプの半
導体を用いた赤外線検出装置においても本発明を適用で
きる。なお、反射膜としては、アルミニウムなどの金泥
の他、各種材料を用いることができる。
In the above embodiments, the case of a 5B-I RCCD has been described, but the scanning circuit is not limited to a CCD register, but may be of a MOS type or other type. Furthermore, the present invention can be applied not only to Schottky barrier diode type sensors but also to infrared detection devices using narrow band camp semiconductors. Note that various materials can be used as the reflective film in addition to gold paint such as aluminum.

〔発明の効果〕〔Effect of the invention〕

このように、この発明による赤外線検出装置では、反射
膜をデバイス受光面全体に設けることによって、遠方の
散乱体の影響を排除し、解像度のよい再生画像が得られ
る。
As described above, in the infrared detection device according to the present invention, by providing a reflective film over the entire light-receiving surface of the device, the influence of distant scatterers can be eliminated and a reproduced image with good resolution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による赤外線検出装置の単
位画素の模式的断面図、 第2図は赤外線検出装置の模式的平面図、第3図は従来
の赤外線検出装置の単位画素の模式的断面図、 第4図は従来の赤外線検出装置の数画素を含む模式的断
面図、 第5図はこの発明の一実施例の赤外線検出装置の数画素
を含む模式的断面図である。 1.15・・・受光部 2・・・・・垂直CCDレジスタ 3・・・・・トランスファゲート部 6・・・・・p型シリコン基板 7・・・・・白金シリサイド層 9・・・・・反射膜 10a 、10b ・・酸化膜 11・・・・・トランスファゲート 13・・・・・駆動ゲート
FIG. 1 is a schematic sectional view of a unit pixel of an infrared detection device according to an embodiment of the present invention, FIG. 2 is a schematic plan view of the infrared detection device, and FIG. 3 is a schematic diagram of a unit pixel of a conventional infrared detection device. FIG. 4 is a schematic sectional view including several pixels of a conventional infrared detection device. FIG. 5 is a schematic sectional view including several pixels of an infrared detection device according to an embodiment of the present invention. 1.15... Light receiving section 2... Vertical CCD register 3... Transfer gate section 6... P-type silicon substrate 7... Platinum silicide layer 9... -Reflection films 10a, 10b...Oxide film 11...Transfer gate 13...Drive gate

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の一主面に受光部と信号読み出し部と
を有する画素が配列された裏面照射型赤外線検出装置に
おいて、画素表面全面に反射膜が設けられていることを
特徴とする赤外線検出装置。
(1) In a back-illuminated infrared detection device in which pixels each having a light receiving section and a signal readout section are arranged on one main surface of a semiconductor substrate, an infrared detection device is characterized in that a reflective film is provided over the entire surface of the pixel. Device.
JP61141332A 1986-06-19 1986-06-19 Infrared ray detector Pending JPS62299067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141332A JPS62299067A (en) 1986-06-19 1986-06-19 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141332A JPS62299067A (en) 1986-06-19 1986-06-19 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS62299067A true JPS62299067A (en) 1987-12-26

Family

ID=15289484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141332A Pending JPS62299067A (en) 1986-06-19 1986-06-19 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS62299067A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033473A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
JP2006261372A (en) * 2005-03-17 2006-09-28 Sony Corp Solid-state image sensing device, its manufacturing method and imaging device
JP2011151420A (en) * 2011-04-25 2011-08-04 Sony Corp Solid-state image sensor, method of manufacturing the same, and imaging device
JP2011151421A (en) * 2011-04-25 2011-08-04 Sony Corp Solid-state image sensor, method of manufacturing the same, and imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956766A (en) * 1982-09-27 1984-04-02 Toshiba Corp Solid-state image pick-up sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956766A (en) * 1982-09-27 1984-04-02 Toshiba Corp Solid-state image pick-up sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033473A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
JP2006261372A (en) * 2005-03-17 2006-09-28 Sony Corp Solid-state image sensing device, its manufacturing method and imaging device
JP2011151420A (en) * 2011-04-25 2011-08-04 Sony Corp Solid-state image sensor, method of manufacturing the same, and imaging device
JP2011151421A (en) * 2011-04-25 2011-08-04 Sony Corp Solid-state image sensor, method of manufacturing the same, and imaging device

Similar Documents

Publication Publication Date Title
CN109643722B (en) Sensor chip and electronic device
JPH0135549B2 (en)
JPH05121711A (en) Infrared ray ccd
JPS62299067A (en) Infrared ray detector
JP2917361B2 (en) Solid-state imaging device
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
JP2506697B2 (en) Solid-state imaging device
JP2871831B2 (en) Solid-state imaging device
US5066994A (en) Image sensor
JP4824241B2 (en) Semiconductor energy detector
JPS6160592B2 (en)
JP2701523B2 (en) Infrared solid-state imaging device
JPS6173369A (en) Infrared detecting element
JP2922688B2 (en) Infrared solid-state image sensor
JPH01168059A (en) Solid state image sensor
JPH04293264A (en) Infrared ray solid-state image sensing element
JPH033269A (en) Ccd image pickup element
JPH02304976A (en) Solid image-puckup element
JP2510999B2 (en) Infrared solid-state imaging device
JPH05243546A (en) Solid-state image sensing device
JPH01241161A (en) Solid-state image sensing device
JP2836299B2 (en) Infrared solid-state imaging device
JPH0140548B2 (en)
JPH05206432A (en) Infrared solid state imaging element
JPH04130666A (en) Solid state image sensing element