JPS6173369A - Infrared detecting element - Google Patents

Infrared detecting element

Info

Publication number
JPS6173369A
JPS6173369A JP59196151A JP19615184A JPS6173369A JP S6173369 A JPS6173369 A JP S6173369A JP 59196151 A JP59196151 A JP 59196151A JP 19615184 A JP19615184 A JP 19615184A JP S6173369 A JPS6173369 A JP S6173369A
Authority
JP
Japan
Prior art keywords
infrared rays
substrate
silicon substrate
absorption layer
crosstalk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196151A
Other languages
Japanese (ja)
Inventor
Shigeru Takahara
茂 高原
Masahiko Denda
伝田 匡彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59196151A priority Critical patent/JPS6173369A/en
Publication of JPS6173369A publication Critical patent/JPS6173369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To eliminate a crosstalk between adjacent detecting elements, and to obtain a distinct picture signal by forming an optical absorption layer absorbing infrared rays onto the back of an Si substrate. CONSTITUTION:An optical absorption layer 10 absorbing infrared rays is shaped between an Si substrate 1 and adhesives 8 bonding a package 9. Consequently, infrared rays transmitted through a platinum silicide electrode 5 and the substrate 1 are absorbed by the layer 10 shaped onto the back of the substrate 1, thus eliminating reflected infrared rays, then preventing a crosstalk with an adjacent element. Accordingly, a distinct picture, which does not fade, is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、一つのシリコン基板内に一次元または二次
元に配列形成された赤外線検出素子のクセ ロス、トークを改嵜さ番る構造に関するものである0 〔従来の技術〕 第2図は従来の赤外線検出素子の構造の概略を示す断面
図で、図において、(1)はp形シリコン基板、(2)
は酸化シリコン層、(3)は垂直ノットレジスタのゲー
ト電極、(4)はトランスファトランジスタのゲート成
極、(5)は赤外線の光ル変換を行なうンヨット午−接
合の白金シリサイド電極、(6)はトランスファトラン
ジスタのソースとなるn形項域、(7)はショットキー
接合のガードリングと、溝成するn影領域、(8)は接
着剤、(9)はバノクージである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a structure in which infrared detecting elements are arranged one-dimensionally or two-dimensionally within a single silicon substrate, and which modify the xeros and talk. 0 [Prior Art] Figure 2 is a cross-sectional view schematically showing the structure of a conventional infrared detection element. In the figure, (1) is a p-type silicon substrate, (2)
is a silicon oxide layer, (3) is the gate electrode of the vertical knot resistor, (4) is the gate polarization of the transfer transistor, (5) is the platinum silicide electrode of the Nyoto junction that performs infrared light conversion, (6) is an n-type region which becomes the source of a transfer transistor, (7) is a guard ring of a Schottky junction and an n-shaded region forming a groove, (8) is an adhesive, and (9) is a vanocouge.

次にこのショットキー形赤外線検出素子の動作について
説明する。白金7リサイドa ti (5)とp形シリ
コン基板(1)とのショットキー接合は、約0.27e
Vのショットキー接合バリヤ高さをもつが、このショッ
トキー接合に赤外−が入射すると成子、正孔対が生成さ
れ、/ヨツトキー接合バリヤを越えるエネルギーヲ待つ
正孔Vよ、ショットキー接合バリヤを越えてp形7リコ
/基板(1)に注入される。
Next, the operation of this Schottky type infrared detection element will be explained. The Schottky junction between the platinum 7 reside a ti (5) and the p-type silicon substrate (1) is approximately 0.27e.
The Schottky junction barrier has a height of V, but when infrared light is incident on this Schottky junction, a positive hole pair is generated, and the hole V and the Schottky junction barrier are is injected into the p-type 7 lyco/substrate (1).

この結果、ショットキー接合の白金シリサイド電極(5
)には電子が蓄積されるが、この電子を読み出すことに
より入射量に応じた信号を得る。
As a result, a Schottky junction platinum silicide electrode (5
), and by reading out these electrons, a signal corresponding to the amount of incidence can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

良く知られているように、白金ンリサイド電極(5)は
薄い方が検出感度が高く、通常100A以下の薄い膜で
形成されている。また、シリコンは1.levのバンド
ギャップを持ち、1.2μmよシ長の赤外線に対しては
透明である。従って、入射した赤外線の一部は、薄い白
金7リサイド電極(5)とシリコン基板(1)とを透過
し、接着剤(8)との界面で反射する。赤外線検出素子
上に像を結ぶためのレンズに焦点距離FIOものを使用
すると最大入射角は、約26.6’?になる。
As is well known, the thinner the platinum silicide electrode (5), the higher the detection sensitivity, and it is usually formed of a thin film of 100A or less. Also, silicon is 1. It has a bandgap of Lev and is transparent to infrared rays with a length of 1.2 μm. Therefore, a part of the incident infrared rays passes through the thin platinum 7 reside electrode (5) and the silicon substrate (1), and is reflected at the interface with the adhesive (8). If a lens with a focal length of FIO is used to focus an image on the infrared detection element, the maximum angle of incidence is approximately 26.6'? become.

シリコン基板(1)は通常厚さ400〜500湘である
から反射光が隣接検出素子に入ってクロス、トークを生
じるのを避けるためには、検出素子の間隔を400〜5
00湘とせねばならず、画素数の増加に大きな妨げとな
る。勿論クロス、トークがあれば鮮明な画像信号が得ら
れない。
Since the silicon substrate (1) is usually 400 to 500 mm thick, in order to prevent reflected light from entering adjacent detection elements and causing cross and talk, the distance between the detection elements should be set at 400 to 50 mm.
The number of pixels must be set to 0.00, which greatly hinders the increase in the number of pixels. Of course, if there is cross or talk, a clear image signal cannot be obtained.

この発明は以上のような問題点を解決するためになされ
たもので隣接検出素子間のクロス、トークをなくし、画
素密度を向上でき、しかも鮮明な画像信号が得られる赤
外線検出素子を得ることを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide an infrared detection element that can eliminate cross and talk between adjacent detection elements, improve pixel density, and provide a clear image signal. The purpose is

、〔問題点を解決するための手段〕 この発明に係る赤外線検出素子では、シリコン基板裏面 基板と接着剤との間に赤外線を吸収する光吸収層を設け
たものである。
, [Means for Solving the Problems] In the infrared detection element according to the present invention, a light absorption layer that absorbs infrared rays is provided between the silicon substrate back substrate and the adhesive.

〔作用〕[Effect]

この発明では、シリコン基板と接着剤との間に赤外線を
吸収する光吸収層を設けたので、従来この界面で生じて
いた反射赤外線をなくすことができる。   “ 〔実施例〕 第1図はこの発明の一実施例の構造の概略を示す断面図
で、前述の第2図に示した従来例と同一符号は同等部分
を示すもので、その説明は重複を避ける。図において、
αqはシリコン基板(1)と接着剤(8)との間に設け
られ赤外線を吸収する光吸収層である0光吸収層四には
、例えば、住友3M社裂のベルベットコーティング、1
01−C−10、ブラックを用いればよい。
In this invention, since a light absorption layer that absorbs infrared rays is provided between the silicon substrate and the adhesive, reflected infrared rays that conventionally occur at this interface can be eliminated. [Embodiment] Fig. 1 is a sectional view showing the outline of the structure of an embodiment of the present invention. The same reference numerals as in the conventional example shown in Fig. 2 above indicate the same parts, and the explanation thereof will not be repeated. Avoid.In the figure,
αq is a light absorption layer provided between the silicon substrate (1) and the adhesive (8) and absorbs infrared rays;
01-C-10, black may be used.

この実施例素子の動作原理は従来のものを同一であるが
、白金シリサイド電極(5)及びシリコン基板(1)を
透過した赤外線が、シリコン基板(1)の裏面に設けら
nた光吸収層QQによって吸収きれるので、反射赤外線
はなくなり、隣接素子との間のクロストークが防止され
る。
The operating principle of this example device is the same as that of the conventional device, but infrared rays transmitted through the platinum silicide electrode (5) and the silicon substrate (1) are absorbed by the light absorption layer provided on the back surface of the silicon substrate (1). Since it is completely absorbed by QQ, there is no reflected infrared rays, and crosstalk between adjacent elements is prevented.

なお、上記実施例では、金属シリサイド!他として、白
金シリサイド(PtSi)を用いたが、パラジよい。ま
た、基板はp形と限らず、n形であってもよい。
In addition, in the above example, metal silicide! As another example, platinum silicide (PtSi) was used, but it is good. Further, the substrate is not limited to p-type, and may be n-type.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、シリコン基板裏面での
赤外線反射を防止できるので、隣接検出素子との間のク
ロストークがなく、シたがって、画像のぼけがない。鮮
明な画像が得られる効果がある0
As described above, according to the present invention, reflection of infrared rays on the back surface of the silicon substrate can be prevented, so there is no crosstalk between adjacent detection elements, and therefore, there is no blurring of the image. Effective for obtaining clear images0

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の概略構成を示す断面図、
第2図は従来の赤外線検出素子の概略構成を示す断面図
である。 図において、(1)はシリコン基板、(5)は金属シリ
サイド(白金7り丈イド)電極、α0ri光吸収層であ
る。 な嘔、各図中−−符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing a schematic configuration of an embodiment of the present invention;
FIG. 2 is a sectional view showing a schematic configuration of a conventional infrared detection element. In the figure, (1) is a silicon substrate, (5) is a metal silicide (platinum silicide) electrode, and an α0ri light absorption layer. In each figure, the reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)共通のシリコン基板の表面にこれとショットキー
接合を形成する複数個の金属または金属シリサイド電極
を一次元または二次元的に配置し、上記金属または金属
シリサイド電極側から赤外線を入射させるものにおいて
、上記シリコン基板の裏面に赤外線を吸収する光吸収層
を備えたことを特徴とする赤外線検出素子。
(1) A device in which multiple metal or metal silicide electrodes forming Schottky junctions are arranged one-dimensionally or two-dimensionally on the surface of a common silicon substrate, and infrared rays are incident from the metal or metal silicide electrode side. An infrared detection element characterized in that a light absorption layer that absorbs infrared rays is provided on the back surface of the silicon substrate.
JP59196151A 1984-09-17 1984-09-17 Infrared detecting element Pending JPS6173369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196151A JPS6173369A (en) 1984-09-17 1984-09-17 Infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196151A JPS6173369A (en) 1984-09-17 1984-09-17 Infrared detecting element

Publications (1)

Publication Number Publication Date
JPS6173369A true JPS6173369A (en) 1986-04-15

Family

ID=16353054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196151A Pending JPS6173369A (en) 1984-09-17 1984-09-17 Infrared detecting element

Country Status (1)

Country Link
JP (1) JPS6173369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114165A (en) * 1986-10-31 1988-05-19 Nec Corp Infrared image sensing device
JPH03268369A (en) * 1990-03-16 1991-11-29 Sharp Corp Color sensor
US5804827A (en) * 1995-10-27 1998-09-08 Nikon Corporation Infrared ray detection device and solid-state imaging apparatus
JP2014507784A (en) * 2010-12-21 2014-03-27 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Silicon photomultiplier tube whose optical crosstalk is suppressed by special characteristics of the substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114165A (en) * 1986-10-31 1988-05-19 Nec Corp Infrared image sensing device
JPH0563022B2 (en) * 1986-10-31 1993-09-09 Nippon Electric Co
JPH03268369A (en) * 1990-03-16 1991-11-29 Sharp Corp Color sensor
US5804827A (en) * 1995-10-27 1998-09-08 Nikon Corporation Infrared ray detection device and solid-state imaging apparatus
JP2014507784A (en) * 2010-12-21 2014-03-27 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Silicon photomultiplier tube whose optical crosstalk is suppressed by special characteristics of the substrate
US9209329B2 (en) 2010-12-21 2015-12-08 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Silicon photoelectric multiplier with optical cross-talk suppression due to properties of a substrate

Similar Documents

Publication Publication Date Title
GB2080026A (en) Radiation sensitive semiconductor device
JPS6173369A (en) Infrared detecting element
JPH04343470A (en) Solid-state image pickup device
JPH03276677A (en) Solid-state image sensing element
JPS6089967A (en) Photoelectric conversion element
JPS61154283A (en) Solid image pick-up element
JPS62299067A (en) Infrared ray detector
JPH02244761A (en) Solid image pickup element and manufacture thereof
JPS6047472A (en) Solid-state image-pickup element
JPS62134966A (en) Interline type ccd image pickup element
JPH02140976A (en) Solid state image sensor
JPH04337667A (en) Solid-state image sensing element
JP3128851B2 (en) Solid-state imaging device
JP2956092B2 (en) Solid-state imaging device and method of manufacturing the same
JP3024161B2 (en) Solid-state imaging device
JPH04364071A (en) Solid-state image pick up device
JPH02304976A (en) Solid image-puckup element
JP2956115B2 (en) Solid-state imaging device
JPS60140879A (en) Semiconductor device
JPH04293264A (en) Infrared ray solid-state image sensing element
JPH0473313B2 (en)
JPS63114165A (en) Infrared image sensing device
JPH02232968A (en) Solid-state image sensor
JPS62273766A (en) Solid-state image sensing device
JPH0567800A (en) Optical semiconductor device