JPS6126574A - Superhard sintered body having sandwich structure - Google Patents

Superhard sintered body having sandwich structure

Info

Publication number
JPS6126574A
JPS6126574A JP14847584A JP14847584A JPS6126574A JP S6126574 A JPS6126574 A JP S6126574A JP 14847584 A JP14847584 A JP 14847584A JP 14847584 A JP14847584 A JP 14847584A JP S6126574 A JPS6126574 A JP S6126574A
Authority
JP
Japan
Prior art keywords
sintered body
diamond
sandwich structure
sintered
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14847584A
Other languages
Japanese (ja)
Inventor
昭夫 原
熊沢 佳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14847584A priority Critical patent/JPS6126574A/en
Publication of JPS6126574A publication Critical patent/JPS6126574A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)技術分野 ゛焼結ダイヤモンド(PCD)および焼結高圧相形窒化
硼素・、(PCBN)は寿命の長い工具として、あるい
は離加丁祠用工具として、特に後者の用途に必要不可欠
の物として近年急速に普及してきた。
Detailed Description of the Invention (1) Technical field: Sintered diamond (PCD) and sintered high-pressure phase boron nitride (PCBN) are used as long-life tools or as tools for cutting and cutting, especially the latter. It has rapidly become popular in recent years as an indispensable item for various purposes.

しかし適当な形状の素材がないために普及が進展しない
分野がある。例えば穴明は工具の需要は」1記の目的の
用途にも極めて大きいが、穴明は工具を作るのに適した
素材がなかったので、現在まで実用化されているとは云
えない状況にある。
However, there are some fields in which it has not become popular due to the lack of materials with suitable shapes. For example, there is a huge demand for tools for ana-mei for the purposes listed in 1. However, because there were no materials suitable for making ana-mei tools, it has not been put into practical use until now. be.

本発明は特にこの穴明は工具に適した素材を提供するこ
とにある。
The object of the present invention is to provide a material which is particularly suitable for drilling tools.

(2)技術背景 PCDおよびPCBNの工具用素材で現在市販されてい
るのは、超硬合金とPCDが2層構造になっているもの
か、PCDのみの単体構造になっているものかである。
(2) Technical background The PCD and PCBN tool materials currently on the market are those with a two-layer structure of cemented carbide and PCD, or those with a single structure of only PCD. .

単体構造になっているものはスローアウェイ工具として
そのままの形てつかわれる。超硬合金との2層構造にな
っているものは、より複雑な形状の工具に加工されて使
われる。PCDおよびPCBNは蝋付不可能であるが、
超硬合金層は蝋付可能なので複雑形状の工具が容易に出
来るという利点を有する。
If it is a single piece structure, it can be used as is as an indexable tool. Those that have a two-layer structure with cemented carbide are used to be processed into tools with more complex shapes. PCD and PCBN are not brazable, but
Since the cemented carbide layer can be brazed, it has the advantage that tools with complex shapes can be easily formed.

穴明は工具の場合には、その保持強度の点から両面蝋付
が望まれる。片面蝋付では蝋付面積が太き(取れないこ
ともあり、保持強度が十分でない。
When drilling holes in tools, it is desirable to braze them on both sides in order to maintain their holding strength. With single-sided brazing, the brazed area is large (sometimes it cannot be removed) and the holding strength is not sufficient.

このことが現在までPCDおよびPCBNの穴明は1只
が市場に現れない理由である。勿論穴明は工具以外にも
このようなことが、必要とされる場合は多く、本発明は
穴明は工具のみに限定されるものではないことはゆうま
でもない。
This is the reason why until now not a single PCD and PCBN hole puncher has appeared on the market. Of course, there are many cases where drilling is required in addition to tools, and it goes without saying that the present invention is not limited to tools.

(3)発明の開示 両面蝋付が望まれるならば、 PCD又はPCBNを超
硬合金でサンドウィッチ状に狭んだ構造がまず。
(3) Disclosure of the Invention If double-sided brazing is desired, a structure in which PCD or PCBN is sandwiched with cemented carbide is first required.

考えられる。本発明者らもこの構造め素材の試作をまず
試みた。その結果得られた結論は、亀裂の発生が多く工
業的にこれを生産することは、まず不可能とゆうことで
あった。この理由を検討したところ、超硬合金は熱膨張
係数の小さい材料であるが、それでもPCD又はPCB
Nとの熱膨張係数の差に起因することと結論された。焼
結時に応力がなく冷却時に2省の熱膨張係数の差によっ
て応力が発生すると考えられる。
Conceivable. The present inventors also first attempted to produce a prototype of this structural material. The conclusion obtained was that it was almost impossible to produce it industrially due to the occurrence of many cracks. When we investigated the reason for this, we found that although cemented carbide is a material with a small coefficient of thermal expansion, it still
It was concluded that this is due to the difference in thermal expansion coefficient with N. It is thought that there is no stress during sintering, and stress is generated during cooling due to the difference in the coefficients of thermal expansion of the two components.

熱膨張係数が低く高融点の各材料の熱膨張係数の値は次
のようである。
The coefficient of thermal expansion of each material with a low coefficient of thermal expansion and a high melting point is as follows.

焼結ダイヤモンド     5.26XIQ−@焼結高
圧相形窒化硼素   5.8 超硬合金         5.7 MO5,7 W4.8 W−3%N +−1,5%Fe    4.4これでみ
ると焼結ダイヤモンドと最も熱膨張係数の差の少ないの
は超硬合金とMoである。
Sintered diamond 5.26 Cemented carbide and Mo have the smallest difference in thermal expansion coefficient from diamond.

焼結後の冷却は普通には高圧力を掛けたままの状態でな
されるので、変形し難い材料はさらに変形し難い状態で
冷却される。今夏200℃から変形が止まるとするとP
CDに発生する歪は (5,7−5,2[i)X 10″ X 1200= 
5.28X 10−  と゛なる。
Cooling after sintering is usually done while applying high pressure, so that materials that are difficult to deform are cooled in a state that makes them even more difficult to deform. If the deformation stops at 200℃ this summer, P
The distortion generated on the CD is (5,7-5,2[i)X 10''X 1200=
It becomes 5.28X 10-.

焼結ダイヤモンドのヤング率は9.49X 10’ k
g/關2であるから、発生する応力は50kg/■−と
なる。一方、超硬合金側に発生する応力はそのヤング率
が5.7X 10’ kg/++♂であるので30kg
/輸♂となる。
Young's modulus of sintered diamond is 9.49X 10'k
g/square, the stress generated is 50 kg/■-. On the other hand, the stress generated on the cemented carbide side is 30 kg because its Young's modulus is 5.7X 10' kg/++♂
/ Becomes an imported male.

超硬合金でサンドウィッチ構造とした時には、前述の如
く焼結ダイヤモンドに亀裂が入り、工業的生産は不可能
である。このことは50kg/ms’応力に焼結ダイヤ
モンドは耐えられないことを意味している。
If a sandwich structure is made of cemented carbide, the sintered diamond will crack as described above, making industrial production impossible. This means that sintered diamond cannot withstand a stress of 50 kg/ms'.

そこで本発明者らは先にサンドウィッチの片側襲− に、超硬合金よりも塑性変形脩に富むMo、 Wあるい
はその合金を使うことを提案した。これにより見掛け」
二亀裂のないサンドウィンチ構造の焼結体を得るこ七に
成功した。しかしこの焼結体から工具を作ろうとして必
要形状の小片をワイヤー・カットにより切り出そうとす
るとしばしば亀裂の発生を見、安定な工具製造が難かし
いことが分った。
Therefore, the present inventors previously proposed using Mo, W, or an alloy thereof, which has greater plastic deformation than cemented carbide, for one side of the sandwich. This gives an appearance
We succeeded in obtaining a sintered body with a sand winch structure without any cracks. However, when attempting to make tools from this sintered body by wire-cutting small pieces of the required shape, cracks often appeared, making it difficult to manufacture tools stably.

そこで本発明者らは熱膨張係数が大きいため使用をため
らっていたより軟い金属の使用を思いついた。ちなみに
例えばCOの熱膨張係数は12.5XlO−′と超硬合
金の2倍以上である。
Therefore, the present inventors came up with the idea of using a softer metal, which had been hesitant to use because of its large coefficient of thermal expansion. For example, the coefficient of thermal expansion of CO is 12.5XlO-', which is more than twice that of cemented carbide.

しかし、冷却時に塑性変形が容易に生ずれば結果的に焼
結ダイヤモンド層に発生する応力は小さくなるはずであ
る。
However, if plastic deformation occurs easily during cooling, the stress generated in the sintered diamond layer should be reduced as a result.

COの場合、塑性変形が全く生じないと仮定すると、前
と同じ計算で歪量は (12,5−5,2G)X If” XI200== 
8.[i9X 10−3焼結ダイヤモンド層に発生する
応力は 8.69XIP’X9.49X10’=824kg/冒
♂又Co層に発生する応力は 8゜G9X 1O−5X2.IX 10’ =182k
g /龍3と著しく高くなる。このことがGoなどの熱
膨張係数の高い金属の使用をためられせた理由である。
In the case of CO, assuming that no plastic deformation occurs, the amount of strain is (12,5-5,2G)X If''XI200== using the same calculation as before.
8. [The stress occurring in the i9X 10-3 sintered diamond layer is 8.69 IX 10' = 182k
g/dragon 3, which is significantly higher. This is the reason why metals with high thermal expansion coefficients such as Go are discouraged.

又他の理由は融点が充分高くないので焼結時に溶けて移
動したり変形量が過度であったりして正しい形状をもつ
サンドウィッチ構造をもつ焼結体が得られないと考えた
ためである。
Another reason is that since the melting point is not high enough, it may melt and move during sintering or be excessively deformed, making it impossible to obtain a sintered body with a sandwich structure in the correct shape.

以上のような懸念はあったが、本発明者らはCoの如き
金属を使用し試作してみた。
Despite the above-mentioned concerns, the inventors attempted to make a prototype using a metal such as Co.

その結果、思いがけず良好なサンドウィッチ構造のダイ
ヤモンド焼結体を得たものである。この帥・ ことはCoの如き金属は充分な塑性変形能をもっている
ことを示すものである。
As a result, a diamond sintered body with an unexpectedly good sandwich structure was obtained. This fact indicates that metals such as Co have sufficient plastic deformability.

今発生する歪の中90%が塑性変形によって開放されて
も824X (+ −o、a)= 82.4kg/−の
応力が残り、これは前述の超硬合金の場合より高い。少
なくとも焼結ダイヤモンド層の応力を50kg/−以下
の応力レベルとする必要がある。すなわち(824−5
0)/ 824: 0.939  で93.9%の応力
が開放され″る必要がある。このことは、Co Hに発
生する応力182kg/−の中、少なくとも93.9%
すなわち171kg/wm’は塑性変形で解放されねば
ならないことを意味する。
Even if 90% of the strain currently generated is released by plastic deformation, a stress of 824X (+ - o, a) = 82.4 kg/- remains, which is higher than in the case of the cemented carbide described above. At least the stress of the sintered diamond layer must be at a stress level of 50 kg/- or less. That is, (824-5
0)/824: 93.9% of the stress must be released at 0.939. This means that at least 93.9% of the stress of 182 kg/- generated in CoH must be released.
That is, 171 kg/wm' means that it must be released by plastic deformation.

従って +82X (1−” 0.939)= l1kg/開2
の応力以下で00層は塑性変形していることを意味する
。例えばS IOc (0,08−0,13%炭素を含
む構造用炭素鋼)の常温における引張時降伏点は21k
g / mm1以上と表示されている。高温ではこの値
は大幅に低Fする。従って、COが500℃位の高温で
11kg/−以下で塑性変形することは、大変容易と考
えてよい。このことが焼結ダイヤモンドとの熱膨張係数
の差が大きいCoを用いてサンドライ、。
Therefore +82X (1-” 0.939) = l1kg/open2
This means that the 00 layer is plastically deformed below the stress of . For example, the tensile yield point of SIOc (structural carbon steel containing 0.08-0.13% carbon) at room temperature is 21k.
It is displayed as g/mm1 or more. At high temperatures this value becomes significantly lower F. Therefore, it can be considered that it is very easy for CO to undergo plastic deformation under 11 kg/- at a high temperature of about 500°C. This is why Co is used for sun drying, which has a large difference in thermal expansion coefficient from sintered diamond.

チ構造のものが容易に得られた理由である。This is the reason why a structure with a 1-h structure was easily obtained.

以上の説明から分るように高温で容易に塑性変形しつる
材料ならなくても良い訳であり、C09N++ F e
l Cu+ Ag+ AQ+ Znやそれらの合金など
色々な材料があげられる。しかし、この材料は焼結ダイ
ヤモンドに直接接することが普通であるので、直接接し
てダイヤモンドの特性を害しないものが望まれる。更に
は、実施例で述べるような製法から、焼結ダイヤモンド
の結合材と同一材質が好ましい。この点から特に好まし
いのは、C09Ni、 Feおよびそれらの合金である
。特に好ましいのは、Co部 Nrとその合金である。
As can be seen from the above explanation, it does not need to be a material that easily plastically deforms at high temperatures, and C09N++ Fe
l Cu+ Ag+ AQ+ Various materials such as Zn and alloys thereof can be mentioned. However, since this material usually comes into direct contact with the sintered diamond, it is desirable that the material does not harm the properties of the diamond when it comes into direct contact. Furthermore, due to the manufacturing method described in Examples, it is preferable to use the same material as the binding material of the sintered diamond. Particularly preferred from this point of view are C09Ni, Fe, and alloys thereof. Particularly preferred are Co part Nr and alloys thereof.

この中でFeはダイヤモンドと反応してFe5Cを発生
する恐れがあるので、 PCBHの場合には結合材とし
て金属を使うことは稀であるので、一般には金属は焼結
時に焼結体と反応しないことが必要である。このため、
ロー付は可能な金属と焼結体の間にTaの如き不活性な
材料をお°くことがしばしば行なわれる。不活性な金属
は大変薄くて良い。ロー付用の金属としては特に塑性変
形が容易でロー付可能な金属を用いることが行なわれる
Among these, Fe may react with diamond and generate Fe5C, so in the case of PCBH, metal is rarely used as a binder, so metal generally does not react with the sintered body during sintering. It is necessary. For this reason,
Brazing is often performed by placing an inert material such as Ta between the metal and the sintered body. Inert metals can be very thin. As the metal for brazing, a metal that is particularly easily plastically deformed and can be brazed is used.

すなわちCOr N i + F el CuI AQ
などがあげられる。
That is, COr N i + F el CuI AQ
etc.

冷却時の発生応力を解放するという点からはGoなどの
金属が片面のみにあっても良い訳である。この場合、例
えば他の片面にWC−Coがあれば、この方は塑性変形
量が大変小さいのて熱膨張係数の差による歪を発生し全
体の若干のそりを生ずる。この意味では両側の面にGo
などの金属がある方が望ましい。しかし、焼結体の製造
時に形状をCOのみで保ち難いとか、工具として使用時
にCo部が摩耗し易いとかの欠点もある。従って、。
From the point of view of releasing the stress generated during cooling, it is acceptable to have metal such as Go on only one side. In this case, if there is WC-Co on the other side, for example, the amount of plastic deformation on that side is very small, causing distortion due to the difference in thermal expansion coefficients, resulting in slight warping of the whole. In this sense, Go on both sides
It is preferable to use metals such as However, there are drawbacks such as difficulty in maintaining the shape using only CO when manufacturing a sintered body, and the tendency for the Co part to wear out when used as a tool. Therefore,.

−而のみを塑性変形し易い金属とするか両面ともするか
はその作り方、用途によって決められる。
-Whether only the outer layer is made of a metal that easily deforms plastically or whether both sides are made is determined by its method of manufacture and use.

整 必要とされる塑性変形量であるが+iq述のGoのL 例ではI l kg / l1m”以下の応力とit 
nされた。Co + N itF el Cuなどの軟
金属は温度が上がるとその降伏点は急檄に低下する。従
って冷却時に低応力で容品に変形すると考えてよい。
The amount of plastic deformation that needs to be adjusted is +L of Go mentioned in +iq.
n was done. As the temperature of soft metals such as Co + N itF el Cu increases, the yield point thereof decreases rapidly. Therefore, it can be considered that it deforms into a container with low stress during cooling.

実施例1 直径I3w++、厚みIIIINのWC−5%Co組成
に超硬合金の板と直径13關、厚み0.5mmのCo板
の間に粒度5ミクロンのダイヤモンド粉末を置き、超高
圧、高温装置を用いて5万気圧% 1400度の条件で
焼結したところ亀裂のないダイヤモンド焼結体の厚みが
0.5mmのものが得られた。Coの代わりに超硬合金
を使った場合には、ダイヤモンド焼結体部に亀裂が見ら
れた。
Example 1 Diamond powder with a particle size of 5 microns was placed between a cemented carbide plate of WC-5% Co composition with a diameter of I3w++ and a thickness of IIIN and a Co plate with a diameter of 13mm and a thickness of 0.5mm, using an ultra-high pressure and high temperature device. When the diamond was sintered under conditions of 50,000 atm % and 1400 degrees, a crack-free diamond sintered body with a thickness of 0.5 mm was obtained. When cemented carbide was used instead of Co, cracks were observed in the diamond sintered body.

全体を縦に切断して微細組織を調べたところ、超硬合全
部とダイヤモンド部は一般のダイヤモンドと超硬合金の
2層からなる焼結体を作った場合となんらの差はなかっ
た。
When the whole was cut lengthwise and the microstructure was examined, it was found that there was no difference between the entire cemented carbide part and the diamond part compared to when a sintered body made of two layers of ordinary diamond and cemented carbide was made.

すなわち焼結時にCoを主成分とする液相がダイヤモン
ド部へ侵入しダイヤモンド粉末を焼結していた。Co部
の方はダイヤモンドと接する側に浸炭現象が認められた
That is, during sintering, a liquid phase mainly composed of Co entered the diamond portion and sintered the diamond powder. In the Co part, carburization was observed on the side in contact with diamond.

実施例2 直径131厚み0.5mmの2枚のCo板の間に粒度2
.5μmのダイヤモンド粉末をおき超高圧・高温装置を
用いて5万気圧I400℃の条件で焼結した。
Example 2 A grain size of 2 was placed between two Co plates with a diameter of 131 and a thickness of 0.5 mm.
.. Diamond powder with a thickness of 5 μm was placed and sintered using an ultra-high pressure and high temperature device under conditions of 50,000 atm and 400°C.

亀裂のない両側にCOがついてサンドウィッチ構造の焼
結体を得た。
A sandwich-structured sintered body with CO attached to both sides without cracks was obtained.

実施例3 実施例2でGoの代りにNiの板を用いた実施例1と同
様に亀裂のない良好なサンドウィッチ構造の焼結体を得
た。
Example 3 Similar to Example 1 in which a Ni plate was used instead of Go in Example 2, a sintered body with a good sandwich structure without cracks was obtained.

実施例4 直径13 mm厚み1開のWC−7%CO組成の超硬合
金の板の上に60%GBNと40%TiN組成の混合粉
末をおき、この上に厚み1關のCu板をおいた。
Example 4 A mixed powder of 60% GBN and 40% TiN was placed on a WC-7% CO cemented carbide plate with a diameter of 13 mm and a thickness of 1 mm, and a Cu plate of 1 mm thick was placed on top of this. there was.

この構造のものを超高圧・高温装置を用い、4万気圧+
 350 ’Cの条件で焼結した。
Using an ultra-high pressure and high temperature device, this structure was manufactured at 40,000 atmospheres +
Sintering was performed at 350'C.

亀裂のない良好なサンドウィンチ形状のCBN焼結体を
得た。
A CBN sintered body with a good sand winch shape without cracks was obtained.

本発明によって製作可能となる、あるいは製作7.(容
易となる工具としては図1に示されるツイストドリルと
か図2に示されるガラス切り工具きか図3に示されるロ
ールとかが、あげられる。
Manufacturable or manufactured by the present invention 7. (Tools that facilitate this include the twist drill shown in Fig. 1, the glass cutting tool shown in Fig. 2, and the roll shown in Fig. 3).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明で得られた工具用素材をツイストドリ
ルに用いた例であり、(6L)は側面図、(b)は正面
図である。第2図は本願で得られた累月を用いて得られ
たガラス切り工具を示すもので(^)は側面図、(b)
は正面図である。また第3図も本願で得られた素材を用
いてロールの例であり、(4)は側面図、(b)は正面
図である。 1:焼結ダーイヤモンド又は焼結高圧相形窒化硼素 2
:超゛硬合金又は軟い金属 3:軟い金属手続補正省゛ 昭和59年特許願第148475号 2、発明の名称 サンドウィッチ構造をもつ超硬W焼結体3、補正をする
者 事件との関係    特 許 出 願 人件   所 
   大阪市東区北浜5丁目15番地名  称(2+3
)  住友電気工業株式会社社長 用ヒ哲部 4、代理人 住   所    大阪市此花区島屋1丁目1番3号住
友電気工業株式会社内 5、補正命令の日付 自発補正 6、補正の対象 明NiE臀中、発明の詳細な説明の橢 7、補正の内容 (1)明細書中、第8頁4行目 「材料ならなくても」を 「材料ならなんでも」に訂正します。
FIG. 1 shows an example in which the tool material obtained by the present invention is used in a twist drill, where (6L) is a side view and (b) is a front view. Figure 2 shows a glass cutting tool obtained using the accumulated moon obtained in this application, (^) is a side view, (b)
is a front view. FIG. 3 also shows an example of a roll using the material obtained in the present application, with (4) being a side view and (b) being a front view. 1: Sintered diamond or sintered high pressure phase boron nitride 2
: Ultra-hard alloy or soft metal 3: Soft metal Procedural Amendment Department 1982 Patent Application No. 148475 2 Title of invention Cemented carbide W sintered body with sandwich structure 3 Related Patent Application Personnel Location
5-15 Kitahama, Higashi-ku, Osaka Name (2+3)
) President of Sumitomo Electric Industries, Ltd. Yohi Tetsubu 4, Agent address: 5, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka City, Date of amendment voluntary amendment 6, Subject of amendment Mei NiE Buttocks 7 of the Detailed Description of the Invention, Contents of the Amendment (1) In the specification, page 8, line 4, ``Even if it is not a material'' is corrected to ``Any material.''

Claims (4)

【特許請求の範囲】[Claims] (1)少なくともその片面に、焼結ダイヤモンドまたは
焼結CBNとの熱膨張係数差によって発生する応力を塑
性変形によって吸収し得る金属または合金を接合したこ
とを特徴とするサンドウィッチ構造をもつ超硬質焼結体
(1) Ultra-hard sintered material with a sandwich structure characterized by having a metal or alloy bonded to at least one side thereof that can absorb stress caused by the difference in coefficient of thermal expansion with sintered diamond or sintered CBN through plastic deformation. Concretion.
(2)金属または合金が、鉄族金属またはその合金であ
ることを特徴とする特許請求の範囲第(1)項記載のサ
ンドウィッチ構造をもつ超硬質焼結体。
(2) The ultra-hard sintered body having a sandwich structure according to claim (1), wherein the metal or alloy is an iron group metal or an alloy thereof.
(3)鉄族金属またはその合金が、CoまたはCo合金
であることを特徴とする特許請求の範囲第(2)項記載
のサンドウィッチ構造をもつ超硬質焼結体。
(3) The ultra-hard sintered body having a sandwich structure according to claim (2), wherein the iron group metal or its alloy is Co or a Co alloy.
(4)金属または合金が、銅または銅合金であることを
特徴とする特許請求の範囲第(1)項記載のサンドウィ
ッチ構造をもつ超硬質焼結体。
(4) The ultra-hard sintered body having a sandwich structure according to claim (1), wherein the metal or alloy is copper or a copper alloy.
JP14847584A 1984-07-16 1984-07-16 Superhard sintered body having sandwich structure Pending JPS6126574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14847584A JPS6126574A (en) 1984-07-16 1984-07-16 Superhard sintered body having sandwich structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14847584A JPS6126574A (en) 1984-07-16 1984-07-16 Superhard sintered body having sandwich structure

Publications (1)

Publication Number Publication Date
JPS6126574A true JPS6126574A (en) 1986-02-05

Family

ID=15453579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14847584A Pending JPS6126574A (en) 1984-07-16 1984-07-16 Superhard sintered body having sandwich structure

Country Status (1)

Country Link
JP (1) JPS6126574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850523A (en) * 1988-02-22 1989-07-25 General Electric Company Bonding of thermally stable abrasive compacts to carbide supports

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879881A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body for bit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879881A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body for bit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850523A (en) * 1988-02-22 1989-07-25 General Electric Company Bonding of thermally stable abrasive compacts to carbide supports

Similar Documents

Publication Publication Date Title
JPH0218365A (en) Abrasion resistant polycrystalline diamond heat resistor
JPS61501691A (en) Liquid phase bonded amorphous material and its preparation method
JP5256384B2 (en) Multilayer carbide chip and manufacturing method thereof
JPS61270271A (en) High hardness sintered body composite material having sandwich structure
JPS59134665A (en) Method of coupling cubic boron nitride compact
US7527187B2 (en) Titanium braze foil
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
JP4061170B2 (en) Method for producing sandwich structure made of aluminum foam
CN112647852B (en) Hard alloy matrix material for polycrystalline diamond compact and application thereof
EP0397515B1 (en) Wire drawing die
JPS6126574A (en) Superhard sintered body having sandwich structure
WO2016198353A1 (en) Brazing processes and brazed products
US4941891A (en) Tool component
CN111151864B (en) Welding material and process for connecting tungsten-based powder alloy and low-expansion high-temperature alloy
US4941892A (en) Tool component
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPH11188510A (en) Hard sintered body cutting tool
JPS60259306A (en) Composite tool and preparation thereof
JPS61266364A (en) High hardness sintered body composite material having sandwich structure
JPS60210382A (en) Tool made of composite sintered body and its production
JPS63295482A (en) High-hardness composite sintered body
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
CN109454110B (en) Composite metal foil and method for producing same
JPH08225376A (en) Brazable cobalt-containing cbn molding
JPS6286102A (en) Production of composite sintered body for tool