JPH11188510A - Hard sintered body cutting tool - Google Patents

Hard sintered body cutting tool

Info

Publication number
JPH11188510A
JPH11188510A JP35687997A JP35687997A JPH11188510A JP H11188510 A JPH11188510 A JP H11188510A JP 35687997 A JP35687997 A JP 35687997A JP 35687997 A JP35687997 A JP 35687997A JP H11188510 A JPH11188510 A JP H11188510A
Authority
JP
Japan
Prior art keywords
sintered body
bonding layer
bonding
cutting tool
hard sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35687997A
Other languages
Japanese (ja)
Other versions
JP3803773B2 (en
Inventor
Yasuyuki Kaneda
泰幸 金田
Kunihiro Tomita
邦洋 富田
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35687997A priority Critical patent/JP3803773B2/en
Publication of JPH11188510A publication Critical patent/JPH11188510A/en
Application granted granted Critical
Publication of JP3803773B2 publication Critical patent/JP3803773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hard sintered body cutting tool strongly joined to a tool base material at high rigidity without breaking and cracking a hard sintered body part. SOLUTION: A sintered body part 1 is directly joined to a tool base material 4 through a joining layer 5. The joining layer 5 is composed of 2 to 15 wt.% grains of at least one of W and Mo to the whole joining layer and of 1 to 10 wt.% of residual to the whole joining layer of at least one of Ti and Zr and at least one of Ag and Cu, and unavoidable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般に硬質焼結
体切削工具に関するものであり、より特定的には、ダイ
ヤモンド焼結体または立方晶窒化硼素を含有する焼結体
が工具母材に強固にかつ高剛性に接合されてなる硬質焼
結体切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a cutting tool for a hard sintered body, and more particularly, to a diamond sintered body or a sintered body containing cubic boron nitride which is firmly bonded to a tool base material. TECHNICAL FIELD The present invention relates to a hard sintered body cutting tool which is joined with high rigidity.

【0002】[0002]

【従来の技術】微細なダイヤモンド粒子を鉄族金属等の
結合材を用いて超高圧高温下で焼結して得られるダイヤ
モンド焼結体は、切削工具、伸線ダイス、ドリルビット
耐摩工具の刃先材料として、従来の超硬合金に比べ、格
段に優れた耐摩耗性を有している。また、微細な立方晶
窒化硼素を種々の結合材を用いて焼結した材料は、高硬
度の鉄族金属や鋳鉄の切削に対して優れた性能を示す。
2. Description of the Related Art A diamond sintered body obtained by sintering fine diamond particles under an ultra-high pressure and a high temperature using a binder such as an iron group metal is used for cutting tools, wire drawing dies, and drill bits. As a material, it has much better wear resistance than conventional cemented carbide. In addition, a material obtained by sintering fine cubic boron nitride using various binders exhibits excellent performance for cutting a high-hardness iron group metal or cast iron.

【0003】図2は、従来の硬質焼結体工具の断面図で
ある。硬質焼結体部1は、ダイヤモンド複合焼結体また
は立方晶窒化硼素複合焼結体で構成され、超硬合金製支
持体2に裏打ちされた状態で、一体焼結により作製され
る。硬質焼結体部1の超硬合金支持体2側を、主にAg
やCuからなるろう材3を介して、工具母材4にろう接
することにより、硬質焼結体工具が得られる。
FIG. 2 is a sectional view of a conventional hard sintered tool. The hard sintered body portion 1 is made of a diamond composite sintered body or a cubic boron nitride composite sintered body, and is produced by integral sintering while being backed by a cemented carbide support 2. The hard sintered body 1 side of the cemented carbide support 2 is mainly made of Ag
By brazing to the tool base material 4 via the brazing material 3 made of steel or Cu, a hard sintered body tool is obtained.

【0004】この場合、ろう付け工程において、急速な
加熱と冷却がこれら複合焼結体中に加えられるために、
条件によっては硬質焼結体部1と超硬合金製支持体2間
の接合界面において、これら材料間の熱膨張差に起因す
る亀裂や割れが発生する場合があった。さらに、切削工
具として完成した場合も、焼結体の条件条件によって
は、硬質焼結体部1と超硬合金製支持体2の界面の接合
強度が不足し、過酷な切削条件下では、切削中に剥離や
欠損が発生する場合があり、工具の信頼性の点で問題が
あった。
In this case, since rapid heating and cooling are applied to these composite sintered bodies in the brazing process,
Depending on the conditions, cracks and cracks may occur at the joint interface between the hard sintered body 1 and the cemented carbide support 2 due to the difference in thermal expansion between these materials. Further, even when the cutting tool is completed, the bonding strength at the interface between the hard sintered body portion 1 and the cemented carbide support 2 is insufficient depending on the conditions of the sintered body. In some cases, peeling or chipping may occur, and there was a problem in the reliability of the tool.

【0005】このような問題を克服するために、たとえ
ば特開昭60−85940号公報では、ダイヤモンド焼
結体あるいは立方晶窒化硼素焼結体と超硬合金製支持体
との接合界面に、TiやZrなどの炭化物・窒化物を形
成させることにより、この接合部分の信頼性を向上させ
ることを提案している。しかし、この場合も、結果的に
は熱膨張差の異なる異種材料を接合した複合焼結体であ
るために、改善の効果は少なく、問題点を解決すること
はできなかった。
In order to overcome such a problem, for example, Japanese Unexamined Patent Publication No. 60-85940 discloses that a bonding interface between a diamond sintered body or a cubic boron nitride sintered body and a cemented carbide support is It has been proposed to improve the reliability of this joint by forming a carbide or nitride such as Zr or Zr. However, also in this case, since the composite sintered body is obtained by joining dissimilar materials having different thermal expansion differences, the effect of improvement is small and the problem cannot be solved.

【0006】一方、硬質焼結体部(ダイヤモンド焼結体
および立方晶窒化硼素焼結体で形成される)と、超硬合
金製支持体との接合界面をなくすために、図3に示すよ
うに、ダイヤモンド焼結体あるいは立方晶窒化硼素焼結
体1を、直接工具母材4に接合させることが考えられて
いる。このような工具の構造は、特開昭59−1346
6号公報、特開昭68−187603号公報、実公昭6
4−4839号公報、特開平2−27440号公報、特
公平3−17791号公報、特開平7−124804号
公報、特開平9−103901号公報に開示されてい
る。ここでは、予めダイヤモンド焼結体あるいは立方晶
窒化硼素焼結体1の表面に活性金属層を成形した後に、
Ag,Cuを主とするろう材3により工具母材4に接合
させるか、あるいはAg−Cu−Ti、Cu−Ti、A
g−Ti、Au−Ta、Au−Nbなど、Ag、Cu、
Auなどの軟質金属に、Ti,Zr,Taなどの活性金
属を含む活性ろう材を用いて、直接工具母材4に接合す
ることが開示されている。
On the other hand, in order to eliminate the joining interface between the hard sintered body (formed of the diamond sintered body and the cubic boron nitride sintered body) and the cemented carbide support, as shown in FIG. Next, it is considered that the diamond sintered body or the cubic boron nitride sintered body 1 is directly joined to the tool base material 4. The structure of such a tool is disclosed in JP-A-59-1346.
No. 6, Japanese Unexamined Patent Publication No. Sho 68-187603,
Japanese Patent Application Laid-Open Nos. 4-4839, 2-27440, 3-17791, 7-124804, and 9-103901. Here, after forming an active metal layer on the surface of the diamond sintered body or cubic boron nitride sintered body 1 in advance,
Ag or Cu is mainly joined to the tool base material 4 by the brazing material 3 or Ag-Cu-Ti, Cu-Ti, A
Ag, Cu, g-Ti, Au-Ta, Au-Nb, etc.
It is disclosed that an active brazing material containing an active metal such as Ti, Zr or Ta is used for a soft metal such as Au and directly joined to the tool base material 4.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図3に
示す従来の硬質焼結体切削工具の場合、AgやCuなど
の軟質金属からなるろう材3を介して、ダイヤモンド焼
結体、あるいは立方晶窒化硼素焼結体が直接工具母材4
に接合されているために、過酷な切削条件下ではろう材
3の変形による被削材精度の低下や、被削面粗さの悪
化、あるいは剛性不足によるびびりの発生、さらには工
具刃先の切削熱が、熱伝導率の高いダイヤモンド焼結体
や立方晶窒化硼素焼結体1を介して、直接ろう材3に流
れ込むために、ろう材3が流出し、工具に欠損が発生す
る、などの問題点があった。
However, in the case of the conventional cutting tool for a hard sintered body shown in FIG. 3, a diamond sintered body or a cubic crystal is cut through a brazing material 3 made of a soft metal such as Ag or Cu. Boron nitride sintered body is directly used as tool base material 4
Under severe cutting conditions, the precision of the work material decreases due to the deformation of the brazing material 3, the roughness of the work surface deteriorates, or chatter occurs due to insufficient rigidity. However, since it directly flows into the brazing material 3 via the diamond sintered body or the cubic boron nitride sintered body 1 having a high thermal conductivity, the brazing material 3 flows out, and the tool is chipped. There was a point.

【0008】この発明は上記のような問題点を解決する
ためになされたもので、硬質焼結体が、割れや亀裂を有
することなく、強固かつ高剛性に工具母材に接合されて
なる硬質焼結体切削工具を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a hard sintered body which is firmly and highly rigidly joined to a tool base material without cracks or cracks. An object of the present invention is to provide a sintered body cutting tool.

【0009】[0009]

【課題を解決するための手段】この発明は、ダイヤモン
ドおよび/または立方晶窒化硼素を20容量%以上含有
する焼結体部が、接合層を介して工具母材に直接接合さ
れている硬質焼結体切削工具にかかるものである。上記
接合層が、該接合層全体に対して2〜15重量%の、W
またはMoの少なくとも一方からなる粒子と、該接合層
全体に対して1〜10重量%の、TiまたはZrの少な
くとも一方と、AgまたはCuの少なくとも一方からな
る残部と、不可避不純物と、からなることを特徴とす
る。
According to the present invention, there is provided a hard sintering method in which a sintered body containing at least 20% by volume of diamond and / or cubic boron nitride is directly joined to a tool base material via a joining layer. It is related to the consolidated cutting tool. The bonding layer has a W content of 2 to 15% by weight based on the entirety of the bonding layer.
Alternatively, particles of at least one of Mo, 1 to 10% by weight of the entire bonding layer, at least one of Ti or Zr, the balance of at least one of Ag or Cu, and unavoidable impurities. It is characterized by.

【0010】この発明の好ましい実施態様によれば、上
記接合層中の、WまたはMoの粒子径が、0.5〜30
μmの範囲内にある。
According to a preferred embodiment of the present invention, the particle size of W or Mo in the bonding layer is 0.5 to 30.
It is in the range of μm.

【0011】この発明のさらに好ましい実施態様によれ
ば、上記残部は、AgおよびCuの両者を含み、Agに
対するCuの重量比率が5〜70重量%である。
According to a further preferred embodiment of the present invention, the balance contains both Ag and Cu, and the weight ratio of Cu to Ag is 5 to 70% by weight.

【0012】この発明のさらに好ましい実施態様によれ
ば、上記接合層の融点は780℃〜950℃である。
According to a further preferred aspect of the present invention, the bonding layer has a melting point of 780 ° C. to 950 ° C.

【0013】この発明のさらに好ましい実施態様によれ
ば、上記焼結体部の厚みは、0.25〜1.5mmであ
る。
According to a further preferred embodiment of the present invention, the thickness of the sintered body is 0.25 to 1.5 mm.

【0014】この発明のさらに好ましい実施態様によれ
ば、上記工具母材は超硬合金からなる。
According to a further preferred embodiment of the present invention, the tool base material is made of a cemented carbide.

【0015】[0015]

【発明の実施の形態】本発明者は、ダイヤモンド焼結体
または立方晶窒化硼素を含有する焼結体が工具母材に直
接接合され、この焼結体が割れや亀裂を有することなく
強固かつ高剛性に接合される接合方法の研究を鋭意行な
った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that a diamond sintered body or a sintered body containing cubic boron nitride is directly joined to a tool base material, and this sintered body is strong and free from cracks and cracks. The research on the joining method of joining with high rigidity was carried out diligently.

【0016】その結果、図1を参照して、接合層5を、
該接合層全体に対して2〜15重量%の、WまたはMo
の少なくとも一方からなる粒子と、該接合層全体に対し
て1〜10重量%の、TiまたはZrの少なくとも一方
と、AgまたはCuの少なくとも一方からなる残部と、
不可避不純物とから形成することにより、ダイヤモンド
焼結体または立方晶窒化硼素を20容量%以上含有する
焼結体部1を、割れや亀裂の発生なく強固かつ高剛性に
工具母材4に接合できることを見出した。
As a result, referring to FIG.
2 to 15% by weight of W or Mo based on the entire bonding layer
Particles of at least one of the following, 1 to 10% by weight of the entire bonding layer, at least one of Ti or Zr, and the balance of at least one of Ag or Cu;
By being formed from unavoidable impurities, the diamond sintered body or the sintered body portion 1 containing cubic boron nitride in an amount of 20% by volume or more can be firmly and highly rigidly joined to the tool base material 4 without generation of cracks and cracks. Was found.

【0017】ここで、接合層の主成分となり得る金属材
料はAg、Cu,Auなど、一般にろう材として用いら
れる低融点であり、かつ軟質の金属であればどのような
金属の組合せでもよい。経済性を考慮に入れた場合、A
g−Cu合金が好ましい。これによると、Ag−Cuの
共晶組成付近では低融点となり、低温度での接合が可能
となる。
Here, the metal material which can be the main component of the bonding layer may be any combination of metals such as Ag, Cu, Au, etc., as long as they have a low melting point and are soft metals generally used as brazing materials. Considering economics, A
A g-Cu alloy is preferred. According to this, the melting point is low near the eutectic composition of Ag-Cu, and bonding at a low temperature is possible.

【0018】すなわち、上述のような軟質金属が接合層
の主成分となることにより、ダイヤモンド焼結体あるい
は立方晶窒化硼素焼結体と、工具母材との接合時に発生
する熱膨張差による歪みを吸収し、焼結体中に発生する
割れや亀裂を防止することが可能となる。そして、この
ような軟質金属による緩衝効果を得るためには、接合さ
れる材料間での熱歪みを、可能な限り小さくしておく必
要がある。このため、接合材料の融点を引き下げる必要
があり、接合材の主成分がAgおよびCuからなる場合
において、Agに対するCuの重量比率が、5〜70重
量%の範囲にあれば、共晶組成による融点降下作用が顕
著に現われ、好適であることを見出した。そして、接合
材がこのような範囲内の組成であれば、接合材の融点は
780℃〜950℃となり、低温での接合を可能とする
ことを見出した。
That is, since the soft metal as described above becomes the main component of the bonding layer, the strain caused by the difference in thermal expansion generated when the diamond sintered body or the cubic boron nitride sintered body is bonded to the tool base material. And cracks and cracks generated in the sintered body can be prevented. In order to obtain the buffer effect of such a soft metal, it is necessary to minimize the thermal strain between the materials to be joined as much as possible. For this reason, it is necessary to lower the melting point of the bonding material, and when the main component of the bonding material is Ag and Cu, if the weight ratio of Cu to Ag is in the range of 5 to 70% by weight, the eutectic composition It has been found that the effect of lowering the melting point appears remarkably and is suitable. Then, if the bonding material has a composition in such a range, the melting point of the bonding material is 780 ° C. to 950 ° C., and it has been found that bonding at a low temperature is possible.

【0019】一方、このようなAg、Cuなどの軟質金
属を直接ダイヤモンド焼結体あるいは立方晶窒化硼素焼
結体と接合させるためには、Ti,Zr,Taなどの活
性金属の添加が必要不可欠となる。これら活性金属は、
ダイヤモンド焼結体あるいは立方晶窒化硼素焼結体の表
面で、表面エネルギを低下させ、接合層の主成分の濡れ
性を向上させる役割を果たす。このような効果を引出す
ためには、Ti,Zr,Taなどの活性金属は、接合層
中で、1重量%以上必要となる。一方、接合層中にて、
活性金属が増加した場合、活性金属による脆い金属間化
合物が増加して、逆に接合強度は低下することになる。
このため、Ti,Zr,Taなどの活性金属は、接合層
中で10重量%以下となることが必要となる。
On the other hand, in order to join such a soft metal such as Ag or Cu directly to a diamond sintered body or a cubic boron nitride sintered body, it is essential to add an active metal such as Ti, Zr or Ta. Becomes These active metals are
On the surface of the diamond sintered body or the cubic boron nitride sintered body, it plays a role of reducing the surface energy and improving the wettability of the main component of the bonding layer. In order to obtain such an effect, an active metal such as Ti, Zr, or Ta needs to be 1% by weight or more in the bonding layer. On the other hand, in the bonding layer,
When the active metal increases, brittle intermetallic compounds due to the active metal increase, and conversely, the bonding strength decreases.
For this reason, the active metal such as Ti, Zr, and Ta needs to be 10% by weight or less in the bonding layer.

【0020】ここで、上記のような組成を持つ軟質金属
による接合層では、接合層部分の剛性や、接合強度の面
で問題があることは前述のとおりである。発明者は、こ
れらの改善のために鋭意研究を行なった結果、上記軟質
金属に、WあるいはMoを添加することにより、接合層
の剛性と強度が飛躍的に改善されることを見出した。こ
こで添加されるWとMoは粉末の状態で添加されるため
に、接合層中で、硬質分散粒子としてふるまう。
As described above, the bonding layer made of a soft metal having the above-described composition has problems in the rigidity of the bonding layer portion and the bonding strength. The inventor of the present invention has conducted intensive studies to improve these properties, and as a result, has found that the addition of W or Mo to the above-mentioned soft metal dramatically improves the rigidity and strength of the bonding layer. Since W and Mo added here are added in a powder state, they act as hard dispersed particles in the bonding layer.

【0021】すなわち、硬質粒子であるWとMoが、軟
質金属中で均一に存在することにより、接合層の剛性を
高め、また接合層中ての亀裂の伝播を阻止することによ
り、飛躍的な接合強度の向上が図られることになる。
That is, since the hard particles W and Mo are uniformly present in the soft metal, the rigidity of the bonding layer is increased, and the propagation of cracks in the bonding layer is significantly reduced. The joint strength is improved.

【0022】ここで、硬質分散粒子としては、主成分で
ある軟質金属以上の高融点を持つ金属、またはそれらの
炭化物、窒化物、酸化物等が考えられる。このうち、接
合層の主成分であるAgやCuとの濡れ性や、添加され
ているTi,Zr,Taなどの活性金属との反応性を考
慮した場合、WおよびMoが最も好適である。すなわ
ち、硬質分散粒子として添加される粒子は、高温となる
接合時において、主成分であるAgおよびCuに溶解や
反応せず、かつこれら主成分の液相化や流動性を妨げて
はならない。このためには、AgやCuに対して実質的
に溶解せず、かつ添加される粒子上でのAgやCuの濡
れ性が優れることが求められる。WおよびMoは、Ag
やCuに対して、実質的に溶解せず、またAgやCuと
の濡れ性に非常に優れており、このような用途に好適で
あることが見出された。
Here, as the hard dispersed particles, metals having a higher melting point than the soft metal as the main component, or carbides, nitrides, oxides, etc. thereof can be considered. Of these, W and Mo are most preferable in consideration of the wettability with Ag or Cu, which is the main component of the bonding layer, and the reactivity with added active metals such as Ti, Zr, and Ta. That is, the particles added as the hard dispersed particles do not dissolve or react with the main components Ag and Cu at the time of joining at a high temperature, and must not hinder the liquid phase or fluidity of these main components. For this purpose, it is required that Ag or Cu is not substantially dissolved in Ag or Cu and that the wettability of Ag or Cu on the added particles is excellent. W and Mo are Ag
It has been found that it does not substantially dissolve in Cu and Cu and has excellent wettability with Ag and Cu, and is suitable for such uses.

【0023】ここで、前述した接合層の剛性および強度
を向上させるためには、WあるいはMoが接合層中で2
重量%以上必要である。また、接合層中でのWあるいは
Moの量が、15重量%を超えた場合、接合体に対する
AgやCuの接触面積が少なくなり、急激に接合強度が
低下することになる。このため、添加されるWあるいは
Mo粉末は、2〜15重量%の範囲にあることが必要と
なる。
Here, in order to improve the rigidity and strength of the bonding layer described above, W or Mo must
It needs to be at least weight%. If the amount of W or Mo in the bonding layer exceeds 15% by weight, the contact area of Ag or Cu with the bonded body is reduced, and the bonding strength is rapidly reduced. For this reason, the added W or Mo powder needs to be in the range of 2 to 15% by weight.

【0024】一方、このような接合体による接合層の厚
みは、通常10μm〜200μm程度の厚みとなる。こ
のため、添加されるWあるいはMo粉末の粒径が30μ
mを超えた場合、接合層の主成分であるAgやCu同士
の接触を低下させることになり接合層そのものの強度
が、急激に低下することになる。さらに、添加されるW
あるいはMo粉末の粒径が0.5μm未満である場合、
接合層中でこれら粉末は凝集しやすくなり、それが破壊
の起点となり、強度を低下させやすくなることも見出さ
れた。このため、添加されるWあるいはMo粉末の粒径
は、0.5〜30μmの範囲内にあることが必要であ
る。
On the other hand, the thickness of the bonding layer of such a bonded body is usually about 10 μm to 200 μm. For this reason, the particle size of the added W or Mo powder is 30 μm.
If m is exceeded, the contact between Ag and Cu, which are the main components of the bonding layer, will be reduced, and the strength of the bonding layer itself will rapidly decrease. Further, the added W
Alternatively, when the particle size of the Mo powder is less than 0.5 μm,
It has also been found that these powders tend to agglomerate in the bonding layer, which serves as a starting point for fracture and tends to reduce the strength. For this reason, the particle size of the added W or Mo powder needs to be in the range of 0.5 to 30 μm.

【0025】ところで、上記のような高剛性の接合層を
用いても、ダイヤモンド焼結体あるいは立方晶窒化硼素
焼結体の厚みが0.25mm未満となった場合には、工
具刃先に発生した切削熱が、熱伝導率の高いダイヤモン
ド焼結体や立方晶窒化硼素焼結体を介して、大量に接合
層部分に流れ込むために、接合層部分の温度が上昇し、
これの変形や、変形に起因する欠損が発生しやすくな
る。このため、接合されるダイヤモンド焼結体または立
方晶窒化硼素焼結体の厚みは、0.25mm以上必要で
あることが見出された。また、ダイヤモンド焼結体また
は立方晶窒化硼素焼結体の厚みが1.5mmを超える
と、切れ刃の研磨に要する労力が多大になる。このた
め、ダイヤモンド焼結体または立方晶窒化硼素焼結体の
厚みは、経済性の観点から1.5mm以下であることが
望ましいことが見出された。
By the way, even when the high-rigidity bonding layer as described above is used, when the thickness of the diamond sintered body or the cubic boron nitride sintered body is less than 0.25 mm, the thickness is generated at the tool edge. Since the cutting heat flows into the bonding layer in large quantities through the diamond sintered body or cubic boron nitride sintered body having high thermal conductivity, the temperature of the bonding layer increases.
Deformation thereof and loss due to the deformation are likely to occur. For this reason, it was found that the thickness of the bonded diamond sintered body or cubic boron nitride sintered body needs to be 0.25 mm or more. Further, when the thickness of the diamond sintered body or the cubic boron nitride sintered body exceeds 1.5 mm, the labor required for polishing the cutting edge increases. For this reason, it has been found that the thickness of the diamond sintered body or the cubic boron nitride sintered body is desirably 1.5 mm or less from the viewpoint of economy.

【0026】また、硬質焼結体が接合される工具母材と
しては、超硬合金、鋼、セラミックス等、切削抵抗に耐
え得る強度を有する材料であれば、どのような材料でも
構わない。接合される硬質焼結体との熱膨張差や、材料
強度等を考慮に入れた場合、超硬合金が最も好適であ
る。
As the tool base material to which the hard sintered body is joined, any material such as cemented carbide, steel, ceramics or the like may be used as long as it has a strength capable of withstanding cutting resistance. In consideration of the difference in thermal expansion from the hard sintered body to be joined, the material strength, and the like, a cemented carbide is most preferable.

【0027】[0027]

【実施例】実施例1 表1に、接合層中のWあるいはMoの含有量が、接合強
度や切削性能に及ぼす影響を調べるために準備された種
々の接合材の例を示している。
EXAMPLES Example 1 Table 1 shows examples of various bonding materials prepared for examining the effect of the W or Mo content in the bonding layer on the bonding strength and cutting performance.

【0028】[0028]

【表1】 [Table 1]

【0029】表1において、接合材1A〜1Dは、いず
れもAg、Cuが主成分として用いられており、接合材
中のWの含有量が種々変えられている。
In Table 1, Ag and Cu are used as main components in all of the joining materials 1A to 1D, and the content of W in the joining materials is variously changed.

【0030】まず、接合材試料を作製するため、表1に
記載される組成を有する接合材粉末を作製し、これを有
機溶剤と混ぜ合わせることにより、ペースト状の接合材
1A〜1Dを得た。立方晶窒化硼素焼結体と超硬合金母
材との接合強度の評価を行なうために、断面が2.5×
2.5mmの四角形形状を有し、長手方向の長さが10
mmである棒状の立方晶窒化硼素焼結体と超硬合金製サ
ンプルを作製した。そして、これの断面部分に、上記1
A〜1Dの接合材を塗布し、真空中、表1の温度にて加
熱することにより、断面部分同士の接合を行なった。な
お、そのときの真空度は1×10-5torrであった。
その後、1A〜1Dにより接合された試料2A〜2D
は、断面積が2×2mmの四角形状になるように、試料
の長手方向の4面に研削加工が施された。この接合部分
における剪断強度を評価した結果を表2に示す。
First, in order to prepare a bonding material sample, a bonding material powder having a composition shown in Table 1 was prepared, and this was mixed with an organic solvent to obtain paste-like bonding materials 1A to 1D. . In order to evaluate the bonding strength between the cubic boron nitride sintered body and the cemented carbide base material, the cross section was 2.5 ×
It has a square shape of 2.5 mm and the length in the longitudinal direction is 10
A rod-shaped cubic boron nitride sintered body and a sample made of cemented carbide were prepared. And the above 1
The joining materials of A to 1D were applied, and heated at a temperature shown in Table 1 in a vacuum to join the cross sections. The degree of vacuum at that time was 1 × 10 −5 torr.
Thereafter, samples 2A to 2D joined by 1A to 1D
The sample was ground on four surfaces in the longitudinal direction of the sample so that the cross-sectional area became a square shape of 2 × 2 mm. Table 2 shows the results of evaluation of the shear strength at this joint.

【0031】[0031]

【表2】 [Table 2]

【0032】試料2Dは、接合材中のWの含有量が多い
ために、接合に関与するAgやCu、あるいはTiと被
接合材との接触面積が小さくなり、明らかな接合強度の
低下が認められた。これに対して、2A〜2Cは高い接
合強度を有しているが、中でも2Bと2Cは、含有して
いるWが硬質分散粒子として効果があるために、接合層
部分の強度が向上し、高い接合強度を有することが明ら
かとなった。
In Sample 2D, since the W content in the joining material was large, the contact area between Ag and Cu or Ti involved in joining and the material to be joined was small, and a clear decrease in joining strength was recognized. Was done. On the other hand, although 2A to 2C have high bonding strength, especially, 2B and 2C improve the strength of the bonding layer portion because the contained W is effective as hard dispersed particles, It became clear that it had high joining strength.

【0033】引続き、切削性能の評価を行なうため、1
A〜1Dの接合材を用いて立方晶窒化硼素焼結体と超硬
合金製母材を接合させて、表3に示されるテスト工具3
A〜3Dを作製した。なお、立方晶窒化硼素焼結体の厚
みは0.75mmであった。
Subsequently, in order to evaluate the cutting performance, 1
A cubic boron nitride sintered body and a cemented carbide base material were joined using joining materials A to 1D, and test tools 3 shown in Table 3 were joined.
A to 3D were prepared. The thickness of the cubic boron nitride sintered body was 0.75 mm.

【0034】[0034]

【表3】 [Table 3]

【0035】その結果、工具3Aは接合層部分の剛性が
低く、びびりが発生し、これが原因で切削中に工具の欠
損が生じた。また、工具3Dは接合強度が低いために、
切削初期に焼結体が接合部から剥離し、継続切削を行な
うことが不可能であった。これに対して、工具3B,3
Cは、焼結体の接合強度が高く、かつ接合層の剛性が高
いために、切削中に焼結体の剥離や欠損が発生すること
なく、安定した加工を行なうことが可能であった。
As a result, in the tool 3A, the rigidity of the joining layer portion was low, and chatter occurred, and as a result, the tool was broken during cutting. Also, since the joining strength of the tool 3D is low,
In the early stage of cutting, the sintered body was separated from the joint, and it was impossible to perform continuous cutting. In contrast, tools 3B, 3
C has a high bonding strength of the sintered body and a high rigidity of the bonding layer, so that stable processing can be performed without occurrence of peeling or chipping of the sintered body during cutting.

【0036】実施例2 表4に、接合層中のWあるいはMoの粒子径が、接合強
度に及ぼす影響を調べるために準備された種々の接合材
の例を示している。
Example 2 Table 4 shows examples of various bonding materials prepared for examining the effect of the particle size of W or Mo in the bonding layer on the bonding strength.

【0037】[0037]

【表4】 [Table 4]

【0038】表4における接合材4A〜4Dは、いずれ
もAg、Cuが主成分として用いられており、接合材中
のMoの粒子径が種々変えられている。
Ag and Cu are used as main components in all of the joining materials 4A to 4D in Table 4, and the particle diameter of Mo in the joining material is variously changed.

【0039】接合材試料を作製するため、実施例1と同
様に、表4に記載される組成を有する接合材粉末を作製
し、これを有機溶剤と混ぜ合わせることにより、ペース
ト状の接合材4A〜4Dを得た。ダイヤモンド焼結体と
超硬合金製母材との接合強度の評価を行なうために、断
面が2.5×2.5mmの四角形形状を有し、長手方向
の長さが10mmである棒状のダイヤモンド焼結体と超
硬合金製サンプルを作製した。そして、これの断面部分
に、上記4A〜4Dの接合材を塗布し、真空中、表4の
温度にて加熱することにより、断面部分同士の接合を行
なった。そのときの真空度は8×10-5torrであっ
た。その後、4A〜ADにより接合された試料5A〜5
Dは、断面積が2×2mmの四角形形状になるように、
試料の長手方向の4面に研削加工が施された。この接合
部分の接合層の厚みは30μmであった。表5に、この
接合材試料のせん断強度を評価した結果を示す。
In order to prepare a bonding material sample, a bonding material powder having the composition shown in Table 4 was prepared and mixed with an organic solvent in the same manner as in Example 1 to obtain a paste-like bonding material 4A. ~ 4D was obtained. In order to evaluate the bonding strength between the diamond sintered body and the cemented carbide base material, a rod-shaped diamond having a rectangular shape with a cross section of 2.5 × 2.5 mm and a length in the longitudinal direction of 10 mm was used. A sintered body and a cemented carbide sample were prepared. Then, the bonding material of the above 4A to 4D was applied to the cross-section, and the cross-section was bonded by heating at a temperature shown in Table 4 in vacuum. The degree of vacuum at that time was 8 × 10 −5 torr. Then, samples 5A to 5 joined by 4A to AD
D is such that the cross-sectional area becomes a square shape of 2 × 2 mm,
Grinding was performed on four surfaces in the longitudinal direction of the sample. The thickness of the bonding layer at this bonding portion was 30 μm. Table 5 shows the results of evaluating the shear strength of this bonding material sample.

【0040】[0040]

【表5】 [Table 5]

【0041】試料5Dは、接合材中のMo粒子径が大き
く、接合層中の主成分であるAgやCu同士の接触が低
下した結果、接合層そのものの強度が急激に低下し、低
いせん断強度を示すことが明らかとなった。また、細か
いMo粒子を含む試料5Aでは、接合層中にMo粒子の
凝集部分が観察され、これが破壊の起点となって、低い
荷重でせん断されることが明らかとなった。これに対し
て、5B、5Cでは、硬質分散粒子であるMoが、接合
層中でのAgやCu同士の接触を妨げることがなく、接
合層中の亀裂伝播を防ぐために、高いせん断強度を示す
ことが明らかとなった。
In sample 5D, the Mo particle diameter in the bonding material was large, and the contact between Ag and Cu, which were the main components in the bonding layer, was reduced. As a result, the strength of the bonding layer itself was sharply reduced, and the shear strength was low. It became clear that it showed. Further, in the sample 5A containing fine Mo particles, an agglomerated portion of Mo particles was observed in the bonding layer, and this became a starting point of destruction, and it was revealed that the particles were sheared with a low load. On the other hand, in 5B and 5C, Mo, which is hard dispersed particles, does not hinder contact between Ag and Cu in the bonding layer and exhibits high shear strength in order to prevent crack propagation in the bonding layer. It became clear.

【0042】実施例3 表6は、接合層の主成分であるAgとCuの組成が、接
合強度に及ぼす影響を調べるために準備された種々の接
合材の例を示している。
Example 3 Table 6 shows examples of various bonding materials prepared for examining the effect of the composition of Ag and Cu, which are the main components of the bonding layer, on the bonding strength.

【0043】[0043]

【表6】 [Table 6]

【0044】表4における接合材6A〜6Dは、いずれ
もAg、Cuが主成分として用いられており、接合材中
のAgとCuの組成が種々変えられている。
In each of the joining materials 6A to 6D in Table 4, Ag and Cu are used as main components, and the compositions of Ag and Cu in the joining material are variously changed.

【0045】接合材試料を作製するため、実施例1と同
様に、表6に記載される組成を有する接合材粉末を作製
し、これを有機溶剤と混ぜ合わせることによりペースト
状の接合材6A〜6Dを得た。立方晶窒化硼素焼結体と
超硬合金製母材との接合強度の評価を行なうために、断
面が3.5×3.5mmの四角形形状を有し、長手方向
の長さが8mmである棒状のダイヤモンド焼結体と超硬
合金製サンプルを作製した。そして、これの断面部分
に、上記6a〜6dの接合材を塗布し、Ar雰囲気中、
表6の温度にて加熱することにより、断面部分同士の接
合を行なった。その後、6A〜6Dにより接合された試
料7A〜7Dは、断面積が3×3mmの四角形形状にな
るように、試料の長手方向4面に研削加工が施された。
研削加工実施後にこれらサンプルの接合界面を観察した
結果、いずれのサンプルにも亀裂や割れは観察されなか
った。表7に、この接合材試料のせん断強度を評価した
結果を示す。
In order to prepare a bonding material sample, a bonding material powder having the composition shown in Table 6 was prepared in the same manner as in Example 1, and this was mixed with an organic solvent to form a paste-like bonding material 6A to 6A. 6D was obtained. In order to evaluate the bonding strength between the cubic boron nitride sintered body and the cemented carbide base material, the cross section has a square shape of 3.5 × 3.5 mm and the length in the longitudinal direction is 8 mm. A rod-shaped diamond sintered body and a sample made of cemented carbide were produced. Then, the above-mentioned bonding material of 6a to 6d is applied to the cross-sectional portion thereof,
By heating at the temperature shown in Table 6, the cross sections were joined to each other. Thereafter, the samples 7A to 7D joined by 6A to 6D were subjected to grinding processing on four surfaces in the longitudinal direction of the samples so that the cross-sectional area became a square shape having a cross-sectional area of 3 × 3 mm.
As a result of observing the bonding interface of these samples after performing the grinding process, no crack or crack was observed in any of the samples. Table 7 shows the results of evaluating the shear strength of this bonding material sample.

【0046】[0046]

【表7】 [Table 7]

【0047】試料7Dは、接合時には亀裂や割れは観察
されなかったものの、接合温度が高いために、立方晶窒
化硼素焼結体と超硬合金製母材との接合界面付近に、大
きな熱歪みが発生した。その結果、これが原因で、せん
断強度測定時に立方晶窒化硼素焼結体界面が破壊して、
低いせん断強度となった。これに対して、低い温度で接
合された試料7A〜7Cは熱歪みの発生が少なく、高い
せん断強度を示すことが明らかとなった。
In Sample 7D, although no cracks or cracks were observed at the time of joining, since the joining temperature was high, a large thermal strain was found near the joining interface between the cubic boron nitride sintered body and the cemented carbide base material. There has occurred. As a result, due to this, the interface of the cubic boron nitride sintered body was broken at the time of measuring the shear strength,
Low shear strength results. On the other hand, it became clear that the samples 7A to 7C joined at a low temperature had little heat distortion and exhibited high shear strength.

【0048】実施例4 表8は、接合される硬質焼結体の厚みが、切削性能に及
ぼす影響を調べるために準備された種々の切削工具の例
を示している。
Example 4 Table 8 shows examples of various cutting tools prepared for examining the effect of the thickness of a hard sintered body to be joined on cutting performance.

【0049】[0049]

【表8】 [Table 8]

【0050】すなわち、表8における切削工具8A〜8
Dは、実施例1と同様の方法により、表8に記載された
接合材により立方晶窒化硼素焼結体が剛性の工具母材上
に接合され、工具が作製された、これが、表9に示す条
件にて切削評価が行なわれた。
That is, cutting tools 8A to 8 in Table 8
In D, a cubic boron nitride sintered body was joined to a rigid tool base material by the same method as in Example 1 using the joining materials described in Table 8, and a tool was produced. Cutting evaluation was performed under the conditions shown.

【0051】[0051]

【表9】 [Table 9]

【0052】その結果、工具9Aは立方晶窒化硼素焼結
体の厚みが薄いために、刃先に発生した切削熱が大量に
接合層部分に流入するために、接合層部分が軟化し、接
合強度の低下を招き、これが原因で切削中に工具に欠損
が発生した。これに対して、9B〜9Dは立方晶窒化硼
素焼結体の厚みが厚いために、刃先で発生した切削熱が
分散・放熱されるために、接合層部分の軟化が発生せ
ず、高い接合強度が維持されているために、安定した加
工が可能であることが明らかとなった。
As a result, in the tool 9A, since the thickness of the cubic boron nitride sintered body is small, a large amount of cutting heat generated at the cutting edge flows into the bonding layer portion, so that the bonding layer portion is softened and the bonding strength is reduced. This caused the tool to break during cutting. On the other hand, in 9B to 9D, since the thickness of the cubic boron nitride sintered body is large, the cutting heat generated at the cutting edge is dispersed and radiated, so that the softening of the bonding layer does not occur and the high bonding is achieved. It became clear that stable processing was possible because the strength was maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る硬質焼結体切削工具の断面図であ
る。
FIG. 1 is a sectional view of a hard sintered compact cutting tool according to the present invention.

【図2】硬質焼結体切削工具の第1の従来例の断面図で
ある。
FIG. 2 is a sectional view of a first conventional example of a hard sintered body cutting tool.

【図3】硬質焼結体切削工具の第2の従来例の断面図で
ある。
FIG. 3 is a sectional view of a second conventional example of a hard sintered body cutting tool.

【符号の説明】[Explanation of symbols]

1 硬質焼結体部 4 工具母材 5 接合層 DESCRIPTION OF SYMBOLS 1 Hard sintered body part 4 Tool base material 5 Joining layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 9/00 C22C 9/00 29/08 29/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 9/00 C22C 9/00 29/08 29/08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンドおよび/または立方晶窒化
硼素を20容量%以上含有する焼結体部が、接合層を介
して工具母材に直接接合されている硬質焼結体切削工具
において、 前記接合層が、 該接合層全体に対して2〜15重量%の、WまたはMo
の少なくとも一方からなる粒子と、 該接合層全体に対して1〜10重量%の、TiまたはZ
rの少なくとも一方と、 AgまたはCuの少なくとも一方からなる残部と、 不可避不純物と、からなることを特徴とする硬質焼結体
切削工具。
1. A hard sintered compact cutting tool in which a sintered body containing at least 20% by volume of diamond and / or cubic boron nitride is directly joined to a tool base material via a joining layer. The layer comprises 2 to 15% by weight of W or Mo
And 1 to 10% by weight of Ti or Z with respect to the entire bonding layer.
A hard sintered body cutting tool comprising: at least one of r; a balance made of at least one of Ag and Cu; and unavoidable impurities.
【請求項2】 前記接合層中のWまたはMoの粒子径
が、0.5〜30μmの範囲内である、請求項1に記載
の硬質焼結体切削工具。
2. The cutting tool according to claim 1, wherein the particle size of W or Mo in the bonding layer is in a range of 0.5 to 30 μm.
【請求項3】 前記残部はAgおよびCuの両者を含
み、 Agに対するCuの重量比率が5〜70重量%である請
求項1に記載の硬質焼結体切削工具。
3. The hard sintered compact cutting tool according to claim 1, wherein the balance contains both Ag and Cu, and a weight ratio of Cu to Ag is 5 to 70% by weight.
【請求項4】 前記接合層の融点が780℃〜950℃
である請求項1に記載の硬質焼結体切削工具。
4. The melting point of the bonding layer is 780 ° C. to 950 ° C.
The hard sintered body cutting tool according to claim 1, wherein
【請求項5】 前記焼結体部の厚みが0.25〜1.5
mmである請求項1に記載の硬質焼結体切削工具。
5. The sintered body part has a thickness of 0.25 to 1.5.
The hard sintered body cutting tool according to claim 1, wherein
【請求項6】 前記工具母材が超硬合金からなる、請求
項1に記載の硬質焼結体切削工具。
6. The hard sintered compact cutting tool according to claim 1, wherein the tool base material is made of a cemented carbide.
JP35687997A 1997-12-25 1997-12-25 Hard sintered body cutting tool Expired - Fee Related JP3803773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35687997A JP3803773B2 (en) 1997-12-25 1997-12-25 Hard sintered body cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35687997A JP3803773B2 (en) 1997-12-25 1997-12-25 Hard sintered body cutting tool

Publications (2)

Publication Number Publication Date
JPH11188510A true JPH11188510A (en) 1999-07-13
JP3803773B2 JP3803773B2 (en) 2006-08-02

Family

ID=18451225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35687997A Expired - Fee Related JP3803773B2 (en) 1997-12-25 1997-12-25 Hard sintered body cutting tool

Country Status (1)

Country Link
JP (1) JP3803773B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122679A1 (en) * 2006-04-13 2007-11-01 Kanefusa Kabushiki Kaisha Plate-like cutting tool and fixing jig
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body
CN103459071A (en) * 2012-04-03 2013-12-18 住友电工硬质合金株式会社 Sintered cubic boron nitride tool
CN106312489A (en) * 2016-10-14 2017-01-11 马鞍山市威马机械设备有限责任公司 Processing method for tungsten steel blade with long service life
CN106312488A (en) * 2016-10-14 2017-01-11 马鞍山市威马机械设备有限责任公司 Tungsten steel blade with long service life
CN106670753A (en) * 2016-10-14 2017-05-17 马鞍山市威马机械设备有限责任公司 Machining method for toothed long cutter applicable to glasses cloth cutting
JP2019118995A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122679A1 (en) * 2006-04-13 2007-11-01 Kanefusa Kabushiki Kaisha Plate-like cutting tool and fixing jig
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body
JP5678955B2 (en) * 2010-04-08 2015-03-04 株式会社タンガロイ Complex
CN103459071A (en) * 2012-04-03 2013-12-18 住友电工硬质合金株式会社 Sintered cubic boron nitride tool
US8999511B2 (en) 2012-04-03 2015-04-07 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body tool
CN103459071B (en) * 2012-04-03 2015-09-30 住友电工硬质合金株式会社 Cubic boron nitride sintered body instrument
CN106312489A (en) * 2016-10-14 2017-01-11 马鞍山市威马机械设备有限责任公司 Processing method for tungsten steel blade with long service life
CN106312488A (en) * 2016-10-14 2017-01-11 马鞍山市威马机械设备有限责任公司 Tungsten steel blade with long service life
CN106670753A (en) * 2016-10-14 2017-05-17 马鞍山市威马机械设备有限责任公司 Machining method for toothed long cutter applicable to glasses cloth cutting
CN106670753B (en) * 2016-10-14 2018-11-06 马鞍山市威马机械设备有限责任公司 A kind of processing method of the long cutter of tooth form suitable for glasses cloth cutting
JP2019118995A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP3803773B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP4045014B2 (en) Polycrystalline diamond tools
JP6038652B2 (en) Metal-free supported polycrystalline diamond (PCD) and formation method
CN1014306B (en) Low pressure bonding of pcd bodies and method
WO2002066200A1 (en) Reducing metals as a brazing flux
AU2001275856A1 (en) Reducing metals as a brazing flux
JPH07156003A (en) Polycrystal diamond tool and manufacture thereof
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
JP5152667B2 (en) Cubic boron nitride sintered tool
JPH11188510A (en) Hard sintered body cutting tool
JP3697893B2 (en) Hard sintered body throw-away tip and manufacturing method thereof
JPS60187603A (en) Sintered diamond tool and its production
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
JP3942127B2 (en) Drilling tool having excellent breaking strength with brazed portion of cutting edge piece
JPH07124804A (en) Cutting chip showing excellent wear resistance
JPH07308805A (en) Cutting tool for hard sintered body
JP2001187431A (en) Laminated structural material
JPH08225376A (en) Brazable cobalt-containing cbn molding
JPH052627B2 (en)
JPH09248633A (en) Composite punch for fine perforation and its manufacture
JP2002013377A (en) Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JPH09110546A (en) Digging tool equipped with cut blade chip having excellent joining strength
JPS5938491A (en) Composite sintered tool and production thereof
JPH02256403A (en) Tool for high hardness material machining
JPS644840Y2 (en)
RU2083714C1 (en) Superhard composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees