JPS61264723A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61264723A
JPS61264723A JP10673985A JP10673985A JPS61264723A JP S61264723 A JPS61264723 A JP S61264723A JP 10673985 A JP10673985 A JP 10673985A JP 10673985 A JP10673985 A JP 10673985A JP S61264723 A JPS61264723 A JP S61264723A
Authority
JP
Japan
Prior art keywords
resist film
film
pattern
negative resist
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10673985A
Other languages
Japanese (ja)
Inventor
Yuji Fukuda
雄二 福田
Katsuro Yashima
八島 勝郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10673985A priority Critical patent/JPS61264723A/en
Publication of JPS61264723A publication Critical patent/JPS61264723A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To improve the quality of an IC by forming the desired resist film pattern on an organic resin film coated on a substrate to be treated, and ion implanting through the resin film with the film as a mask, thereby preventing a semiconductor substrate from being contaminated. CONSTITUTION:A negative resist solution is first coated on the entire silicon substrate, heat treated, positive resist solution is coated thereon, exposed, and developed to form a positive resist film pattern 12. At this time, a negative resist film 13 is not solved by the developer of the positive resist film. Then, arsenic ions are implanted to a silicon substrate 11. Thus, the ions are stopped by the pattern 12, but penetrated through the film 13, and implanted to the silicon substrate thereunder. Dusts are also stopped by the film 13. After ion implanting, the film 13 is dissolved and removed simultaneously with the pattern 13. At this time, the negative resist film is less modified by the ion impact and readily separated.

Description

【発明の詳細な説明】 [概要]被処理基板上の全面に有機樹脂膜を塗布し、有
機樹脂膜の上に所望のレジスト膜パターンを形成し、そ
のレジスト膜パターンを保護膜にして、有機樹脂膜を透
してイオン注入する。
Detailed Description of the Invention [Summary] An organic resin film is applied to the entire surface of a substrate to be processed, a desired resist film pattern is formed on the organic resin film, and the resist film pattern is used as a protective film to form an organic resin film. Ions are implanted through the resin film.

[産業上の利用分野] 本発明は半導体装置の製造方法に係り、特に、レジスト
膜パターンを用いた表面処理方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a surface treatment method using a resist film pattern.

ICなど、半導体装置の製造方法において、ラオトプロ
セスは最も重要な技術であって、ICの高集積化・高密
度化はそのフォトプロセスの進歩に負うところが大きい
The Raoto process is the most important technology in the manufacturing method of semiconductor devices such as ICs, and the high integration and density of ICs is largely due to the progress of the photo process.

初期には、レジスト膜パターンを形成し、これをマスク
にして基板をエツチングする、所謂、通常のフォトプロ
セス工程が主体であったが、現在は、レジスト膜パター
ンをマスクにして、イオン注入して不純物領域を形成す
るイオン注入法等の表面処理にもフォトプロセスが利用
されている。
In the early days, the so-called normal photoprocessing process consisted of forming a resist film pattern and using this as a mask to etch the substrate, but today, ion implantation is performed using the resist film pattern as a mask. Photoprocessing is also used for surface treatments such as ion implantation to form impurity regions.

一方、半導体装置の製造方法においては、塵埃が極端に
嫌われ、アクティブな半導体基板面が汚染されないよう
に、慎重に取り扱われている。
On the other hand, in the manufacturing method of semiconductor devices, dust is extremely disliked and must be handled carefully so as not to contaminate the active semiconductor substrate surface.

従って、上記のような表面処理においても、ゴミなどが
付着しないように、十分な配慮が望ましい。
Therefore, even in the surface treatment as described above, it is desirable to take sufficient care to prevent dust from adhering.

[従来の技術と発明が解決しようとする問題点]第2図
は従来のレジスト膜をマスクにして、半導体基板面に不
純物イオンを注入するイオン注入工程の断面図を示して
おり、1はp型シリコン基板、2はポジレジスト膜パタ
ーンで、ちょうど砒素イオンを加速電圧60KeV程度
で注入されている図である。このような工程は、例えば
、nチャネルMO3ICのソース、ドレイン領域の形成
に使用されている。
[Prior art and problems to be solved by the invention] Fig. 2 shows a cross-sectional view of a conventional ion implantation process in which impurity ions are implanted into a semiconductor substrate surface using a resist film as a mask. The type silicon substrate 2 is a positive resist film pattern into which arsenic ions are implanted at an acceleration voltage of about 60 KeV. Such a process is used, for example, to form source and drain regions of an n-channel MO3IC.

ところで、このイオン注入を行なう注入装置は、高圧の
イオン加速器などが組み合わされた複雑な大型装置で、
塵埃が付着し易いものである。また、その注入操作中に
は、処理室内に真空オイルやシリコン片のようなゴミ(
ミスト)が存在して、注入面に付着する問題がある。
By the way, the implantation equipment that performs this ion implantation is a large and complex equipment that includes a high-pressure ion accelerator.
Dust easily adheres to it. Also, during the injection operation, dust such as vacuum oil and silicone pieces (
There is a problem that some mist (mist) is present and adheres to the injection surface.

このようなゴミを基板表面に付着させたまま、注入イオ
ンを表面に衝突させ、注入させると、そのゴミが同時に
内部に叩き込まれて、基板が汚染されることになる。
If the implanted ions are bombarded with the surface of the substrate and implanted while such dust is still attached to the surface of the substrate, the dust will be simultaneously driven into the inside and contaminate the substrate.

本発明はこのような問題点を除去して、ゴミが基板面に
侵入しないようにする半導体装置の製造方法を提案する
ものである。
The present invention proposes a method for manufacturing a semiconductor device that eliminates these problems and prevents dust from entering the substrate surface.

[問題点を解決するための手段] その目的は、被処理基板上にの有機樹脂膜(例えば、ネ
ガレジスト膜)を塗布し、該有機樹脂膜の上に所望のレ
ジスト膜パターンを形成し、該レジスト膜パターンをマ
スクにして該有機樹脂膜を通してイオン注入処理する工
程が含まれる半導体装置の製造方法によって達成される
[Means for solving the problem] The purpose is to apply an organic resin film (for example, a negative resist film) on a substrate to be processed, form a desired resist film pattern on the organic resin film, and This is achieved by a method for manufacturing a semiconductor device that includes a step of performing ion implantation through the organic resin film using the resist film pattern as a mask.

[作用] 即ち、本発明はを機構脂膜を全面に塗布し、その上にレ
ジスト膜パターンを形成し、レジスト膜パターンをマス
クにして、イオン注入する。
[Operation] That is, according to the present invention, a mechanical fat film is applied to the entire surface, a resist film pattern is formed thereon, and ions are implanted using the resist film pattern as a mask.

そうすると、ゴミの侵入は有機樹脂膜で防止され、イオ
ンのみ薄い有機樹脂膜を透過して、基板に注入される。
Then, the organic resin film prevents dust from entering, and only ions pass through the thin organic resin film and are injected into the substrate.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかるイオン注入工程の断面図を示し
ており、11はp型シリコン基板、12はポジレジスト
膜パターン、13は膜厚1000人のネガレジスト膜で
ある。
FIG. 1 shows a cross-sectional view of the ion implantation process according to the present invention, where 11 is a p-type silicon substrate, 12 is a positive resist film pattern, and 13 is a negative resist film with a thickness of 1000.

このように形成するには、まず、粘度5cp程度のネガ
レジスト液を全面に塗布し、140〜150℃で熱処理
した後、その上にポジレジスト液を塗布し、露光・現像
して膜厚1μmのポジレジスト膜パターン12を形成す
る。この時、ポジレジスト膜の現像液では、ネガレジス
ト膜13が溶解されることはない。
To form this, first, a negative resist solution with a viscosity of about 5 cp is applied to the entire surface, heat treated at 140 to 150°C, then a positive resist solution is applied thereon, exposed and developed to a film thickness of 1 μm. A positive resist film pattern 12 is formed. At this time, the negative resist film 13 is not dissolved in the developer for the positive resist film.

次いで、図のように、加速電圧60にeVで、ドーズ量
lXl0”程度の砒素イオンをシリコン基板11に注入
する。そうすると、砒素イオンはレジスト膜パターン1
2では阻止されるが、薄いネガレジスト膜13は透過し
て、その下のシリコン基板に注入される。一方、ゴミは
薄いネガレジスト膜13によっても阻止され、それはイ
オンと粒子との大きさの相異によるものと考えられる。
Next, as shown in the figure, arsenic ions are implanted into the silicon substrate 11 at an acceleration voltage of 60 eV and a dose of about 1X10''.
2 is blocked, but it passes through the thin negative resist film 13 and is implanted into the underlying silicon substrate. On the other hand, dust is also blocked by the thin negative resist film 13, and this is thought to be due to the difference in size between ions and particles.

イオン注入後、ネガレジスト膜13はポジレジスト膜パ
ターン12と同時に溶解除去する。この時、ネガレジス
ト膜はイオン衝撃による変質が少なく、ポジレジスト膜
パターン12と同時に容易に剥離することができる。
After the ion implantation, the negative resist film 13 is dissolved and removed simultaneously with the positive resist film pattern 12. At this time, the negative resist film is less likely to change in quality due to ion bombardment, and can be easily peeled off at the same time as the positive resist film pattern 12.

ところで、従来、ポジレジスト膜パターンの表面にもイ
オンが衝突するため、その表面が変質し、イオン注入後
にレジスト膜パターンを溶解除去しようとすると、レジ
スト膜の変質した表皮だけが基板面に固着して、除去さ
れ難い場合が多かった。
By the way, conventionally, ions also collide with the surface of a positive resist film pattern, resulting in its surface being altered, and when attempting to dissolve and remove the resist film pattern after ion implantation, only the altered surface of the resist film adheres to the substrate surface. Therefore, it was often difficult to remove.

しかし、本発明では全面にネガレジスト膜13が被覆さ
れ、ネガレジスト膜はイオン衝撃による変質がポジより
もは少なく、且つ、全面剥離であるから、剥離が容易に
なる利点も得られる。
However, in the present invention, the entire surface is coated with the negative resist film 13, and the negative resist film is less likely to change in quality due to ion bombardment than the positive resist film, and since the entire surface is peeled off, there is also an advantage that peeling is easy.

このように、ネガレジスト膜13を介在させることによ
って、シリコン基板へのゴミの侵入が防止され、且つ、
所望のイオンのみを注入することができる。かくして、
半導体基板の結晶品質が維持され、ICの品質を良くす
ることができる。
In this way, by interposing the negative resist film 13, intrusion of dust into the silicon substrate is prevented, and
Only desired ions can be implanted. Thus,
The crystal quality of the semiconductor substrate is maintained, and the quality of the IC can be improved.

上記は膜厚1000人のネガレジスト膜を被覆した例で
説明しているが、膜厚は500〜1000人が適切で、
それより薄いとゴミの防止が十分でなく、又、余り厚い
とイオン注入に支障がある。例えば、膜厚4000人で
も注入イオンを透過することができて、注入イオンを完
全に阻止する膜厚は6000〜7000人程度であるが
、出来るだけ薄い方が注入に差し障りがなく、ゴミを防
げるだけの1000人程度0膜厚が適している。
The above explanation is based on an example in which a negative resist film with a thickness of 1,000 layers is coated, but a film thickness of 500 to 1,000 layers is appropriate.
If it is thinner than this, dust prevention will not be sufficient, and if it is too thick, ion implantation will be hindered. For example, even a film with a thickness of 4,000 layers can transmit implanted ions, and a film thickness that completely blocks implanted ions is about 6,000 to 7,000 layers, but the thinner it is, the less it poses a problem for implantation and prevents dust. A film thickness of about 1000 is suitable.

且つ、このようなゴミの防止膜にはネガレジスト膜13
だけでなく、他の有機樹脂膜、例えば、PVA (ポリ
ビニルアルコール)膜などを用いることもできる。また
、ネガレジスト膜パターンを形成する場合でも、ネガレ
ジスト膜をゴミ防止膜とすることができ、全面塗布した
ネガレジスト膜を予め140〜150℃で熱処理すると
、露光と同じ効果を与えることになり、その上にネガレ
ジスト膜を塗布し、露光・現像してネガレジスト膜パタ
ーンを作成して、イオン注入の保護マスクとすることが
できる。
In addition, a negative resist film 13 is used as a film to prevent such dust.
In addition, other organic resin films such as PVA (polyvinyl alcohol) films can also be used. In addition, even when forming a negative resist film pattern, the negative resist film can be used as a dust prevention film, and if the negative resist film coated on the entire surface is heat-treated at 140 to 150°C in advance, it will give the same effect as exposure. A negative resist film is applied thereon, exposed and developed to create a negative resist film pattern, which can be used as a protective mask for ion implantation.

[発明の効果] 以上の説明から明らかなように、本発明によれば半導体
基板の汚染が防止されて、rcの品質向上に大きく貢献
するものである。
[Effects of the Invention] As is clear from the above description, the present invention prevents contamination of semiconductor substrates and greatly contributes to improving the quality of RC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるイオン注入工程の断面図、第2
図は従来のイオン注入工程の断面図である。 図において、 1.11はシリコン基板、 2.12はレジスト膜パターン、 13はネガレジスト膜 を示している。
FIG. 1 is a cross-sectional view of the ion implantation process according to the present invention, and FIG.
The figure is a cross-sectional view of a conventional ion implantation process. In the figure, 1.11 is a silicon substrate, 2.12 is a resist film pattern, and 13 is a negative resist film.

Claims (2)

【特許請求の範囲】[Claims] (1)被処理基板上に有機樹脂膜を塗布し、該有機樹脂
膜の上に所望のレジスト膜パターンを形成し、該レジス
ト膜パターンをマスクにして該有機樹脂膜を通してイオ
ン注入処理する工程が含まれてなることを特徴とする半
導体装置の製造方法。
(1) A step of coating an organic resin film on a substrate to be processed, forming a desired resist film pattern on the organic resin film, and performing ion implantation through the organic resin film using the resist film pattern as a mask. A method of manufacturing a semiconductor device, comprising:
(2)上記の有機樹脂膜がネガレジスト膜であることを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the organic resin film is a negative resist film.
JP10673985A 1985-05-17 1985-05-17 Manufacture of semiconductor device Pending JPS61264723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10673985A JPS61264723A (en) 1985-05-17 1985-05-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10673985A JPS61264723A (en) 1985-05-17 1985-05-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61264723A true JPS61264723A (en) 1986-11-22

Family

ID=14441290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10673985A Pending JPS61264723A (en) 1985-05-17 1985-05-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61264723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092256A (en) * 2015-11-10 2017-05-25 富士電機株式会社 Semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092256A (en) * 2015-11-10 2017-05-25 富士電機株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
EP0171111A2 (en) Process to superpose two positive photoresist layers
JPS61264723A (en) Manufacture of semiconductor device
US4581076A (en) Selectively implanting GaAs semiconductor substrates through a metallic layer
JP2003068667A (en) Production method for semiconductor device
JPH01303727A (en) Impurity gettering process
JPS61123152A (en) Separation of semiconductor device
JPS62105464A (en) Manufacture of semiconductor device
JPH06151349A (en) Manufacture of semiconductor device
JP2527545B2 (en) Method for manufacturing semiconductor device
JPH01205552A (en) Manufacture of semiconductor device
KR930011471B1 (en) Manufacturing method of semiconductor device
JPS6331097B2 (en)
JPS63312632A (en) Manufacture of semiconductor device
JPS62262421A (en) Method and apparatus for implanting impurity ion
JP3182769B2 (en) Method for manufacturing CMOS semiconductor device
KR890005197B1 (en) Manufacture of cmos semiconductor device
JPS63202920A (en) Manufacture of semiconductor integrated circuit device
KR950024298A (en) Method of manufacturing buried semiconductor device
JPS61116833A (en) Manufacture of semiconductor device
JPS594117A (en) Manufacture of semiconductor device
JPH02235330A (en) Manufacture of semiconductor device
JPH0274032A (en) Manufacture of semiconductor device
JPH02105518A (en) Manufacture of semiconductor integrated circuit
JPH0282523A (en) Manufacture of semiconductor device
JPH0492438A (en) Manufacture of semiconductor device