JPS61256654A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS61256654A
JPS61256654A JP9841685A JP9841685A JPS61256654A JP S61256654 A JPS61256654 A JP S61256654A JP 9841685 A JP9841685 A JP 9841685A JP 9841685 A JP9841685 A JP 9841685A JP S61256654 A JPS61256654 A JP S61256654A
Authority
JP
Japan
Prior art keywords
layer
wiring
silicon
film
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9841685A
Other languages
Japanese (ja)
Other versions
JPH069202B2 (en
Inventor
Yoshiaki Yamada
義明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60098416A priority Critical patent/JPH069202B2/en
Publication of JPS61256654A publication Critical patent/JPS61256654A/en
Publication of JPH069202B2 publication Critical patent/JPH069202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate a junction breakdown caused by mutual diffusion of silicon of a silicon substrate and metal of a wiring in a multilayer interconnection and make the etching of the first layer wiring stable and easy by composing the first layer wiring of the three-layer composition of a polycrystalline silicon layer, an aluminum layer and a silicon nitride layer from the bottom to the top. CONSTITUTION:A silicon oxide film 3 is formed on the surface of a silicon substrate 1 which has a P-N junction 2 and an aperture 4 is selectively provided in the film 3. A polycrystalline silicon layer 5 is formed over the silicon oxide film 3 including the surface of the silicon substrate 1 exposed in the aperture 4 by a chemical vapor deposition method. An aluminum layer 6 is formed on the layer 5 by sputtering. Further, titanium is sputtered over the layer 6 in a nitrogen atmosphere. The predetermined pattern of the first layer wiring is formed on the titanium nitride layer 7 with a photoresist film 8 by a photoetching technology. After the titanium nitride film 7 is etched by a reactive ion etching method by utilizing the resist film 8 as a mask, the aluminum layer 6, the polycrystalline silicon layer 5 and the silicon oxide film 3 are etched with the respective etching speeds which are largely different from each other. The photoresist film 8 is removed and the first layer aluminum wiring is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の製造方法に関し、特に、金属
配線間に絶縁膜を設けて形成される半導体集積回路の多
層配線の形成方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor integrated circuit, and more particularly, to a method for forming multilayer wiring in a semiconductor integrated circuit formed by providing an insulating film between metal wirings. It is.

〔従来の技術〕[Conventional technology]

従来、この種の多層配線の形成において、熱処理により
配線金−とシリコン基板中のシリコンが相互拡散し、シ
リコン基板に形成されている接合を破壊することを阻止
するために、第1層目配線金属の下層に窒化チタン膜を
設けていた。以下、シリコンと配線金属との相互拡散を
防ぐ窒化チタンを用いたアルミニウム21fi配線を形
成する方法の一例を第2図に示す主要な工程の断面図を
用いて説明する。
Conventionally, in the formation of this type of multilayer wiring, the first layer wiring was A titanium nitride film was provided under the metal layer. An example of a method for forming aluminum 21fi wiring using titanium nitride to prevent interdiffusion between silicon and wiring metal will be described below with reference to cross-sectional views of the main steps shown in FIG.

まず第2図(a)のように、PN接合2を有する、シリ
コン基板1の表面にシリコン酸化膜3を形成し、シリコ
ン基板と配線金属層をつなぐ所定の開孔部4をシリコン
酸化膜3に設ける。その上層に窒化チタン膜17を、窒
素雰囲気中でチタンをスパッタリングすることにより形
成する。さらにその上層にスパッタリング法によ抄アル
ミニウム層6を形成する。次に第2図(b)のように、
アルミニウム層6の上に写真食刻技術により、第1層目
配線の所定の形状の7オトレジスト膜8を形成する。
First, as shown in FIG. 2(a), a silicon oxide film 3 is formed on the surface of a silicon substrate 1 having a PN junction 2, and a predetermined opening 4 connecting the silicon substrate and the wiring metal layer is formed in the silicon oxide film 3. Provided for. A titanium nitride film 17 is formed thereon by sputtering titanium in a nitrogen atmosphere. Further, a preformed aluminum layer 6 is formed on top thereof by a sputtering method. Next, as shown in Figure 2(b),
On the aluminum layer 6, an photoresist film 8 having a predetermined shape of the first layer wiring is formed by photolithography.

つぎに第2図(C)のように、フォトレジストl[8を
マスクとし、リアクティブイオンエツチング法により、
アルミニウム層6と窒化チタン111g17を選配線6
を含み、シリコン酸化膜3の上にプラズマによる化学気
相成長法でシリコン窒化膜9を被着し、このシリコン窒
化膜9に第1層目アルミニウム配線と第2層目アルミニ
ウム配線をつなぐ所定の開孔部を設ける。次いでシリコ
ン窒化膜9の選択的な開孔部内の第1層目アルミニウム
配線層6を含みシリコン窒化II9上にアルミニウム膜
をスパッタリング法により被着し、写真食刻技術を用い
、このアルミニウム膜を選択的にエツチング除去するこ
とにより、第2層アルミニウム配線11を形成する。最
後に配線層間のコンタクトを確実にして、素子特性の安
定化を図るために400〜500℃の温度で、10〜6
0分の熱処理が行なわれる。
Next, as shown in FIG. 2(C), using the photoresist l[8 as a mask, reactive ion etching is performed to
Aluminum layer 6 and titanium nitride 111g17 are selected and wired 6
A silicon nitride film 9 is deposited on the silicon oxide film 3 by chemical vapor deposition using plasma, and a predetermined layer is formed on this silicon nitride film 9 to connect the first layer aluminum wiring and the second layer aluminum wiring. Provide an opening. Next, an aluminum film is deposited on the silicon nitride II 9 including the first aluminum wiring layer 6 in the selective openings of the silicon nitride film 9 by a sputtering method, and this aluminum film is selected using a photolithography technique. The second layer aluminum wiring 11 is formed by selectively etching and removing the aluminum wiring. Finally, in order to ensure contact between the wiring layers and stabilize the device characteristics, the
Heat treatment is performed for 0 minutes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の多層配線の形成方法では、第1層目アル
ミニウム層と窒化チタンの連続〆したエツチングの際、
窒化チタンと窒化チタン下層のシリコン酸化膜のエツチ
ング速度の大きく異なったエツチング方法が困難なため
、窒化チタンのエツチング後その下層のシリコン酸化膜
までもエツチングされ、ついには、第3図の断面図に示
すごとく、シリコン基板10表面が延出してしまうとい
う欠点を有している。
In the conventional multilayer wiring formation method described above, during the continuous etching of the first aluminum layer and titanium nitride,
Since the etching speed of titanium nitride and the silicon oxide film underlying the titanium nitride are very different, it is difficult to use an etching method. As shown, the disadvantage is that the surface of the silicon substrate 10 extends.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多層配線の形成方法は、第1層目配線構造を、
下層から、多結晶シリコン層(ポリシリ層)、配線金1
’A層、素化チタン膜の3層構造としている。
The method for forming a multilayer wiring according to the present invention includes forming the first layer wiring structure by
From the bottom layer: polycrystalline silicon layer (polysilicon layer), wiring gold 1
It has a three-layer structure: the A layer and the bare titanium film.

〔実施例〕〔Example〕

次に本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(al〜(e)は本発明の一実施例の主快工程の
断面図である。まず第1図ta)のように、PN接合2
を有するシリコン基板lの表面にシリコン酸化膜3を形
成し、シリコン基&1と第1層目配線金属層をつなぐ所
定の開孔部4をシリコン酸化膜3に設ける。シリコン酸
化膜3に選択的に設けた開孔部4内のシリコン基板1を
含み、シリコン酸化膜3の上に化学気相成長法によりポ
リシリ層5を形成する。ポリシリ層5の膜厚としては5
00〜3000Am度が良く、また、このポリシリ層5
にヒ系、リン、ホロンなと不純物を入れると、ポリシリ
層5がアルミニウム中に拡散しにくくなりなお一層良い
。さらにこのポリシリ#5の上にスパッタリング法によ
りアルミニウム46を0.3〜1.5μmの厚さに被着
する。そしてこのアルミニウム層6の上に窒素雰囲気中
でチタンをスパッタリングすることにより窒化チタン膜
7を500A〜3000Aの厚さに被着する。次に第1
図(b)のように%窒化チタン膜7の上に写真食刻技術
により第1層目配線の所定の形状を7オトレジスト膜8
を形成する。つぎに第1図(C)のように、フォトレジ
スト膜8をマスクとしりアクティブイオンエツチング法
により窒化チタン膜7をエツチング後、アルミニウム層
6とポリシリ層5をシリコン酸化膜3とエツチング速度
の大きく異なるエツチング条件で連続的にエツチングす
る。なお、窒化チタン膜7のエツチング条件はアルミニ
ウムとのエツチング速度が大きく異なる方が望ましいが
、必ずしも、エツチング速度が大きく異なる必要はない
。フォトレジスト膜8を除去し第1 M目アルミニウム
配線が形成される。次に第1図(d)のように、第1層
目アルミニウム配線6を含み、シリコン酸化膜3の上に
、プラズマによる化学気相成長法でシリコン窒化膜9を
被着し、シリコン窒化[9に第1層目アルミニ9ム配線
と第2層目アルミニウム配線をつなぐ所定の開孔部lO
を設ける。次いで第1図(e)のように、シリコン窒化
膜9の選択的な開孔部10内の窒化チタン膜7を含み、
シリコン窒化膜9上にアルミニウム膜をスパッタリング
法により被着し、写真食刻技術を用いこのアルミニウム
膜を選択的にエツチング除去することにより、第1層目
アルミニ9ム配線llを形成する。最後に配線層間のコ
ンタク)tm実にして、素子特性の安定化を図るために
400〜500℃の温度で、10〜60分の熱処理が行
なわれる。
Figure 1 (al to (e)) is a cross-sectional view of the main process of one embodiment of the present invention. First, as shown in Figure 1 (ta), the PN junction 2
A silicon oxide film 3 is formed on the surface of a silicon substrate l having a silicon substrate l, and a predetermined opening 4 is provided in the silicon oxide film 3 to connect the silicon base &1 and the first wiring metal layer. A polysilicon layer 5 is formed on the silicon oxide film 3 by chemical vapor deposition, including the silicon substrate 1 in the openings 4 selectively provided in the silicon oxide film 3. The thickness of the polysilicon layer 5 is 5
00 to 3000 Am degree is good, and this polysilicon layer 5
It is even better if impurities such as arsenic, phosphorus, and holon are added to the aluminum because the polysilicon layer 5 becomes difficult to diffuse into the aluminum. Furthermore, aluminum 46 is deposited on the polysilicon #5 to a thickness of 0.3 to 1.5 μm by sputtering. Then, a titanium nitride film 7 is deposited on the aluminum layer 6 to a thickness of 500 Å to 3000 Å by sputtering titanium in a nitrogen atmosphere. Next, the first
As shown in Figure (b), a predetermined shape of the first layer wiring is formed on the titanium nitride film 7 by photolithography.
form. Next, as shown in FIG. 1C, the titanium nitride film 7 is etched by active ion etching using the photoresist film 8 as a mask, and then the aluminum layer 6 and polysilicon layer 5 are etched with the silicon oxide film 3 at a high etching rate. Continuously etching under different etching conditions. It is preferable that the etching conditions for the titanium nitride film 7 be such that the etching rate is significantly different from that of aluminum, but the etching rates do not necessarily need to be significantly different. The photoresist film 8 is removed and a first M-th aluminum wiring is formed. Next, as shown in FIG. 1(d), a silicon nitride film 9 is deposited on the silicon oxide film 3, including the first layer aluminum wiring 6, by chemical vapor deposition using plasma. 9 is a predetermined opening lO connecting the first layer aluminum wiring and the second layer aluminum wiring.
will be established. Then, as shown in FIG. 1(e), the titanium nitride film 7 is included in the selective opening 10 of the silicon nitride film 9,
An aluminum film is deposited on the silicon nitride film 9 by sputtering, and the aluminum film is selectively etched away using photolithography to form a first layer aluminum wiring 11. Finally, a heat treatment is performed at a temperature of 400 to 500° C. for 10 to 60 minutes to make contact between wiring layers and to stabilize the device characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は第1層目配線の構造を下層
から、ポリシリ層、アルミニウム層、窒化チタン膜の3
層構造とすることで多層配線を形成しても、シリコン基
板のシリコンと配線金属の相互拡散による接合の破壊が
なく、また、第1層目配線のエツチングが安定にかつ容
易にできる効果がある。
As explained above, the present invention has a structure of the first layer wiring consisting of three layers: a polysilicon layer, an aluminum layer, and a titanium nitride film.
Due to the layered structure, even when multilayer wiring is formed, there is no bond breakdown due to interdiffusion between the silicon of the silicon substrate and the wiring metal, and the first layer wiring can be etched stably and easily. .

一層配線構造においては、配線金PA層の下層にポリシ
リ層を設けるだけで、シリコン基板中のシリコンと配線
金属との相互拡散による接合の破壊は十分に阻止される
が、多層配線構造では2層目以上の配線金属とシリコン
の相互拡散により、ポリシリ層を配線金属層の下層に形
成するだけでは十分でなくなってしまう。そこで、第1
層目配線金属の上層に窒化チタン膜を設けることで2層
目配線以上の金属とシリコンの相互拡散れ無く、実質的
には一層配線構造と同等となり、シリコン基板中のシリ
コンと配線金属との相互拡散は阻止され、接合の破壊は
起こらない。しかも、窒化チタンを第1層目配線金属上
層に設けているので窒化チタンラムをエツチング後、ア
ルミニウム層とポリシリ層をシリコン酸化膜とエツチン
グ速度の大きく異なるエツチング条件で連続的にエツチ
ングすることで、シリコン基板上のシリコン酸化膜の腺
減りが無く、安定に第1鳩目配線を形成することが可能
である。
In a single-layer wiring structure, simply providing a polysilicon layer under the wiring gold PA layer sufficiently prevents bond breakdown due to interdiffusion between the silicon in the silicon substrate and the wiring metal, but in a multilayer wiring structure, a two-layer wiring structure is used. Due to the interdiffusion of wiring metal and silicon to a greater degree, it is no longer sufficient to simply form a polysilicon layer under the wiring metal layer. Therefore, the first
By providing a titanium nitride film on the upper layer of the wiring metal layer, there is no mutual diffusion of metal and silicon in the second and higher wiring layers, and the structure is essentially equivalent to a single layer wiring structure, and the relationship between the silicon in the silicon substrate and the wiring metal is reduced. Interdiffusion is prevented and junction breakdown does not occur. Moreover, since titanium nitride is provided on the upper layer of the first wiring metal layer, after etching the titanium nitride layer, the aluminum layer and the polysilicon layer can be etched successively under etching conditions that have a significantly different etching speed than the silicon oxide film. There is no deterioration of the silicon oxide film on the substrate, and it is possible to stably form the first eyelet wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜le)は本発明の一実施例の製造方法の
主要工程の断面図、第2図(a)〜(d)は従来の多層
配線形成方法の主要工程の断面図、第3図は従来技術の
問題点を示す断面図である。 l・・・・・・シリコン基板、2・・・・・・PN接合
、3・・・・・・シリコン酸化膜、4・・・・・・シリ
コン酸化膜開孔、5・・・・・・多結晶シリコン、6・
・・・・・第1ノー目アルミニウム配線層、7・・・・
・・窒化チタン膜、8・・・・・・フォトレジスト膜、
9・・・・・・シリコン窒化膜、10・・・・・・シリ
コン窒化膜開孔、11・・・・・・第2#目アルミニウ
ム配線。 代理人 弁理士  内 原   晋 6゛・パ・2、%
1図 第2図 第3図
FIGS. 1(a) to 1e) are cross-sectional views of the main steps of a manufacturing method according to an embodiment of the present invention, and FIGS. 2(a) to (d) are cross-sectional views of the main steps of a conventional multilayer wiring forming method. FIG. 3 is a sectional view showing the problems of the prior art. 1...Silicon substrate, 2...PN junction, 3...Silicon oxide film, 4...Silicon oxide film opening, 5...・Polycrystalline silicon, 6・
...First node aluminum wiring layer, 7...
...Titanium nitride film, 8...Photoresist film,
9...Silicon nitride film, 10...Silicon nitride film opening, 11...2nd #th aluminum wiring. Agent Patent Attorney Susumu Uchihara 6゛・Pa・2.%
Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1層目配線金属層、層間絶縁膜、第2層目配線金属層
をシリコン基板上に順次に形成することにおいて、前記
第1層目配線金属層を下層から、前記シリコン基板中の
シリコンと配線金属との相互拡散を阻止するための多結
晶シリコン層、配線金属層、窒化チタン膜の3層構造と
することを特徴とする多層配線の形成方法。
In sequentially forming a first wiring metal layer, an interlayer insulating film, and a second wiring metal layer on a silicon substrate, the first wiring metal layer is connected to the silicon in the silicon substrate from the bottom layer. 1. A method for forming a multilayer wiring, characterized by forming a three-layer structure of a polycrystalline silicon layer, a wiring metal layer, and a titanium nitride film to prevent interdiffusion with wiring metal.
JP60098416A 1985-05-09 1985-05-09 Multilayer wiring formation method Expired - Lifetime JPH069202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098416A JPH069202B2 (en) 1985-05-09 1985-05-09 Multilayer wiring formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098416A JPH069202B2 (en) 1985-05-09 1985-05-09 Multilayer wiring formation method

Publications (2)

Publication Number Publication Date
JPS61256654A true JPS61256654A (en) 1986-11-14
JPH069202B2 JPH069202B2 (en) 1994-02-02

Family

ID=14219218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098416A Expired - Lifetime JPH069202B2 (en) 1985-05-09 1985-05-09 Multilayer wiring formation method

Country Status (1)

Country Link
JP (1) JPH069202B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124765A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Semiconductor device
JPS59148350A (en) * 1983-02-14 1984-08-25 Fujitsu Ltd Manufacture of semiconductor device
JPS59167059A (en) * 1983-03-11 1984-09-20 Fujitsu Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124765A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Semiconductor device
JPS59148350A (en) * 1983-02-14 1984-08-25 Fujitsu Ltd Manufacture of semiconductor device
JPS59167059A (en) * 1983-03-11 1984-09-20 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH069202B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JPH05243321A (en) Manufacture of planarized multilayer-metal bonding pad
JPH06125013A (en) Semiconductor device and its manufacture
JPS61112356A (en) Formation of through conductor for ic
JPS61256654A (en) Formation of multilayer interconnection
JPS63211672A (en) Semiconductor integrated circuit device
JPH04199628A (en) Manufacture of semiconductor device
JPH03145734A (en) Bipolar semiconductor device
JPS63209145A (en) Manufacture of semiconductor device
JPH08236622A (en) Semiconductor device and fabrication thereof
JPS62241373A (en) Semiconductor device
JPH0242748A (en) Semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
KR970011056B1 (en) Semiconductor device and its manufacture
JPH0547764A (en) Semiconductor device and its manufacture
JPH0837237A (en) Formation of multilayer metal wiring on semiconductor element
JPH03280431A (en) Manufacturing process and device of multilayer wiring
JPH0268952A (en) Semiconductor device and manufacture thereof
JPS61239646A (en) Formation of multilayer interconnection
JPS59189657A (en) Manufacture of semiconductor device
JPH08111460A (en) Structure of multilayer wiring and fabrication thereof
JPH01109749A (en) Formation of wiring
JPS62115744A (en) Semiconductor device
JPH06163720A (en) Semiconductor device and manufacture thereof
JPH03155635A (en) Manufacture of semiconductor device
JPH01241845A (en) Manufacture of semiconductor device