JPS6125537B2 - - Google Patents

Info

Publication number
JPS6125537B2
JPS6125537B2 JP9349682A JP9349682A JPS6125537B2 JP S6125537 B2 JPS6125537 B2 JP S6125537B2 JP 9349682 A JP9349682 A JP 9349682A JP 9349682 A JP9349682 A JP 9349682A JP S6125537 B2 JPS6125537 B2 JP S6125537B2
Authority
JP
Japan
Prior art keywords
cemented carbide
iron
copper
sintered body
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9349682A
Other languages
Japanese (ja)
Other versions
JPS58209557A (en
Inventor
Masaya Myake
Juichi Hirayama
Akio Hara
Ryoji Kameda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9349682A priority Critical patent/JPS58209557A/en
Publication of JPS58209557A publication Critical patent/JPS58209557A/en
Publication of JPS6125537B2 publication Critical patent/JPS6125537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Punching Or Piercing (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 本発明は、薄い超硬合金板と鋼材とを接合した
複合金型用素材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite mold material made by joining a thin cemented carbide plate and a steel material.

この金型用素材は精密部品の打抜き加工に使用
するダイス、パンチ等に応用されるものであり、
放電加工、ワイヤーカツト等によつて任意の形状
に加工して用いられるものである。
This mold material is applied to dies, punches, etc. used for punching precision parts.
It is used after being processed into any shape by electric discharge machining, wire cutting, etc.

かかる金型素材として超硬合金は優れた性能を
発揮するが高価であるため必要部分のみに超硬合
金を用い他は鋼材を用い両者を鑞付によつて接合
した複合素材が従来使用されている。しかしなが
らこのような素材は、金型用のような広い面積を
鑞付するため超硬合金と鋼の熱膨張係数の差によ
つて冷却時に超硬合金に引張応力が働き鑞付はず
れが生じたり、超硬合金に亀裂が生じるなどの問
題が多かつた。
Although cemented carbide exhibits excellent performance as a material for such molds, it is expensive, so conventionally a composite material has been used in which cemented carbide is used only for the necessary parts, steel is used for the rest, and the two are joined by brazing. There is. However, when using such materials, tensile stress is applied to the cemented carbide during cooling due to the difference in thermal expansion coefficient between the cemented carbide and steel, which may cause the solder to come off due to the large area being brazed, such as for molds. There were many problems such as cracks forming in the cemented carbide.

本発明の金型素材は上記の問題を解決するもの
であり、超硬合金と鋼を完全に接合されているた
め、接合後の鋼の焼入れ熱処理やワイヤーカツト
等による機械加工を行う際にも鋼と超硬合金との
外れや超硬合金の亀裂を生じない金型素材を提供
するものである。
The mold material of the present invention solves the above problem, and since the cemented carbide and steel are completely joined, it can be used even when performing quenching heat treatment of the steel after joining, machining by wire cutting, etc. The present invention provides a mold material that does not cause separation between steel and cemented carbide or cracks in cemented carbide.

本発明の金型素材は結合金属(主としてCo)
10重量%以上の超硬合金と銅溶浸した鉄系焼結体
からなる複合材であり、鉄系焼結体は炭素量0.3
%以上含む鉄粉の型押体(成型体)に銅を主成分
とする溶浸材を溶浸焼結したものであり、焼結時
に超硬合金に銅溶浸を介して同時に接合せしめた
ものである。そして、超硬合金の厚みは素材全体
の厚みの1/10〜1/3であることが特徴である。
The mold material of the present invention is a bonding metal (mainly Co)
It is a composite material consisting of 10% by weight or more of cemented carbide and an iron-based sintered body infiltrated with copper, and the iron-based sintered body has a carbon content of 0.3.
% or more of iron powder is infiltrated and sintered with an infiltration material mainly composed of copper, and is simultaneously bonded to cemented carbide through copper infiltration during sintering. It is something. The thickness of the cemented carbide is characterized by being 1/10 to 1/3 of the thickness of the entire material.

超硬合金中の結合金属が10%以下であると接合
後超硬合金にかかる引張応力に十分耐えられない
ので10%以上が好ましい。勿論超硬合金の主成分
はWCである。
If the bonding metal content in the cemented carbide is 10% or less, the cemented carbide will not be able to sufficiently withstand the tensile stress applied to the cemented carbide after joining, so it is preferably 10% or more. Of course, the main component of cemented carbide is WC.

本発明の複合金型素材の第2の特徴である超硬
合金の厚みが全体の1/10〜1/3である理由は1/10
以下では金型材としての圧縮強度が不十分であ
り、1/3以上では結合材10%以上の超硬合金でも
亀裂が発生するので好ましくない。通常の素材で
は超硬合金の厚みは1〜10mmのものが用いられ
る。
The reason why the thickness of the cemented carbide, which is the second feature of the composite mold material of the present invention, is 1/10 to 1/3 of the total is 1/10
If it is less than 1/3, the compressive strength as a mold material will be insufficient, and if it is more than 1/3, cracks will occur even if the cemented carbide has a binder content of 10% or more, which is not preferable. For ordinary materials, cemented carbide with a thickness of 1 to 10 mm is used.

第3の特徴は鋼材を鉄系金属粉末の型押体ある
いは焼結体に銅を主成分とする溶浸材を溶浸させ
た鋼材を接合させたことにある。
The third feature is that the steel material is joined to a stamped body or sintered body of iron-based metal powder infiltrated with an infiltrant material whose main component is copper.

金属粉末の型押体あるいは焼結体は多孔質であ
り、加熱昇温時の熱膨張の差を吸収することがで
き、また冷却時の応力は充填された銅により吸収
され超硬合金には大きな引張り応力が働かないと
いう効果がある。
The stamped or sintered body of metal powder is porous and can absorb the difference in thermal expansion when heated, and the stress during cooling is absorbed by the copper filled, making it difficult for cemented carbide. This has the effect of not applying large tensile stress.

本発明の第4の特徴は銅の溶浸と同時に超硬合
金と接合されることにある。鉄系型押体に銅主成
分の溶浸材を重ねて1120℃〜1150℃の温度で加熱
すると銅は溶融して、鉄系型押体の連続気孔を通
つて超硬合金に接し銅と反応接合する。そして超
硬合金とFe―Cu―C焼結体は銅を薄層を接合層
として強固に接合される。
The fourth feature of the present invention is that it is joined to the cemented carbide at the same time as the copper is infiltrated. When a copper-based infiltration material is layered on an iron-based stamped body and heated at a temperature of 1120°C to 1150°C, the copper melts and contacts the cemented carbide through the continuous pores of the iron-based stamped body, forming a bond with the copper. Reactive bonding. Then, the cemented carbide and the Fe--Cu--C sintered body are firmly joined using a thin layer of copper as a bonding layer.

第1図は本発明の金型素材の接合層附近の断面
を示す200倍拡大の顕微鏡写真であり、超硬合金
1は接合銅層2を介して鉄系焼結体3と強固に接
合されている。この界面の銅は接合時に生ずる応
力を解放する効果がある。
FIG. 1 is a 200 times enlarged micrograph showing a cross section near the bonding layer of the mold material of the present invention, showing that the cemented carbide 1 is firmly bonded to the iron-based sintered body 3 via the bonding copper layer 2. ing. Copper at this interface has the effect of releasing stress generated during bonding.

本発明の第5の特徴は、鉄系焼結体は炭素量が
0.3%以上であることである。炭素量が0.3%以下
では接合されたFe―Cu―C焼結体の硬度が低く
金型素材としては不適当である。0.3%以上であ
れば接合後の熱処理によつて任意の高硬度と靭性
を確保することができる。
The fifth feature of the present invention is that the iron-based sintered body has a low carbon content.
It must be 0.3% or more. If the carbon content is less than 0.3%, the joined Fe--Cu--C sintered body has low hardness and is unsuitable as a mold material. If it is 0.3% or more, desired high hardness and toughness can be ensured by heat treatment after bonding.

これらの本発明の金型素材は大きな面積の超硬
合金と鋼母材である受台との接合が可能である。
そして超精密抜型材として耐摩耗性、エツジ部の
刃立性の優れた金型素材として供することができ
る。
These mold materials of the present invention are capable of joining a large area of cemented carbide and a pedestal that is a steel base material.
It can also be used as an ultra-precision cutting die material with excellent wear resistance and edge sharpness.

次に実施例を示す。 Next, examples will be shown.

実施例 1μのWC粉末80重量%と1μのCo粉末20%を
混合し型押後焼結することにより100×100×2mm
の超硬合金板Aを製造した。
Example: 100×100×2mm by mixing 80% by weight of 1μ WC powder and 20% of 1μ Co powder, stamping and sintering.
Cemented carbide sheet A was manufactured.

次に鉄粉に0.8重量%の炭素を含む混合粉末を
100×100×40mmに型押しBとする。又銅粉にMn5
%、Fe4%を混合した粉末を型押して100×100×
10mmの溶浸材Cを作製した。これを第2図に示す
様に重ね合わせ、アンモニア分解ガス中で1150℃
で1時間加熱した。
Next, a mixed powder containing 0.8% by weight of carbon is added to the iron powder.
Emboss B to 100 x 100 x 40 mm. Also Mn5 in copper powder
%, Fe4% mixed powder was stamped 100×100×
A 10 mm infiltration material C was prepared. These were stacked together as shown in Figure 2 and heated to 1150°C in ammonia decomposition gas.
It was heated for 1 hour.

加熱後、溶浸材は鉄の型押体中に溶浸拡散し、
超硬合金と完全な接合が行われており、第1図に
示す断面を示した。この時母材のFe―Cu―C合
金の硬度はHRc20であつた。この接合材を840℃
で1時間加熱後焼入れし、180℃×1.5時間で焼き
戻しを行つた後の硬度はHRc40であり、熱処理に
よつてはくり、亀裂は発生しなかつた。
After heating, the infiltrant is infiltrated and diffused into the iron stamping body,
Complete bonding with the cemented carbide was performed, and the cross section shown in FIG. 1 was shown. At this time, the hardness of the base metal Fe-Cu-C alloy was HRc20. This bonding material is heated to 840℃.
The hardness after heating for 1 hour at 180°C, quenching, and tempering at 180°C for 1.5 hours was HRc40, and no cracks were generated due to the heat treatment.

該接合品をワイヤーカツトによつて切り出し、
珪素鋼板の打抜き用パンチを製作し打抜きテスト
を行つたところ、ダイス鋼の約10倍の寿命を示し
た。また打抜き製品のバリが少く、製品の精度が
高いものが得られた。
Cut out the bonded product with a wire cut,
When we produced a punch for punching silicon steel plates and conducted punching tests, we found that it had a lifespan approximately 10 times longer than that of die steel. In addition, the punched products had fewer burrs and were highly accurate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品の接合状態を示す200倍拡大
顕微鏡写真、第2図は本発明品の製造法を説明す
るための図である。 1:超硬合金、2:銅層、3:鉄系焼結体、
A:超硬合金、B:鉄系型押体、C:溶浸材。
FIG. 1 is a 200 times enlarged micrograph showing the bonded state of the product of the present invention, and FIG. 2 is a diagram for explaining the manufacturing method of the product of the present invention. 1: Cemented carbide, 2: Copper layer, 3: Iron-based sintered body,
A: Cemented carbide, B: Iron-based stamped body, C: Infiltration material.

Claims (1)

【特許請求の範囲】[Claims] 1 WC基超硬合金と鉄系焼結体の複合素材にお
いて、超硬合金の結合金属が10重量%以上であ
り、かつその厚みが全体の厚みの1/10〜1/3であ
り、鉄系焼結体は炭素量0.3重量以上含む鉄系粉
末のスケルトンに銅を主成分とする溶浸材が充填
されており、超硬合金と鉄系焼結体とは溶浸材を
介して強固に接合されてなることを特徴とする金
型用素材。
1 In a composite material of WC-based cemented carbide and iron-based sintered body, the bonding metal of the cemented carbide is 10% by weight or more, and its thickness is 1/10 to 1/3 of the total thickness, and the iron The iron-based sintered body is made of a skeleton of iron-based powder containing 0.3 weight or more of carbon and filled with an infiltrant material whose main component is copper. A mold material characterized by being bonded to.
JP9349682A 1982-05-31 1982-05-31 Blank for die Granted JPS58209557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9349682A JPS58209557A (en) 1982-05-31 1982-05-31 Blank for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9349682A JPS58209557A (en) 1982-05-31 1982-05-31 Blank for die

Publications (2)

Publication Number Publication Date
JPS58209557A JPS58209557A (en) 1983-12-06
JPS6125537B2 true JPS6125537B2 (en) 1986-06-16

Family

ID=14083950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9349682A Granted JPS58209557A (en) 1982-05-31 1982-05-31 Blank for die

Country Status (1)

Country Link
JP (1) JPS58209557A (en)

Also Published As

Publication number Publication date
JPS58209557A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
CN105039824B (en) Diamond circular saw blade cutter head and preparation method thereof
US4289833A (en) Liquid phase sintered dense composite body for brazed joints and method for making the same
US3444613A (en) Method of joining carbide to steel
JP2012507623A (en) Method for manufacturing semi-finished product for electrical contact, semi-finished product for electrical contact, and electrical contact member
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JPS61243103A (en) Production of tool tip of composite material consisting of hard poor conductor material powder and metallic powder
EP0048496B1 (en) Method for bonding sintered metal pieces
DE2311400A1 (en) Alloy for vacuum brazing cemented carbides - the alloy has a high melting point and consists of copper and nickel
JPS5865588A (en) Production of joined sintered hard alloy
JPS6125537B2 (en)
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
US4386959A (en) Method for compound sintering
JPS59209473A (en) Production of bonding member for sintered hard alloy and sintered steel
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
JP4039725B2 (en) Bonding material of cemented carbide and steel and manufacturing method thereof
JP3764807B2 (en) COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL
JP4754372B2 (en) Manufacturing method of dissimilar material joined body
CN111822717A (en) Powder high-speed steel-spring steel composite sheet and manufacturing method thereof
JPS5935607A (en) Production of bonded sintered hard alloy member
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
CN114669902B (en) High-speed steel tool steel and tungsten steel efficient heating fusion method
WO2022095112A1 (en) Slider manufacturing method, slider and textile machine using same
JPS5938305A (en) Composite abrasion resistant member and its production
JPH11323409A (en) Composite member and its production
JPS63203705A (en) Composite sintered body of cubic boron nitride and cemented carbide