JP4754372B2 - Manufacturing method of dissimilar material joined body - Google Patents

Manufacturing method of dissimilar material joined body Download PDF

Info

Publication number
JP4754372B2
JP4754372B2 JP2006064081A JP2006064081A JP4754372B2 JP 4754372 B2 JP4754372 B2 JP 4754372B2 JP 2006064081 A JP2006064081 A JP 2006064081A JP 2006064081 A JP2006064081 A JP 2006064081A JP 4754372 B2 JP4754372 B2 JP 4754372B2
Authority
JP
Japan
Prior art keywords
temperature
metal material
test piece
press pressure
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006064081A
Other languages
Japanese (ja)
Other versions
JP2007237248A (en
Inventor
博紀 高橋
好正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006064081A priority Critical patent/JP4754372B2/en
Publication of JP2007237248A publication Critical patent/JP2007237248A/en
Application granted granted Critical
Publication of JP4754372B2 publication Critical patent/JP4754372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、異なる金属材料からなる板状部材どうしを、反り量を制御しつつ接合することが可能な異種金属材料接合体の製造方法に関する。   The present invention relates to a method for manufacturing a dissimilar metal material joined body capable of joining plate members made of different metal materials while controlling the amount of warpage.

耐摩耗性が要求される機械部品、例えば、タペット等には、超硬合金やセラミック等の耐摩耗性の高い材料が用いられている。また、押出成形等に用いられる口金(ダイ)のように、その一部分にのみ特に優れた耐摩耗性が求められる部材については、例えば、異なる材料の二つの板状部材を積層して接合した接合体が用いられている(例えば、特許文献1,2参照)。   High mechanical wear materials such as cemented carbide and ceramic are used for mechanical parts that require wear resistance, such as tappets. In addition, for a member that requires particularly excellent wear resistance at only a part thereof, such as a die (die) used for extrusion molding, etc., for example, joining by laminating and joining two plate members of different materials A body is used (for example, see Patent Documents 1 and 2).

特許文献1には、アルミニウム、又はアルミニウムを主成分とする金属からなるアルミニウム金属部材と、このアルミニウム金属部材と異なる材料からなる異種部材とを接合したアルミニウム金属接合体において、アルミニウム金属部材と異種部材との接合界面に、Hv硬さ20〜80(マイクロビッカース;荷重100gf)で、かつ、厚さ0.1〜3mmの軟質金属層を備えたアルミニウム金属接合体が開示されている。   Patent Document 1 discloses an aluminum metal joined body obtained by joining aluminum or an aluminum metal member made of a metal containing aluminum as a main component and a dissimilar member made of a material different from the aluminum metal member. An aluminum metal joined body having a soft metal layer having a Hv hardness of 20 to 80 (micro Vickers; load of 100 gf) and a thickness of 0.1 to 3 mm is disclosed.

また、特許文献2には、ろう材層を介して金属体とセラミック体とが接合された構造を有する金属−セラミック接合体において、金属体として、オーステナイト状態から所定の冷却速度にて冷却することにより硬化する性質を有する鋼材を使用するとともに、鋼材及びろう材として、所定の冷却速度で冷却した場合に、ろう材層の固相線温度と、鋼材の所定の変態開始温度とが特定の関係を満たすものをそれぞれ選択した金属−セラミック接合体が開示されている。   In Patent Document 2, in a metal-ceramic bonded body having a structure in which a metal body and a ceramic body are bonded via a brazing material layer, the metal body is cooled from an austenite state at a predetermined cooling rate. When steel materials having the property of being hardened by heat are used, and when the steel materials and brazing materials are cooled at a predetermined cooling rate, the solidus temperature of the brazing material layer and the predetermined transformation start temperature of the steel materials have a specific relationship Disclosed are metal-ceramic joints each selected to satisfy the above requirements.

このような異種金属材料接合体を製造する際には、例えば、異種金属材料からなる二つの板状部材を積層した後、積層した板状部材を、例えば押型によって挟持・加圧した状態で加熱することにより、積層した二つの板状部材を接合させる方法が用いられている。   When manufacturing such a dissimilar metal material joined body, for example, after laminating two plate members made of different metal materials, the laminated plate members are heated in a state of being sandwiched and pressed by, for example, a pressing die. Thus, a method of joining two laminated plate-like members is used.

しかしながら、このような製造方法によって得られた異種金属材料接合体は、それぞれの金属材料の熱膨張率の違いに起因する変形を生じ易いという問題があった。特に、板状部材を積層及び接合して得られた板状の接合体は、一方の板状部材の側に反りを生じ易い。また、生ずる反り量を的確に制御することはきわめて困難であり、異なる金属材料からなる板状部材どうしを、反り量を制御しつつ接合し、所望とする形状の異種材料接合体を製造する有効な方法は、これまでに見出されていないのが現状である。
特開平10−5992号公報 特開2002−179473号公報
However, the dissimilar metal material joined body obtained by such a manufacturing method has a problem that it is likely to be deformed due to a difference in thermal expansion coefficient of each metal material. In particular, a plate-like joined body obtained by laminating and joining plate-like members is likely to warp on the side of one plate-like member. In addition, it is extremely difficult to accurately control the amount of warpage generated, and it is effective to manufacture a dissimilar material joined body having a desired shape by joining plate members made of different metal materials while controlling the amount of warpage. No current method has been found so far.
JP-A-10-5992 JP 2002-179473 A

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、異なる金属材料からなる板状部材どうしを、反り量を簡便かつ任意に制御しつつ接合し、所望とする形状の異種材料接合体を製造する方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to easily and arbitrarily control the amount of warpage between plate members made of different metal materials. It is an object of the present invention to provide a method of joining and manufacturing a joined body of different materials having a desired shape.

本発明者らは上記課題を達成すべく鋭意検討した結果、(1)接合温度、()接合時に負荷したプレス圧力を開放する温度(プレス開放温度)、及び(3)接合時のプレス圧力と、得られる異種金属材料接合体に生ずる反り量との間にある相関関係を利用することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have (1) bonding temperature, ( 2 ) temperature at which the press pressure applied at the time of bonding is released (press opening temperature), and (3) press pressure at the time of bonding. And the present invention has been completed by finding that the above-mentioned problems can be achieved by utilizing a correlation between the amount of warpage and the amount of warpage generated in the obtained dissimilar metal material joined body.

即ち、本発明によれば、以下に示す異種材料接合体の製造方法が提供される。   That is, according to the present invention, the following method for producing a joined body of different materials is provided.

[1]オーステナイト相の冷却によって、マルテンサイト変態、ベイナイト変態、及びパーライト変態からなる群より選択される少なくとも一の相変態を生じ得る第一の金属材料からなる第一の板状部材と、その温度−熱収縮率曲線が、前記第一の金属材料の温度−熱収縮率曲線と交差し得る第二の金属材料からなる第二の板状部材を用意するとともに、下記(1)〜(3)の少なくともいずれかの操作を行うことを含み、前記第一の板状部材と前記第二の板状部材が積層及び接合された異種金属材料接合体を得る異種金属材料接合体の製造方法。   [1] a first plate member made of a first metal material capable of causing at least one phase transformation selected from the group consisting of martensitic transformation, bainite transformation, and pearlite transformation by cooling of the austenite phase; and While preparing the 2nd plate-shaped member which consists of a 2nd metal material in which a temperature-heat shrinkage rate curve may cross | intersect the temperature-heat shrinkage rate curve of said 1st metal material, following (1)-(3 And a dissimilar metal material joined body for obtaining a dissimilar metal material joined body in which the first plate member and the second plate member are laminated and joined.

(1):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、前記第一の金属材料がオーステナイト変態を生ずる温度以上の複数の試験接合温度(Tj、Tj〜)でそれぞれ接合して高温の複数の試験片接合体を得、得られた複数の前記試験片接合体を冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、前記試験接合温度(Tj、Tj〜)と前記反り量(C、C〜)の相関関係に基づき、接合温度(Tj)と、前記接合温度(Tj)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、前記第一の板状部材と前記第二の板状部材を、前記反り量(C)が生ずる前記接合温度(Tj)で接合する。 (1): A plurality of test piece laminates obtained by laminating a first test piece made of the first metal material and a second test piece made of the second metal material, the first metal material being While joining a plurality of test joint temperatures (Tj 1 , Tj 2 ˜) that are equal to or higher than the temperature at which austenite transformation occurs, a plurality of high-temperature test piece joints are obtained, and the obtained plurality of test piece joints are cooled. , warpage occurring at room temperature in each of the test pieces bonded bodies (C 1, C 2 ~) is measured, the test junction temperature (Tj 1, Tj 2 ~) and the amount of warpage (C 1, C 2 ~ ) To predict the amount of warpage (C) that occurs at room temperature in the dissimilar metal material joined body corresponding to the joining temperature (Tj) and the joining temperature (Tj), and the first plate-like member And the second plate-like member, the joining temperature at which the warpage (C) occurs Join at (Tj).

(2):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、所定のプレス圧力の条件下、前記第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合して高温の複数の試験片接合体を得、得られた複数の前記試験片接合体を、複数の試験プレス圧力開放温度(Tr、Tr〜)でプレス圧力を開放しつつ冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、前記試験プレス圧力開放温度(Tr、Tr〜)と前記反り量(C、C〜)の相関関係に基づき、プレス圧力開放温度(Tr)と、前記プレス圧力開放温度(Tr)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、前記第一の板状部材と前記第二の板状部材を前記第一の金属材料がオーステナイト変態を生ずる温度以上で接合した後、前記反り量(C)が生ずる前記プレス圧力開放温度(Tr)でプレス圧力を開放しつつ常温まで冷却する。 (2): A plurality of test piece laminates obtained by laminating a first test piece made of the first metal material and a second test piece made of the second metal material, under a predetermined press pressure condition. The first metal material is bonded at a bonding temperature equal to or higher than the temperature at which the austenite transformation occurs, to obtain a plurality of high-temperature test piece assemblies, and the plurality of test piece assemblies thus obtained are subjected to a plurality of test press pressures. While cooling while releasing the press pressure at the open temperature (Tr 1 , Tr 2 ˜), the amount of warpage (C 1 , C 2 ˜) generated in each test piece assembly at normal temperature was measured, and the test press Based on the correlation between the pressure release temperature (Tr 1 , Tr 2 ˜) and the warp amount (C 1 , C 2 ˜), the press pressure release temperature (Tr) and the press pressure release temperature (Tr) Occurs at room temperature in the dissimilar metal material joined body After predicting the warpage amount (C) and joining the first plate-like member and the second plate-like member at or above the temperature at which the first metal material undergoes austenite transformation , the warpage amount (C) is It cools to normal temperature , releasing press pressure at the said press pressure release temperature (Tr) which arises.

(3):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、前記第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合して高温の複数の試験片接合体を得、得られた複数の前記試験片接合体を、複数の試験プレス圧力(P、P〜)の条件下で冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、前記試験プレス圧力(P、P〜)と前記反り量(C、C〜)の相関関係に基づき、プレス圧力(P)と、前記プレス圧力(P)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、前記第一の板状部材と前記第二の板状部材を前記第一の金属材料がオーステナイト変態を生ずる温度以上で接合した後、前記反り量(C)が生ずる前記プレス圧力(P)の条件下で常温まで冷却する。 (3): A plurality of test piece laminates in which a first test piece made of the first metal material and a second test piece made of the second metal material are laminated, A plurality of high-temperature test piece assemblies are obtained by bonding at a bonding temperature equal to or higher than the temperature at which austenite transformation occurs, and the obtained plurality of test piece assemblies are subjected to a plurality of test press pressures (P 1 , P 2- ). The amount of warpage (C 1 , C 2- ) generated at room temperature in each of the test piece assemblies was measured, and the test press pressure (P 1 , P 2- ) and the amount of warpage were measured. Based on the correlation of (C 1 , C 2- ), predict the press pressure (P) and the amount of warpage (C) that occurs at room temperature in the dissimilar metal material joined body corresponding to the press pressure (P), The first metal material is used for the first plate member and the second plate member. -After joining at a temperature above the temperature at which the austenite transformation occurs , it is cooled to room temperature under the conditions of the press pressure (P) at which the warpage (C) occurs.

[2]前記第一の金属材料が、鉄系合金、鋼又はステンレスから選択されるものである前記[1]に記載の異種金属材料接合体。 [2] The dissimilar metal material joined body according to [1], wherein the first metal material is selected from an iron-based alloy, steel, and stainless steel .

[3]前記第二の金属材料が、炭化タングステン基超硬合金である前記[1]又は[2]に記載の異種金属材料接合体の製造方法。   [3] The method for producing a dissimilar metal material joined body according to [1] or [2], wherein the second metal material is a tungsten carbide base cemented carbide.

[4]前記炭化タングステン基超硬合金が、炭化タングステンを、鉄、コバルト、ニッケル、チタン、及びクロムからなる群より選択される少なくとも一種の金属で焼結した合金である前記[3]に記載の異種金属材料接合体の製造方法。   [4] The tungsten carbide based cemented carbide is the alloy obtained by sintering tungsten carbide with at least one metal selected from the group consisting of iron, cobalt, nickel, titanium, and chromium. Manufacturing method for different types of metal material.

[5]前記第一の板状部材と前記第二の板状部材の間に、ろう材を配設する前記[1]〜[4]のいずれかに記載の異種金属材料接合体の製造方法。   [5] The method for producing a dissimilar metal material joined body according to any one of [1] to [4], wherein a brazing material is disposed between the first plate-like member and the second plate-like member. .

[6]前記ろう材が、銅、銀、金、ニッケル、及びアルミニウムからなる群より選択される少なくとも一種の金属を含むものである前記[5]に記載の異種金属材料接合体の製造方法。   [6] The method for producing a dissimilar metal material joined body according to [5], wherein the brazing material includes at least one metal selected from the group consisting of copper, silver, gold, nickel, and aluminum.

本発明の異種金属材料接合体の製造方法によれば、異なる金属材料からなる板状部材どうしを、反り量を簡便かつ任意に制御しつつ接合し、所望とする形状の異種金属材料接合体を製造することができる。   According to the method for producing a dissimilar metal material joined body of the present invention, plate-like members made of different metal materials are joined together while simply and arbitrarily controlling the amount of warpage, and a dissimilar metal material joined body having a desired shape is obtained. Can be manufactured.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明の異種金属材料接合体の製造方法では、先ず、第一の板状部材と第二の板状部材を用意する。第一の板状部材は、オーステナイト相の冷却によって、マルテンサイト変態、ベイナイト変態、及びパーライト変態からなる群より選択される少なくとも一の相変態を生じ得る第一の金属材料からなる部材である。   In the method for producing a dissimilar metal material joined body of the present invention, first, a first plate member and a second plate member are prepared. The first plate member is a member made of a first metal material capable of causing at least one phase transformation selected from the group consisting of martensite transformation, bainite transformation, and pearlite transformation by cooling of the austenite phase.

第一の金属材料の具体例としては、鉄系合金、鋼又はステンレスから選択されるものを挙げることができ、なかでもステンレスが好適である。より具体的には、SUS630(C;0.07質量%以下、Si;1.00質量%以下、Mn1.00質量%以下、P;0.040質量%以下、S;0.030質量%以下、Ni;3.00〜5.00質量%、Cr;15.50〜17.50質量%、Cu;3.00〜5.00質量%、Nb+Ta;0.15〜0.45質量%、及びFe;残部)を好適例として挙げることができる。これらの金属及び合金は、機械加工が比較的に容易であるとともに安価であり、第一の板状部材を構成する金属材料として好適である。更に、第一の金属材料は、炭素(C)、クロム(Cr)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、タングステン(W)、コバルト(Co)、アルミニウム(Al)、ケイ素(Si)、モリブデン(Mo)、白金(Pt)、パラジウム(Pd)等の添加剤を含有していることが好ましい。 Specific examples of the first metal material include those selected from iron-based alloys, steel, and stainless steel . Among these, stainless steel is preferable. More specifically, SUS630 (C; 0.07 mass% or less, Si; 1.00 mass% or less, Mn 1.00 mass% or less, P; 0.040 mass% or less, S; 0.030 mass% or less , Ni; 3.00 to 5.00% by mass, Cr; 15.50 to 17.50% by mass, Cu; 3.00 to 5.00% by mass, Nb + Ta; 0.15 to 0.45% by mass, and Fe; balance) can be cited as a preferred example. These metals and alloys are relatively easy to machine and inexpensive, and are suitable as metal materials constituting the first plate member. Further, the first metal material is carbon (C), chromium (Cr), nickel (Ni), copper (Cu), molybdenum (Mo), tungsten (W), cobalt (Co), aluminum (Al), silicon It is preferable to contain additives such as (Si), molybdenum (Mo), platinum (Pt), and palladium (Pd).

第一の板状部材と接合される第二の板状部材は、その温度−熱収縮率曲線が、第一の金属材料の温度−熱収縮率曲線と交差し得る第二の金属材料からなる部材である。図1は、SUS630及び炭化タングステン基超硬合金の、温度に対して熱収縮率をプロットした温度−熱収縮率曲線である。図1に示すように、第一の金属材料の代表例であるSUS630の温度−熱収縮率曲線と、第二の金属材料の代表例である炭化タングステン基超硬合金の温度−熱収縮率曲線は、冷却開始温度にも左右されるが、所定の温度で交差し得るものである。このように、本実施形態の異種金属材料接合体の製造方法では、それぞれの温度−熱収縮率曲線が交差し得る金属材料からなる板状部材どうしを接合することが必須である。また、通常は、接合を行う温度(接合が完了する温度)を冷却開始温度とし、この温度における両金属材料の熱収縮率を「0(%)」とした場合に、それぞれの温度−熱収縮率曲線が交差することとなる。なお、第一の金属材料の場合と異なり、第二の金属材料は、相変態を生じ得るものであっても、生じ得ないものであってもよい。   The second plate member joined to the first plate member is made of a second metal material whose temperature-heat shrinkage curve can intersect with the temperature-heat shrinkage curve of the first metal material. It is a member. FIG. 1 is a temperature-heat shrinkage curve in which heat shrinkage ratio is plotted against temperature for SUS630 and tungsten carbide base cemented carbide. As shown in FIG. 1, a temperature-heat shrinkage curve of SUS630, which is a representative example of the first metal material, and a temperature-heat shrinkage curve of a tungsten carbide-based cemented carbide, which is a typical example of the second metal material. Although it depends on the cooling start temperature, it can cross at a predetermined temperature. Thus, in the manufacturing method of the dissimilar metal material joined body of this embodiment, it is indispensable to join the plate-like members made of metal materials that can intersect the respective temperature-heat shrinkage rate curves. Normally, when the temperature at which bonding is performed (temperature at which bonding is completed) is the cooling start temperature, and the heat shrinkage rate of both metal materials at this temperature is “0 (%)”, the respective temperature-heat shrinkage. The rate curves will intersect. Unlike the case of the first metal material, the second metal material may or may not cause a phase transformation.

第二の金属材料の具体例としては、炭化タングステン基超硬合金を挙げることができる。また、この炭化タングステン基超硬合金は、炭化タングステンを、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、及びクロム(Cr)からなる群より選択される少なくとも一種の金属で焼結した合金であることが、耐摩耗性や機械的強度に特に優れているために好ましい。炭化タングステン基超硬合金の具体例としては、Coを結合材として使用した超硬合金、WC−0.1〜50質量%Co等を挙げることができる。   Specific examples of the second metal material include a tungsten carbide base cemented carbide. Further, the tungsten carbide-based cemented carbide includes at least one tungsten carbide selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), titanium (Ti), and chromium (Cr). An alloy sintered with a metal is preferable because it is particularly excellent in wear resistance and mechanical strength. Specific examples of the tungsten carbide-based cemented carbide include cemented carbide using Co as a binder, WC-0.1 to 50% by mass Co, and the like.

本実施形態の異種金属材料接合体の製造方法では、以下に示す(1)〜(3)の少なくともいずれかの操作(操作(1)、操作(2)、操作(3))を行う。以下、それぞれの操作について具体的に説明する。   In the manufacturing method of the dissimilar metal material joined body of this embodiment, at least one of the following operations (1) to (3) (operation (1), operation (2), operation (3)) is performed. Each operation will be specifically described below.

(操作(1))
図2は、操作(1)の手順を説明する模式図である。操作(1)では、先ず、第一の金属材料からなる第一の試験片1と、第二の金属材料からなる第二の試験片2を積層することによって、試験片積層体3を用意する(図2(a))。第一の試験片1及び第二の試験片2の形状・寸法は特に限定されない。但し、製造しようとする異種金属材料接合体を構成する第一及び第二の板状部材と同一の形状・寸法であるもの、又はこれに準ずる形状・寸法であるものを用いることが好ましい。
(Operation (1))
FIG. 2 is a schematic diagram illustrating the procedure of the operation (1). In operation (1), first, a test piece laminate 3 is prepared by laminating a first test piece 1 made of a first metal material and a second test piece 2 made of a second metal material. (FIG. 2 (a)). The shape and dimensions of the first test piece 1 and the second test piece 2 are not particularly limited. However, it is preferable to use one having the same shape and size as the first and second plate-like members constituting the dissimilar metal material joined body to be manufactured, or a shape and size equivalent thereto.

用意した試験片積層体3を、第一の金属材料がオーステナイト変態を生ずる温度以上の複数の試験接合温度(Tj、Tj〜)でそれぞれ接合し、高温の複数の試験片接合体10を得る(図2(a))。接合する方法は特に限定されないが、拡散接合、ろう材を使用するろう付け接合等によって接合することができる。なお、試験接合温度(Tj、Tj〜)は、使用するそれぞれの試験片の材質や、ろう材を使用する場合にはろう材の種類によって、所望とする温度に設定することができる。 The prepared specimen laminate 3 is joined at a plurality of test joining temperatures (Tj 1 , Tj 2 ˜) higher than the temperature at which the first metal material undergoes austenite transformation, and a plurality of high-temperature specimen specimen assemblies 10 are joined. Is obtained (FIG. 2 (a)). The joining method is not particularly limited, but the joining can be performed by diffusion joining, brazing joining using a brazing material, or the like. Note that the test joining temperatures (Tj 1 , Tj 2 ˜) can be set to desired temperatures depending on the material of each test piece to be used and the type of brazing material when brazing material is used.

得られた複数の試験片接合体10を冷却するとともに(図2(b)〜(d))、それぞれの試験片接合体10に常温で生じた反り量(C、C〜)を測定する(図2(e))。なお、図2(e)においては、便宜上、試験片接合体10に反りが生じていない状態(反り量=0)を示しているが、通常は、それぞれの試験接合温度(Tj、Tj〜)に応じた反りが生ずる(図2(c)を参照)。また、図2(c)では第二の試験片2の側に凸となった反りの状態を示しているが、条件によっては第一の試験片1の側に凸(即ち、第二の試験片2の側に凹)となる場合もある。本明細書においては、便宜上、第二の試験片2の側に凹となった場合には、マイナスの反り量が生じたものとする。 To cool a plurality of test strips joined body 10 obtained (FIG. 2 (b) ~ (d) ), measured in each of the test piece assemblies 10 weight warpage caused by normal temperature (C 1, C 2 ~) (FIG. 2 (e)). In FIG. 2 (e), for the sake of convenience, a state in which the test piece assembly 10 is not warped (warp amount = 0) is shown. Usually, each test joint temperature (Tj 1 , Tj 2 ) is shown. Warp in accordance with (-) occurs (see FIG. 2C). Further, FIG. 2C shows a warped state that is convex toward the second test piece 2, but depending on conditions, it is convex toward the first test piece 1 (that is, the second test piece 2). It may be concave on the side of the piece 2. In this specification, for the sake of convenience, it is assumed that a negative amount of warpage occurs when the second test piece 2 is concave.

試験接合温度(Tj、Tj〜)と、測定した反り量(C、C〜)の相関関係に基づき、接合温度(Tj)と、これに対応して異種金属材料接合体に常温で生ずる反り量(C)を予測する。図3は、試験接合温度と反り量の相関関係を示すグラフである。試験接合温度(Tj、Tj〜)と反り量(C、C〜)の相関関係は、例えば図3に示すような関数で表される。具体的には、試験接合温度Tj=820℃で接合を行った場合における反り量Cは、約−40μmである。一方、試験接合温度Tj=1120℃で接合を行った場合における反り量Cは、約80μmである。従って、接合温度Tjを920℃に設定した状態で第一の板状部材と第二の板状部材を接合すれば、反りのない(反り量C=0)異種金属材料接合体を製造可能であると予測することができる。 Based on the correlation between the test junction temperature (Tj 1 , Tj 2 ˜) and the measured warpage amounts (C 1 , C 2 ˜), the junction temperature (Tj) and the dissimilar metal material joined body corresponding to this The amount of warpage (C) generated in step (b) is predicted. FIG. 3 is a graph showing the correlation between the test bonding temperature and the warpage amount. The correlation between the test junction temperature (Tj 1 , Tj 2 ˜) and the amount of warpage (C 1 , C 2 ˜) is expressed by a function as shown in FIG. 3, for example. Specifically, the warpage amount C 1 when bonding is performed at the test bonding temperature Tj 1 = 820 ° C. is about −40 μm. On the other hand, the warpage amount C 2 when bonding is performed at the test bonding temperature Tj 2 = 1120 ° C. is about 80 μm. Accordingly, if the first plate member and the second plate member are bonded in a state where the bonding temperature Tj is set to 920 ° C., it is possible to manufacture a dissimilar metal material bonded body having no warpage (warpage amount C = 0). Can be predicted.

試験接合温度Tjで接合を行って得られた試験接合体10に生じた反り量Cが、負の値である(即ち、第二の試験片2の側に凹となった)場合には、次に、この試験接合温度Tjよりも大幅に(例えば、100℃以上)高い試験接合温度Tjで接合を行えばよい。一方、試験接合温度Tjで接合を行って得られた試験接合体10に生じた反り量Cが、正の値である(即ち、第二の試験片2の側に凸となった)場合には、次に、この試験接合温度Tjよりも大幅に(例えば、100℃以上)低い試験接合温度Tjで接合を行えばよい。 When the amount of warpage C 1 generated in the test bonded body 10 obtained by bonding at the test bonding temperature Tj 1 is a negative value (that is, concave on the second test piece 2 side). Next, bonding may be performed at a test junction temperature Tj 2 that is significantly higher (for example, 100 ° C. or higher) than the test junction temperature Tj 1 . On the other hand, the amount of warpage C 1 generated in the test joined body 10 obtained by joining at the test joining temperature Tj 1 is a positive value (that is, convex toward the second test piece 2 side). case, then, significantly than the test junction temperature Tj 1 may be performed junction (e.g., 100 ° C. or higher) low test junction temperature Tj 2.

また、試験接合温度(Tj、Tj〜)は、多数設定すれば、試験接合温度(Tj、Tj〜)と反り量(C、C〜)の相関関係を、より正確に把握することが可能となるために好ましい。但し、この相関関係を把握するには、少なくとも二つの試験接合温度(Tj及びTj)を設定することが必要であり、3つ以上の試験接合温度を設定することが好ましい。 Further, if a large number of test junction temperatures (Tj 1 , Tj 2 ˜) are set, the correlation between the test junction temperature (Tj 1 , Tj 2 ˜) and the warpage amount (C 1 , C 2 ˜) can be more accurately determined. This is preferable because it can be grasped. However, in order to grasp this correlation, it is necessary to set at least two test junction temperatures (Tj 1 and Tj 2 ), and it is preferable to set three or more test junction temperatures.

次に、第一の板状部材と第二の板状部材を、予測した反り量(C)が生ずる接合温度(Tj)で接合する。上述の一連の操作により、試験接合温度(Tj、Tj〜)と反り量(C、C〜)の相関関係を把握しているため、例えば反りのない平坦な異種金属材料接合体を製造可能であるとともに、所望とする量の反りが生じた異種金属材料接合体をも製造することができる。 Next, the first plate-like member and the second plate-like member are joined at the joining temperature (Tj) at which the predicted warpage amount (C) occurs. Since the correlation between the test bonding temperature (Tj 1 , Tj 2 ˜) and the warping amount (C 1 , C 2 ˜) is grasped by the above-described series of operations, for example, a flat dissimilar metal material joined body without warping Can be manufactured, and a dissimilar metal material joined body having a desired amount of warpage can also be manufactured.

(操作(2))
図4は、操作(2)の手順を説明する模式図である。操作(2)では、先ず、第一の金属材料からなる第一の試験片11と、第二の金属材料からなる第二の試験片12を積層することによって、試験片積層体13を用意する(図4(a))。第一の試験片11及び第二の試験片12の形状・寸法は特に限定されない。但し、製造しようとする異種金属材料接合体を構成する第一及び第二の板状部材と同一の形状・寸法であるもの、又はこれに準ずる形状・寸法であるものを用いることが好ましい。
(Operation (2))
FIG. 4 is a schematic diagram for explaining the procedure of the operation (2). In operation (2), first, a test piece laminate 13 is prepared by laminating a first test piece 11 made of a first metal material and a second test piece 12 made of a second metal material. (FIG. 4A). The shape and dimensions of the first test piece 11 and the second test piece 12 are not particularly limited. However, it is preferable to use one having the same shape and size as the first and second plate-like members constituting the dissimilar metal material joined body to be manufactured, or a shape and size equivalent thereto.

用意した試験片積層体13を、所定のプレス圧力Pの条件下、第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合し、高温の複数の試験片接合体20を得る(図4(a))。なお、プレス圧力Pは、それぞれの試験片の形状・寸法等にもよるが、通常、0.1〜100MPa程度である。接合する方法は特に限定されないが、拡散接合、ろう材を使用するろう付け接合等によって接合することができる。   The prepared test piece laminate 13 is bonded at a bonding temperature equal to or higher than the temperature at which the first metal material undergoes austenite transformation under the condition of a predetermined press pressure P, thereby obtaining a plurality of high-temperature test piece assemblies 20 ( FIG. 4 (a)). The press pressure P is usually about 0.1 to 100 MPa, although it depends on the shape and dimensions of each test piece. The joining method is not particularly limited, but the joining can be performed by diffusion joining, brazing joining using a brazing material, or the like.

得られた複数の試験片接合体20を、複数の試験プレス圧力開放温度(Tr、Tr〜)でプレス圧力を開放(図4(b))しつつ冷却する(図4(c)〜(f))。なお、図4(f)においては、便宜上、試験片接合体20に反りが生じていない状態(反り量=0)を示しているが、通常は、それぞれの試験プレス圧力開放温度(Tr、Tr〜)に応じた反りが生ずる(図4(d)を参照)。ここで、本明細書にいう「プレス圧力開放」とは、接合時に負荷していたプレス圧力を開放し、圧力値を0にすることをいう。 The obtained plurality of test piece assemblies 20 are cooled while releasing the press pressure (FIG. 4B) at a plurality of test press pressure release temperatures (Tr 1 , Tr 2 ˜) (FIG. 4C˜). (F)). In FIG. 4 (f), for the sake of convenience, a state in which the test piece assembly 20 is not warped is shown (warp amount = 0). Usually, each test press pressure release temperature (Tr 1 , Warpage according to Tr 2 to) occurs (see FIG. 4D). Here, “pressing pressure release” in the present specification means releasing the pressing pressure applied at the time of joining and setting the pressure value to zero.

常温まで冷却した後、それぞれの試験片接合体20に常温で生じた反り量(C、C〜)を測定する(図4(f))。次いで、試験プレス圧力開放温度(Tr、Tr〜)と、測定した反り量(C、C〜)の相関関係に基づき、プレス圧力開放温度(Tr)と、これに対応して異種金属材料接合体に常温で生ずる反り量(C)を予測する。図5は、試験プレス圧力開放温度と反り量の相関関係を示すグラフである。試験プレス圧力開放温度(Tr、Tr〜)と反り量(C、C〜)の相関関係は、例えば図5に示すような一次関数で表される。具体的には、試験プレス圧力開放温度Tr=150℃でプレス圧力を開放した場合における反り量Cは、約−150μmである。一方、試験プレス圧力開放温度Tr=200℃でプレス圧力を開放した場合における反り量Cは、約220μmである。従って、プレス圧力開放温度Tr=170℃でプレス圧力を開放すれば、反りのない(反り量C=0)異種金属材料接合体を製造可能であると予測することができる。 After cooling to room temperature, the amount of warpage (C 1 , C 2 ˜) generated at each room temperature of each test piece assembly 20 is measured (FIG. 4 (f)). Next, based on the correlation between the test press pressure release temperature (Tr 1 , Tr 2 ˜) and the measured warpage amounts (C 1 , C 2 ˜), the press pressure release temperature (Tr) and the corresponding dissimilarity Predict the amount of warpage (C) that occurs in the metal material joined body at room temperature. FIG. 5 is a graph showing the correlation between the test press pressure release temperature and the amount of warpage. The correlation between the test press pressure release temperature (Tr 1 , Tr 2 ˜) and the warpage amount (C 1 , C 2 ˜) is expressed by a linear function as shown in FIG. 5, for example. Specifically, the warping amount C 1 when the press pressure is released at the test press pressure release temperature Tr 1 = 150 ° C. is about −150 μm. On the other hand, when the press pressure is released at the test press pressure release temperature Tr 2 = 200 ° C., the warpage amount C 2 is about 220 μm. Therefore, if the press pressure is released at the press pressure release temperature Tr = 170 ° C., it can be predicted that a dissimilar metal material joined body having no warpage (warpage amount C = 0) can be produced.

試験プレス圧力開放温度Trでプレス圧力を開放して得られた試験接合体20に生じた反り量Cが、負の値である(即ち、第二の試験片12の側に凹となった)場合には、次に、この試験プレス圧力開放温度Trよりも大幅に(例えば、100℃以上)高い試験プレス圧力開放温度Trでプレス圧力を開放すればよい。一方、試験プレス圧力開放温度Trでプレス圧力を開放して得られた試験接合体20に生じた反り量Cが、正の値である(即ち、第二の試験片12の側に凸となった)場合には、次に、この試験プレス圧力開放温度Trよりも大幅に(例えば、100℃以上)低い試験プレス圧力開放温度Trでプレス圧力を開放すればよい。 The warpage amount C 1 generated in the test bonded body 20 obtained by releasing the press pressure at the test press pressure release temperature Tr 1 is a negative value (that is, a concave is formed on the second test piece 12 side). In this case, the press pressure may be released at a test press pressure release temperature Tr 2 that is significantly higher (for example, 100 ° C. or higher) than the test press pressure release temperature Tr 1 . On the other hand, the warpage amount C 1 generated in the test bonded body 20 obtained by releasing the press pressure at the test press pressure release temperature Tr 1 is a positive value (that is, convex toward the second test piece 12 side). Then, the press pressure may be released at a test press pressure release temperature Tr 2 that is significantly lower (for example, 100 ° C. or more) than the test press pressure release temperature Tr 1 .

また、試験プレス圧力開放温度(Tr、Tr〜)は、多数設定すれば、試験プレス圧力開放温度(Tr、Tr〜)と反り量(C、C〜)の相関関係を、より正確に把握することが可能となるために好ましい。但し、この相関関係を把握するには、少なくとも二つの試験プレス圧力開放温度(Tj及びTj)を設定することが必要であり、三つ以上の試験プレス圧力開放温度を設定することが好ましい。 Further, if a large number of test press pressure release temperatures (Tr 1 , Tr 2 ˜) are set, the correlation between the test press pressure release temperature (Tr 1 , Tr 2 ˜) and the warpage amount (C 1 , C 2 ˜) is obtained. It is preferable because it becomes possible to grasp more accurately. However, in order to grasp this correlation, it is necessary to set at least two test press pressure release temperatures (Tj 1 and Tj 2 ), and it is preferable to set three or more test press pressure release temperatures. .

次に、第一の板状部材と第二の板状部材を高温で接合した後、予測した反り量(C)が生ずるプレス圧力開放温度(Tr)でプレス圧力を開放しつつ冷却する。上述の一連の操作により、試験プレス圧力開放温度(Tr、Tr〜)と反り量(C、C〜)の相関関係を把握しているため、例えば反りのない平坦な異種金属材料接合体を製造可能であるとともに、所望とする量の反りが生じた異種金属材料接合体をも製造することができる。 Next, after joining the first plate-like member and the second plate-like member at a high temperature, cooling is performed while releasing the press pressure at the press pressure release temperature (Tr) at which the predicted warpage amount (C) occurs. Since the correlation between the test press pressure release temperature (Tr 1 , Tr 2 ˜) and the warpage amount (C 1 , C 2 ˜) is grasped by the series of operations described above, for example, a flat dissimilar metal material without warpage A joined body can be produced, and a joined body of dissimilar metal materials having a desired amount of warpage can be produced.

(操作(3))
図6は、操作(3)の手順を説明する模式図である。操作(3)では、先ず、第一の金属材料からなる第一の試験片21と、第二の金属材料からなる第二の試験片22を積層することによって、試験片積層体23を用意する(図6(a))。第一の試験片21及び第二の試験片22の形状・寸法は特に限定されない。但し、製造しようとする異種金属材料接合体を構成する第一及び第二の板状部材と同一の形状・寸法であるもの、又はこれに準ずる形状・寸法であるものを用いることが好ましい。
(Operation (3))
FIG. 6 is a schematic diagram for explaining the procedure of the operation (3). In operation (3), first, a test piece laminate 23 is prepared by laminating a first test piece 21 made of a first metal material and a second test piece 22 made of a second metal material. (FIG. 6A). The shape and dimensions of the first test piece 21 and the second test piece 22 are not particularly limited. However, it is preferable to use one having the same shape and size as the first and second plate-like members constituting the dissimilar metal material joined body to be manufactured, or a shape and size equivalent thereto.

用意した試験片積層体23を、例えば所定のプレス圧力Pの条件下、第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合し、高温の複数の試験片接合体30を得る(図6(a))。なお、プレス圧力Pは、それぞれの試験片の形状・寸法等にもよるが、通常、0.01〜100MPa程度である。接合する方法は特に限定されないが、拡散接合、ろう材を使用するろう付け接合等によって接合することができる。   The prepared specimen laminate 23 is joined at a joining temperature equal to or higher than the temperature at which the first metal material undergoes austenite transformation, for example, under the condition of a predetermined pressing pressure P, thereby obtaining a plurality of high-temperature specimen specimen assemblies 30. (FIG. 6A). The press pressure P is usually about 0.01 to 100 MPa, although it depends on the shape and size of each test piece. The joining method is not particularly limited, but the joining can be performed by diffusion joining, brazing joining using a brazing material, or the like.

得られた複数の試験片接合体30を、複数の試験プレス圧力(P、P〜)の条件下で冷却する(図6(b)〜(e))。なお、図6(e)においては、便宜上、試験片接合体30に反りが生じていない状態(反り量=0)を示しているが、通常は、それぞれの試験プレス圧力(P、P〜)に応じた反りが生ずる(図6(c)を参照)。 The obtained plurality of test piece assemblies 30 are cooled under conditions of a plurality of test press pressures (P 1 , P 2 ˜) (FIGS. 6B to 6E). In FIG. 6 (e), for the sake of convenience, a state in which the test piece assembly 30 is not warped (warp amount = 0) is shown. Usually, each test press pressure (P 1 , P 2 ) is shown. To warp occurs (see FIG. 6C).

常温まで冷却した後、それぞれの試験片接合体30に常温で生じた反り量(C、C〜)を測定する(図6(e))。次いで、試験プレス圧力(P、P〜)と反り量(C、C〜)の相関関係に基づき、プレス圧力(P)と、これに対応して異種金属材料接合体に常温で生ずる反り量(C)を予測する。図7は、試験プレス圧力と反り量の相関関係を示すグラフである。試験プレス圧力(P、P〜)と反り量(C、C〜)の相関関係は、例えば図7に示すような一次関数で表される。具体的には、試験プレス圧力P=0MPaとした場合(即ち、プレスしない場合)における反り量Cは、約80μmである。一方、試験プレス圧力P=11MPaとした場合における反り量Cは、約−40μmである。従って、プレス圧力P=7.3MPaとすれば、反りのない(反り量C=0)異種金属材料接合体を製造可能であると予測することができる。 After cooling to room temperature, the amount of warpage (C 1 , C 2 to) generated at each room temperature of each test piece assembly 30 is measured (FIG. 6E). Next, based on the correlation between the test press pressure (P 1 , P 2 ˜) and the warping amount (C 1 , C 2 ˜), the press pressure (P) and the corresponding dissimilar metal material joined body at normal temperature The amount of warpage (C) that occurs is predicted. FIG. 7 is a graph showing the correlation between the test press pressure and the amount of warpage. The correlation between the test press pressure (P 1 , P 2 ˜) and the warpage amount (C 1 , C 2 ˜) is expressed by a linear function as shown in FIG. 7, for example. Specifically, the warpage amount C 1 when the test press pressure P 1 is set to 0 MPa (that is, when not pressed) is about 80 μm. On the other hand, the warpage amount C 2 when the test press pressure P 2 is set to 11 MPa is about −40 μm. Therefore, if the press pressure P = 7.3 MPa, it can be predicted that a dissimilar metal material joined body having no warpage (warpage amount C = 0) can be produced.

試験プレス圧力Pとして得られた試験接合体30に生じた反り量Cが、正の値である(即ち、第二の試験片22の側に凸となった)場合には、次に、この試験プレス圧力Pよりも大幅に(例えば、10MPa以上)高い試験プレス圧力Pとすればよい。一方、試験プレス圧力Pとして得られた試験接合体30に生じた反り量Cが、負の値である(即ち、第二の試験片22の側に凹となった)場合には、次に、この試験プレス圧力Pよりも大幅に(例えば、10MPa以上)低い試験プレス圧力Pとすればよい。 When the warp amount C 1 generated in the test bonded body 30 obtained as the test press pressure P 1 is a positive value (that is, convex toward the second test piece 22), , significantly than the test pressing pressure P 1 (e.g., more than 10 MPa) may be higher test press pressure P 2. On the other hand, when the amount of warpage C 1 generated in the test bonded body 30 obtained as the test press pressure P 1 is a negative value (that is, concave on the second test piece 22 side), Next, the test press pressure P 2 is significantly lower (for example, 10 MPa or more) than the test press pressure P 1 .

また、試験プレス圧力(P、P〜)は、多数設定すれば、試験プレス圧力(P、P〜)と反り量(C、C〜)の相関関係を、より正確に把握することが可能となるために好ましい。但し、この相関関係を把握するには、少なくとも二つの試験プレス圧力(P及びP)を設定することが必要であり、3つ以上の試験プレス圧力を設定することが好ましい。 In addition, if a large number of test press pressures (P 1 , P 2 ˜) are set, the correlation between the test press pressure (P 1 , P 2 ˜) and the warpage amount (C 1 , C 2 ˜) can be more accurately determined. This is preferable because it can be grasped. However, in order to grasp this correlation, it is necessary to set at least two test press pressures (P 1 and P 2 ), and it is preferable to set three or more test press pressures.

次に、第一の板状部材と第二の板状部材を高温で接合した後、予測した反り量(C)が生ずるプレス圧力(P)の条件下で冷却する。上述の一連の操作により、試験プレス圧力(P、P〜)と反り量(C、C〜)の相関関係を把握しているため、例えば反りのない平坦な異種金属材料接合体を製造可能であるとともに、所望とする量の反りが生じた異種金属材料接合体をも製造することができる。 Next, after joining the first plate-shaped member and the second plate-shaped member at a high temperature, the first plate-shaped member and the second plate-shaped member are cooled under the condition of the press pressure (P) at which the predicted warpage amount (C) is generated. Since the correlation between the test press pressure (P 1 , P 2 ˜) and the warping amount (C 1 , C 2 ˜) is grasped by the above-described series of operations, for example, a flat dissimilar metal material joined body without warping Can be manufactured, and a dissimilar metal material joined body having a desired amount of warpage can also be manufactured.

本実施形態の異種金属材料接合体の製造方法では、上述の操作(1)〜(3)の少なくともいずれかを行えばよいが、より厳密な反り量の制御を行うとともに、この制御を容易かつ簡便にするために、操作(1)〜(3)のうちの二以上の操作を組み合せて行うことが好ましく、全ての操作を組み合せて行うことも好ましい。   In the manufacturing method of the dissimilar metal material joined body according to the present embodiment, at least one of the operations (1) to (3) described above may be performed. For simplicity, it is preferable to combine two or more of the operations (1) to (3), and it is also preferable to combine all the operations.

また、本実施形態の異種金属材料接合体の製造方法においては、第一の板状部材と第二の板状部材の間にろう材を配設し、第一の板状部材と第二の板状部材を接合することが好ましい。ろう材を配設して接合することにより、第一の板状部材と第二の板状部材の接合が容易になる。但し、製造した異種金属材料接合体に層状のろう材が残っていると、機械的強度が低下することがある。従って、なるべく薄い(例えば、箔状の)ろう材を使用することが好ましい。また、第一の板状部材と第二の板状部材の少なくとも一方の組織の内部に浸透する材料をろう材として用いることが好ましい。具体的には、銅(Cu)、銀(Ag)、金(Au)、ニッケル(Ni)、及びアルミニウム(Al)からなる群より選択される少なくとも一種の金属を含むろう材を用いることが好ましい。特に、銅(Cu)を含有するろう材は、第一の板状部材の好適例として挙げたステンレス等の合金に対する浸透性が高く、良好に用いることができる。また、ろう材が合金である場合においては、このろう材には、パラジウム(Pd)、ケイ素(Si)、スズ(Sn)、コバルト(Co)、リン(P)、マンガン(Mn)、亜鉛(Zn)、ホウ素(B)等の添加剤が更に含まれていることが好ましい。   Moreover, in the manufacturing method of the dissimilar metal material joined body of this embodiment, a brazing material is disposed between the first plate member and the second plate member, and the first plate member and the second plate member are arranged. It is preferable to join plate members. By disposing and joining the brazing material, the first plate member and the second plate member can be easily joined. However, if a layered brazing material remains in the manufactured dissimilar metal material joined body, the mechanical strength may decrease. Therefore, it is preferable to use a brazing material that is as thin as possible (for example, a foil). Moreover, it is preferable to use as the brazing material a material that penetrates into the structure of at least one of the first plate member and the second plate member. Specifically, it is preferable to use a brazing material containing at least one metal selected from the group consisting of copper (Cu), silver (Ag), gold (Au), nickel (Ni), and aluminum (Al). . In particular, a brazing material containing copper (Cu) has high permeability to alloys such as stainless steel, which are cited as preferred examples of the first plate-like member, and can be used favorably. In the case where the brazing material is an alloy, this brazing material includes palladium (Pd), silicon (Si), tin (Sn), cobalt (Co), phosphorus (P), manganese (Mn), zinc ( It is preferable that additives such as Zn) and boron (B) are further contained.

ろう材を使用する場合において、使用するろう材の厚さについては特に制限はない。但し、第一の板状部材と第二の板状部材の少なくとも一方に良好に浸透するように、0.1〜200μmであることが好ましく、1〜50μmであることが更に好ましい。   When brazing material is used, there is no particular limitation on the thickness of the brazing material to be used. However, the thickness is preferably 0.1 to 200 μm, and more preferably 1 to 50 μm so as to penetrate well into at least one of the first plate member and the second plate member.

本実施形態の異種金属材料接合体の製造方法においては、第一の板状部材、及び第二の板状部材の厚さについては特に制限はない。例えば、一般的な板状の異種金属材料接合体を製造する場合には、第一の板状部材の厚さは、1〜100mmであることが好ましい。また、第二の板状部材の厚さは、0.1〜10mmであることが好ましく、0.1〜3mmであることが更に好ましく、0.1〜1mm以下であることが特に好ましい。   In the manufacturing method of the dissimilar metal material joined body of this embodiment, there is no restriction | limiting in particular about the thickness of a 1st plate-shaped member and a 2nd plate-shaped member. For example, when manufacturing a general plate-shaped dissimilar metal material joined body, the thickness of the first plate-shaped member is preferably 1 to 100 mm. Moreover, it is preferable that the thickness of a 2nd plate-shaped member is 0.1-10 mm, It is more preferable that it is 0.1-3 mm, It is especially preferable that it is 0.1-1 mm or less.

なお、得られる異種金属材料接合体は、耐摩耗性等の機械的特性に優れた第二の板状部材の表面において、その使用目的に応じた必要十分な機械的特性を満たしていればよい。従って、第二の板状部材を必要以上に厚くする必要はない。一方、第一の板状部材は、穴加工や溝加工等の機械加工が容易であるとともに、安価である。従って、特別な機械的特性を必要としない部分に関しては、第二の板状部材を用いることが好ましい。   The obtained dissimilar metal material joined body only needs to satisfy the necessary and sufficient mechanical properties according to the purpose of use on the surface of the second plate-like member having excellent mechanical properties such as wear resistance. . Therefore, it is not necessary to make the second plate member thicker than necessary. On the other hand, the first plate-like member is easy to machine such as drilling and grooving, and is inexpensive. Therefore, it is preferable to use the second plate-like member for a portion that does not require special mechanical characteristics.

本実施形態の異種金属材料接合体の製造方法によれば、図8に示すような、成形原料が導入される裏孔26が形成された第一の板状部材41と、成形原料を格子状に成形するためのスリット25が形成された第二の板状部材42とを接合することにより、各種の触媒用担体やフィルタ等として好適に用いられるハニカム構造体を成形するための口金50を製造することができる。   According to the manufacturing method of the dissimilar metal material joined body of the present embodiment, as shown in FIG. 8, a first plate member 41 having a back hole 26 into which a forming raw material is introduced, and the forming raw material in a lattice shape. A base 50 for forming a honeycomb structure suitably used as various catalyst carriers, filters, etc. is manufactured by joining the second plate-like member 42 formed with slits 25 for forming into a single shape. can do.

図8に示すような口金50を製造するには、図9に示すように、第一の板状部材41と第二の板状部材42のうちの一方(図9においては、第一の板状部材41)に裏孔26を形成する。この裏孔26は、例えば、電解加工(ECM加工)、放電加工(EDM加工)、レーザ加工、ドリル等を用いる機械加工をはじめとする従来公知の加工方法によって形成することができる。   To manufacture the base 50 as shown in FIG. 8, as shown in FIG. 9, one of the first plate member 41 and the second plate member 42 (in FIG. 9, the first plate The back hole 26 is formed in the shaped member 41). The back hole 26 can be formed by a conventionally known processing method including, for example, electrolytic processing (ECM processing), electric discharge processing (EDM processing), laser processing, machining using a drill, and the like.

裏孔26を形成した第一の板状部材41と、第二の板状部材42を使用し、これまで述べてきた操作(1)〜(3)のいずれかを行って接合すれば、異種金属材料接合体を得ることができる。得られた異種金属材料接合体を構成する第二の板状部材42にスリット25を形成すれば、図10に示すようなハニカム構造体を成形するための口金50を製造することができる。なお、スリット25、例えば、ダイヤモンド砥石による研削加工や放電加工(EDM加工)をはじめとする従来公知の加工方法によって形成することができる。なお、第二の板状部材42として、炭化タングステン基超硬合金からなる部材を用いれば、耐摩耗性に優れた口金50を製造することができる。   If the first plate-like member 41 having the back hole 26 and the second plate-like member 42 are used and bonded by performing any of the operations (1) to (3) described above, A metal material joined body can be obtained. When the slit 25 is formed in the second plate-like member 42 constituting the obtained dissimilar metal material joined body, a die 50 for forming a honeycomb structure as shown in FIG. 10 can be manufactured. The slit 25 can be formed by a conventionally known processing method such as grinding with a diamond grindstone or electric discharge processing (EDM processing). In addition, if the member which consists of a tungsten carbide base cemented carbide is used as the 2nd plate-shaped member 42, the nozzle | cap | die 50 excellent in abrasion resistance can be manufactured.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
SUS630(C;0.07質量%以下、Si;1.00質量%以下、Mn1.00質量%以下、P;0.040質量%以下、S;0.030質量%以下、Ni;3.00〜5.00質量%、Cr;15.50〜17.50質量%、Cu;3.00〜5.00質量%、Nb+Ta;0.15〜0.45質量%、Fe;残部)からなる板状部材(縦40mm×横40mm×厚さ11mm)と、WC−16質量%Coの炭化タングステン基超硬合金からなる板状部材(縦40mm×横40mm×厚さ1mm)を積層して、二つの板状部材積層体を得た。
Example 1
SUS630 (C; 0.07 mass% or less, Si; 1.00 mass% or less, Mn 1.00 mass% or less, P; 0.040 mass% or less, S; 0.030 mass% or less, Ni; 3.00 -5.00 mass%, Cr; 15.50-17.50 mass%, Cu; 3.00-5.00 mass%, Nb + Ta; 0.15-0.45 mass%, Fe; balance) A plate-like member (40 mm long × 40 mm wide × 1 mm thick) made of a tungsten carbide-based cemented carbide of WC-16 mass% Co and a plate-like member (length 40 mm × width 40 mm × thickness 11 mm) Two plate-like member laminates were obtained.

一方の板状部材積層体を、活性銀ろうを使用してTj=820℃で接合した後、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を表面形状測定器によって測定したところ、約−40μmであった。また、他方の板状部材積層体を、純銅ろうを使用してTj=1120℃で接合した後、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量は、約80μmであった。なお、SUS630のオーステナイト変態が起こる温度は、約720〜900℃であり、マルテンサイト変態が起こる温度は、約200℃以下である。 One plate-like member laminate was joined at Tj 1 = 820 ° C. using active silver solder, and then cooled to room temperature (25 ° C.) to obtain a joined body. It was about -40 micrometers when the curvature amount which arose in the obtained joined body was measured with the surface shape measuring device. Also, the other plate-like member laminate, after bonding with Tj 2 = 1120 ° C. using pure copper brazing, to obtain a bonded body was cooled to room temperature (25 ° C.). The amount of warpage generated in the obtained joined body was about 80 μm. Note that the temperature at which the austenite transformation of SUS630 occurs is about 720 to 900 ° C., and the temperature at which the martensitic transformation occurs is about 200 ° C. or less.

次に、図3に示すような、(試験)接合温度(℃)に対して反り量(μm)をプロットしたグラフを作成した。前述の板状部材積層体と同一のものを用意し、アモルファス銅合金ろうを使用してTj=930℃で接合した後、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量は、約5μmであった。   Next, as shown in FIG. 3, a graph plotting the amount of warpage (μm) against the (test) bonding temperature (° C.) was prepared. The same thing as the above-mentioned plate-shaped member laminated body was prepared, it joined at Tj = 930 degreeC using the amorphous copper alloy brazing, Then, it cooled to normal temperature (25 degreeC), and the joined body was obtained. The amount of warpage generated in the obtained joined body was about 5 μm.

実施例1の結果から明らかなように、接合温度と反り量の相関関係を利用することによって、反り量の制御された異種金属材料接合体を容易に製造することができる。   As is apparent from the results of Example 1, by using the correlation between the bonding temperature and the warpage amount, it is possible to easily manufacture a dissimilar metal material joined body in which the warpage amount is controlled.

(実施例2)
前述の実施例1と同様にして、二つの板状部材積層体を得た(縦120mm×横120mm)。一方の板状部材積層体を、略3.4MPaのプレス圧力の条件下、1120℃で接合した後、Tr=150℃でプレス圧力を開放しつつ常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、約−150μmであった。また、他方の板状部材積層体を、略3.4MPaのプレス圧力の条件下、1120℃で接合した後、Tr=200℃でプレス圧力を開放しつつ常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、約220μmであった。
(Example 2)
In the same manner as in Example 1 described above, two plate-like member laminates were obtained (120 mm long × 120 mm wide). One plate-like member laminate was joined at 1120 ° C. under a press pressure of about 3.4 MPa, and then cooled to room temperature (25 ° C.) while releasing the press pressure at Tr 1 = 150 ° C. Got. It was about -150 micrometers when the curvature amount which arose in the obtained joined body was measured. Also, the other plate-like member laminate, under conditions of a press pressure of approximately 3.4 MPa, after joining at 1120 ° C., and cooled to room temperature (25 ° C.) while releasing the pressing pressure at Tr 2 = 200 ° C. A joined body was obtained. It was about 220 micrometers when the curvature amount which arose in the obtained joined body was measured.

次に、図5に示すような、(試験)プレス圧力開放温度(℃)に対して反り量(μm)をプロットしたグラフを作成した。前述の板状部材積層体と同一のものを用意し、略3.4MPaのプレス圧力の条件下、1120℃で接合した後、Tr=170℃でプレス圧力を開放しつつ常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、約−20μmであった。   Next, as shown in FIG. 5, a graph plotting the amount of warp (μm) against the (test) press pressure release temperature (° C.) was prepared. Prepare the same plate-shaped member laminate as described above, and after joining at 1120 ° C. under a press pressure of about 3.4 MPa, to normal temperature (25 ° C.) while releasing the press pressure at Tr = 170 ° C. Cooled to obtain a joined body. It was about -20 micrometers when the amount of curvature which arose in the obtained joined object was measured.

実施例2の結果から明らかなように、プレス圧力開放温度と反り量の相関関係を利用することによって、反り量の制御された異種金属材料接合体を容易に製造することができる。   As is clear from the results of Example 2, by using the correlation between the press pressure release temperature and the warpage amount, it is possible to easily manufacture the dissimilar metal material joined body in which the warpage amount is controlled.

(実施例3)
前述の実施例1と同様にして、二つの板状部材積層体を得た(縦40mm×横40mm)。一方の板状部材積層体を、P=0(プレス圧力なし)の条件下、1120℃で接合した後、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、80μmであった。また、他方の板状部材積層体を、P=11MPaの条件下、1120℃で接合した後、プレス圧力を負荷しつつ、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、−40μmであった。
(Example 3)
In the same manner as in Example 1 described above, two plate-like member laminates were obtained (length 40 mm × width 40 mm). One plate-like member laminate was joined at 1120 ° C. under the condition of P 1 = 0 (no press pressure), and then cooled to room temperature (25 ° C.) to obtain a joined body. It was 80 micrometers when the amount of curvature which arose in the obtained joined object was measured. The other plate-like member laminate was joined at 1120 ° C. under the condition of P 2 = 11 MPa, and then cooled to room temperature (25 ° C.) while applying a press pressure to obtain a joined body. It was -40 micrometers when the amount of curvature which arose in the obtained joined object was measured.

次に、図7に示すような、(試験)プレス圧力(MPa)に対して反り量(μm)をプロットしたグラフを作成した。前述の板状部材積層体と同一のものを用意し、P=7.3MPaの条件下、1120℃で接合した後、プレス圧力を負荷しつつ、常温(25℃)まで冷却して接合体を得た。得られた接合体に生じた反り量を測定したところ、約−5μmであった。   Next, a graph in which the amount of warpage (μm) was plotted against the (test) press pressure (MPa) as shown in FIG. 7 was prepared. Prepare the same plate-shaped member laminate as described above, join at 1120 ° C. under the condition of P = 7.3 MPa, and then cool to room temperature (25 ° C.) while applying the press pressure. Obtained. It was about -5 micrometers when the curvature amount which arose in the obtained joined body was measured.

実施例3の結果から明らかなように、プレス圧力と反り量の相関関係を利用することによって、反り量の制御された異種金属材料接合体を容易に製造することができる。なお、表1に、(試験)接合温度、(試験)プレス圧力開放温度、及び(試験)プレス圧力と、これらに対応して接合体に生じた反り量を示す。   As is clear from the results of Example 3, by using the correlation between the press pressure and the warpage amount, it is possible to easily manufacture a dissimilar metal material joined body in which the warpage amount is controlled. Table 1 shows (test) joining temperature, (test) press pressure release temperature, and (test) press pressure, and the amount of warpage generated in the joined body corresponding to these.

Figure 0004754372
Figure 0004754372

本発明の異種材料接合体の製造方法によれば、耐摩耗性と加工容易性が同時に要求されるとともに、厳密な形状を有するものであることが必要とされる、押出成形に用いられる口金等の部品を製造する方法として好適である。   According to the method for manufacturing a joined body of dissimilar materials of the present invention, wear resistance and ease of processing are required at the same time, and it is necessary to have a strict shape. It is suitable as a method for manufacturing the parts.

SUS630及び炭化タングステン基超硬合金の、温度に対して熱収縮率をプロットした温度−熱収縮率曲線である。It is the temperature-heat-shrinkage rate curve which plotted the heat-shrinkage rate with respect to temperature of SUS630 and a tungsten carbide base cemented carbide. 操作(1)の手順を説明する模式図である。It is a schematic diagram explaining the procedure of operation (1). 試験接合温度と反り量の相関関係を示すグラフである。It is a graph which shows the correlation of test joining temperature and curvature. 操作(2)の手順を説明する模式図である。It is a schematic diagram explaining the procedure of operation (2). 試験プレス圧力開放温度と反り量の相関関係を示すグラフである。It is a graph which shows the correlation of test press pressure release temperature and the amount of curvature. 操作(3)の手順を説明する模式図である。It is a schematic diagram explaining the procedure of operation (3). 試験プレス圧力と反り量の相関関係を示すグラフである。It is a graph which shows the correlation of a test press pressure and curvature. 口金の一例を模式的に示す部分斜視図である。It is a fragmentary perspective view which shows an example of a nozzle | cap | die typically. 口金を製造する工程の一部を示す模式図である。It is a schematic diagram which shows a part of process of manufacturing a nozzle | cap | die. 口金の一例を模式的に示す部分断面図である。It is a fragmentary sectional view showing an example of a mouth typically.

符号の説明Explanation of symbols

1,11,21 第一の試験片
2,12,22 第二の試験片
3,13,23 試験片積層体
10,20,30 試験片接合体
25 スリット
26 裏孔
41 第一の板状部材
42 第二の板状部材
50 口金
C,C,C 反り量
P,P,P 試験プレス圧力
1, 11, 21 First test piece 2, 12, 22 Second test piece 3, 13, 23 Test piece laminate 10, 20, 30 Test piece assembly 25 Slit 26 Back hole 41 First plate-like member 42 Second plate-like member 50 Caps C, C 1 , C 2 Warp amounts P, P 1 , P 2 Test press pressure

Claims (6)

オーステナイト相の冷却によって、マルテンサイト変態、ベイナイト変態、及びパーライト変態からなる群より選択される少なくとも一の相変態を生じ得る第一の金属材料からなる第一の板状部材と、
その温度−熱収縮率曲線が、前記第一の金属材料の温度−熱収縮率曲線と交差し得る第二の金属材料からなる第二の板状部材を用意するとともに、
下記(1)〜(3)の少なくともいずれかの操作を行うことを含み、
前記第一の板状部材と前記第二の板状部材が積層及び接合された異種金属材料接合体を得る異種金属材料接合体の製造方法。
(1):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、前記第一の金属材料がオーステナイト変態を生ずる温度以上の複数の試験接合温度(Tj、Tj〜)でそれぞれ接合して高温の複数の試験片接合体を得、
得られた複数の前記試験片接合体を冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、
前記試験接合温度(Tj、Tj〜)と前記反り量(C、C〜)の相関関係に基づき、接合温度(Tj)と、前記接合温度(Tj)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、
前記第一の板状部材と前記第二の板状部材を、前記反り量(C)が生ずる前記接合温度(Tj)で接合する。
(2):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、所定のプレス圧力の条件下、前記第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合して高温の複数の試験片接合体を得、
得られた複数の前記試験片接合体を、複数の試験プレス圧力開放温度(Tr、Tr〜)でプレス圧力を開放しつつ冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、
前記試験プレス圧力開放温度(Tr、Tr〜)と前記反り量(C、C〜)の相関関係に基づき、プレス圧力開放温度(Tr)と、前記プレス圧力開放温度(Tr)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、
前記第一の板状部材と前記第二の板状部材を前記第一の金属材料がオーステナイト変態を生ずる温度以上で接合した後、前記反り量(C)が生ずる前記プレス圧力開放温度(Tr)でプレス圧力を開放しつつ常温まで冷却する。
(3):前記第一の金属材料からなる第一の試験片、及び前記第二の金属材料からなる第二の試験片を積層した複数の試験片積層体を、前記第一の金属材料がオーステナイト変態を生ずる温度以上の接合温度でそれぞれ接合して高温の複数の試験片接合体を得、
得られた複数の前記試験片接合体を、複数の試験プレス圧力(P、P〜)の条件下で冷却するとともに、それぞれの前記試験片接合体に常温で生じた反り量(C、C〜)を測定し、
前記試験プレス圧力(P、P〜)と前記反り量(C、C〜)の相関関係に基づき、プレス圧力(P)と、前記プレス圧力(P)に対応して前記異種金属材料接合体に常温で生ずる反り量(C)を予測し、
前記第一の板状部材と前記第二の板状部材を前記第一の金属材料がオーステナイト変態を生ずる温度以上で接合した後、前記反り量(C)が生ずる前記プレス圧力(P)の条件下で常温まで冷却する。
A first plate member made of a first metal material capable of causing at least one phase transformation selected from the group consisting of martensite transformation, bainite transformation, and pearlite transformation by cooling of the austenite phase;
Preparing a second plate-like member made of a second metal material whose temperature-heat shrinkage curve can intersect the temperature-heat shrinkage curve of the first metal material;
Including performing at least one of the following operations (1) to (3):
A method for producing a dissimilar metal material joined body, which obtains a dissimilar metal material joined body in which the first plate-like member and the second plate-like member are laminated and joined.
(1): A plurality of test piece laminates obtained by laminating a first test piece made of the first metal material and a second test piece made of the second metal material, the first metal material being Bonding at a plurality of test bonding temperatures (Tj 1 , Tj 2 ˜) higher than the temperature causing the austenite transformation, respectively, to obtain a plurality of high-temperature test piece assemblies,
While cooling the obtained plurality of test piece assemblies, the amount of warpage (C 1 , C 2 ~) generated at normal temperature in each of the test piece assemblies was measured,
Based on the correlation between the test junction temperature (Tj 1 , Tj 2 ˜) and the warp amount (C 1 , C 2 ˜), the dissimilar metal corresponding to the junction temperature (Tj) and the junction temperature (Tj) Predict the amount of warpage (C) that occurs in the bonded material at room temperature,
The first plate-like member and the second plate-like member are joined at the joining temperature (Tj) at which the warpage amount (C) occurs.
(2): A plurality of test piece laminates obtained by laminating a first test piece made of the first metal material and a second test piece made of the second metal material, under a predetermined press pressure condition. The first metal material is bonded at a bonding temperature equal to or higher than the temperature at which the austenite transformation occurs, to obtain a plurality of high-temperature test piece assemblies.
The plurality of obtained test piece assemblies were cooled while releasing the press pressure at a plurality of test press pressure release temperatures (Tr 1 , Tr 2 ˜), and each test piece assembly was generated at room temperature. warping amount (C 1, C 2 ~) is measured,
Based on the correlation between the test press pressure release temperature (Tr 1 , Tr 2 ˜) and the warpage amount (C 1 , C 2 ˜), the press pressure release temperature (Tr) and the press pressure release temperature (Tr) Correspondingly, the amount of warpage (C) generated at room temperature in the dissimilar metal material joined body is predicted,
The press pressure release temperature (Tr) at which the warpage amount (C) occurs after the first plate member and the second plate member are joined at a temperature higher than the temperature at which the first metal material undergoes austenite transformation. To cool to room temperature while releasing the press pressure.
(3): A plurality of test piece laminates in which a first test piece made of the first metal material and a second test piece made of the second metal material are laminated, Bonding each at a bonding temperature equal to or higher than the temperature causing austenite transformation to obtain a plurality of high-temperature test piece assemblies,
The obtained plurality of test piece assemblies are cooled under conditions of a plurality of test press pressures (P 1 , P 2 to), and the amount of warpage (C 1) generated in each test piece assembly at normal temperature. , to measure the C 2 ~),
Based on the correlation between the test press pressure (P 1 , P 2 ˜) and the warpage amount (C 1 , C 2 ˜), the dissimilar metal corresponding to the press pressure (P) and the press pressure (P) Predict the amount of warpage (C) that occurs in the bonded material at room temperature,
Conditions for the press pressure (P) at which the warpage amount (C) occurs after the first plate member and the second plate member are joined at a temperature higher than the temperature at which the first metal material undergoes austenite transformation. Cool down to room temperature below.
前記第一の金属材料が、鉄系合金、鋼又はステンレスから選択されるものである請求項1に記載の異種金属材料接合体。 The dissimilar metal material joined body according to claim 1, wherein the first metal material is selected from an iron-based alloy, steel, and stainless steel . 前記第二の金属材料が、炭化タングステン基超硬合金である請求項1又は2に記載の異種金属材料接合体の製造方法。   The method for producing a dissimilar metal material joined body according to claim 1 or 2, wherein the second metal material is a tungsten carbide-based cemented carbide. 前記炭化タングステン基超硬合金が、炭化タングステンを、鉄、コバルト、ニッケル、チタン、及びクロムからなる群より選択される少なくとも一種の金属で焼結した合金である請求項3に記載の異種金属材料接合体の製造方法。   The dissimilar metal material according to claim 3, wherein the tungsten carbide-based cemented carbide is an alloy obtained by sintering tungsten carbide with at least one metal selected from the group consisting of iron, cobalt, nickel, titanium, and chromium. Manufacturing method of joined body. 前記第一の板状部材と前記第二の板状部材の間に、ろう材を配設する請求項1〜4のいずれか一項に記載の異種金属材料接合体の製造方法。   The manufacturing method of the dissimilar metal-material joined body as described in any one of Claims 1-4 which arrange | positions a brazing material between said 1st plate-shaped member and said 2nd plate-shaped member. 前記ろう材が、銅、銀、金、ニッケル、及びアルミニウムからなる群より選択される少なくとも一種の金属を含むものである請求項5に記載の異種金属材料接合体の製造方法。   6. The method for producing a dissimilar metal material joined body according to claim 5, wherein the brazing material contains at least one metal selected from the group consisting of copper, silver, gold, nickel, and aluminum.
JP2006064081A 2006-03-09 2006-03-09 Manufacturing method of dissimilar material joined body Active JP4754372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064081A JP4754372B2 (en) 2006-03-09 2006-03-09 Manufacturing method of dissimilar material joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064081A JP4754372B2 (en) 2006-03-09 2006-03-09 Manufacturing method of dissimilar material joined body

Publications (2)

Publication Number Publication Date
JP2007237248A JP2007237248A (en) 2007-09-20
JP4754372B2 true JP4754372B2 (en) 2011-08-24

Family

ID=38583292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064081A Active JP4754372B2 (en) 2006-03-09 2006-03-09 Manufacturing method of dissimilar material joined body

Country Status (1)

Country Link
JP (1) JP4754372B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780115B2 (en) 2019-11-27 2023-10-10 Corning Incorporated Multi-piece layered honeycomb extrusion dies and methods of making same
US11371148B2 (en) * 2020-08-24 2022-06-28 Applied Materials, Inc. Fabricating a recursive flow gas distribution stack using multiple layers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157B2 (en) * 1982-04-30 1985-01-05 オ−エスジ−株式会社 Manufacturing method of carbide tools
JPS5924592A (en) * 1982-07-30 1984-02-08 Mitsubishi Heavy Ind Ltd Joining method of sintered hard alloy and metal
JPH0737346B2 (en) * 1988-10-04 1995-04-26 日本特殊陶業株式会社 Joined body of ceramic body and metal body and joining method thereof
JP3621513B2 (en) * 1996-06-19 2005-02-16 日本特殊陶業株式会社 Al metal joint
US6021939A (en) * 1996-12-30 2000-02-08 Daewoo Heavy Industries Ltd. Method of producing a wear resistant mechanical component
JP2002179473A (en) * 2000-12-13 2002-06-26 Ngk Spark Plug Co Ltd Metal-ceramic joined body
JP4327029B2 (en) * 2004-07-07 2009-09-09 日本碍子株式会社 Method for producing tungsten carbide base cemented carbide joined body

Also Published As

Publication number Publication date
JP2007237248A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4426400B2 (en) Die for forming honeycomb structure and method for manufacturing the same
JP5361224B2 (en) Die for forming honeycomb structure and method for manufacturing the same
US3444613A (en) Method of joining carbide to steel
WO2012132822A1 (en) Bonded object of tungsten carbide-based superhard alloy and process for producing same
EP2002949A2 (en) Die for forming honeycomb structure and method for manufacturing the same
EP2002915A9 (en) Method for fabricating dissimilar material jointed body
JP5256384B2 (en) Multilayer carbide chip and manufacturing method thereof
JP5552543B2 (en) Zygote
JP5185501B2 (en) Method for manufacturing die for forming honeycomb structure
JP5345487B2 (en) Bonded body and die for forming honeycomb structure
JP4754372B2 (en) Manufacturing method of dissimilar material joined body
JP4327029B2 (en) Method for producing tungsten carbide base cemented carbide joined body
JP5485117B2 (en) Zygote
JP2011121081A (en) Cemented carbide joined body and method of manufacturing the same
JP6333268B2 (en) Layer composite
JP2550070B2 (en) High hardness composite sintered body
JP7477418B2 (en) Metal laminate and its use
JP3176015B2 (en) Joint of ceramic and metal
JPS60121088A (en) Production of wear resistant member
JPH04127925A (en) Punching tool
JPS63202444A (en) Sintered composite body of super hard material
JPS614609A (en) Blank for tool and manufacture thereof
JPS63191631A (en) Diamond sintered composite body
JPS6125537B2 (en)
JPH08208343A (en) Ceramic-metal joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150