JP2011121081A - Cemented carbide joined body and method of manufacturing the same - Google Patents

Cemented carbide joined body and method of manufacturing the same Download PDF

Info

Publication number
JP2011121081A
JP2011121081A JP2009279604A JP2009279604A JP2011121081A JP 2011121081 A JP2011121081 A JP 2011121081A JP 2009279604 A JP2009279604 A JP 2009279604A JP 2009279604 A JP2009279604 A JP 2009279604A JP 2011121081 A JP2011121081 A JP 2011121081A
Authority
JP
Japan
Prior art keywords
metal member
plate
cemented carbide
joined body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279604A
Other languages
Japanese (ja)
Other versions
JP5513865B2 (en
Inventor
Hironori Takahashi
博紀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009279604A priority Critical patent/JP5513865B2/en
Publication of JP2011121081A publication Critical patent/JP2011121081A/en
Application granted granted Critical
Publication of JP5513865B2 publication Critical patent/JP5513865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cemented carbide joined body having a large joined strength and a high positional accuracy of joining, and to provide a method of manufacturing the same. <P>SOLUTION: The cemented carbide joined body 1 includes: a first metallic member 2 containing tungsten carbide machine-cemented carbide and having a first joined face 5; a joined layer 4 which is joined to the first joined face 5 of the first metallic member 2 and which contains carbon consisting essentially of iron as well as diffused copper; and a second metallic member 3 containing tungsten carbide machine-cemented carbide and having a second joined face 6, wherein the second joined face 6 is joined to a face opposite to the face where the first metallic member 2 of the joined layer 4 is joined. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、超硬合金接合体及びその製造方法に関し、さらに詳しくは、接合強度が大きく、接合体精度が高い超硬合金接合体及びその製造方法に関する。   The present invention relates to a cemented carbide joined body and a method for manufacturing the same, and more particularly to a cemented carbide joined body having a high joint strength and high joined body accuracy and a method for manufacturing the same.

従来、炭化タングステン基超硬合金とステンレス鋼との接合体が、セラミックハニカム構造体を成形するための口金(ハニカム構造体成形用口金)、精密金型、ダイス、プラグ等に用いられている。   Conventionally, a joined body of a tungsten carbide base cemented carbide and stainless steel is used for a die for forming a ceramic honeycomb structure (die for forming a honeycomb structure), a precision die, a die, a plug, and the like.

例えば、ハニカム構造体成形用口金としては、第1の板状部材に少なくとも一方の面側に開口する複数の裏孔を形成し、第1の板状部材の他方の面に裏孔に連通するスリット状の溝部を格子状に形成し、第1の板状部材の他方の面と第2の板状部材とをホットプレスにより接合し、第2の板状部材に、第1の板状部材に形成された溝部に重なると共に溝部に連通するように格子状にスリットを形成することにより作製されたものを挙げることができる(例えば、特許文献1を参照)。通常、裏孔は、格子状に形成された溝部(格子状に形成されたスリット)の、格子形状における交差位置に対応する(重なる)位置に設けられている。特許文献1に記載のセラミックハニカム構造体成形用口金を用いてハニカム成形体を成形するときには、セラミック原料を含有する成形原料を裏孔から導入し、当該成形原料を、比較的内径の大きな裏孔から、幅の狭いスリットへと移行させて、スリットの開口部からハニカム構造の成形体として押出すことによりハニカム成形体(ハニカム構造体)を成形する。このように、第2の板状部材のスリット部分は、幅が狭くなっているため、成形原料が通過するときに高い圧力がかかり、摩耗しやすい構造である。そのため、特許文献1に記載のハニカム構造体成形用口金は、第2の板状部材が耐摩耗性の高い炭化タングステン基超硬合金から形成されている。   For example, as a die for forming a honeycomb structure, a plurality of back holes that are open on at least one surface side are formed in the first plate member, and the other surface of the first plate member communicates with the back hole. The slit-like groove is formed in a lattice shape, the other surface of the first plate-like member and the second plate-like member are joined by hot pressing, and the first plate-like member is joined to the second plate-like member. In this case, the slits are formed in a lattice shape so as to overlap the groove portions and communicate with the groove portions (see, for example, Patent Document 1). Usually, the back hole is provided at a position corresponding to (overlapping) the intersecting position in the lattice shape of the groove portion (slit formed in the lattice shape) formed in the lattice shape. When forming a honeycomb formed body using the ceramic honeycomb structure forming die described in Patent Document 1, a forming raw material containing a ceramic raw material is introduced from the back hole, and the forming raw material is inserted into the back hole having a relatively large inner diameter. Then, the honeycomb formed body (honeycomb structure) is formed by shifting to a narrow slit and extruding it from the opening of the slit as a formed body of the honeycomb structure. As described above, since the slit portion of the second plate-like member has a narrow width, a high pressure is applied when the forming raw material passes, and the slit portion is easily worn. Therefore, in the die for forming a honeycomb structure described in Patent Document 1, the second plate member is formed of a tungsten carbide-based cemented carbide having high wear resistance.

特開2007−181976号公報JP 2007-181976 A

特許文献1に記載のハニカム構造体成形用口金は、第2の板状部材のスリット部分の摩耗を防止することができる優れたものであった。   The die for forming a honeycomb structure described in Patent Document 1 is excellent in that it can prevent wear of the slit portion of the second plate member.

一方、第1の板状部材は、第2の板状部材のスリット部分ほどの摩耗の問題がないため、特定の組成のステンレス鋼等から形成されていた。しかし、第1の板状部材においても、多くのハニカム成形体を押出成形した場合には、溝部周辺(溝部を形成する壁面)が摩耗することがあった。第1の板状部材の溝部は、通常、第2の板状部材のスリット部分ほど間隔(隙間)が狭くはなっていないが、裏孔と比較すると、押出成形時に高い圧力がかかり、摩耗し易い構造である。   On the other hand, the first plate-like member is made of stainless steel or the like having a specific composition because there is no problem of wear as much as the slit portion of the second plate-like member. However, even in the first plate-like member, when many honeycomb formed bodies are extruded, the periphery of the groove (wall surface forming the groove) may be worn. The groove portion of the first plate-like member is usually not as narrow as the slit portion of the second plate-like member. However, compared with the back hole, a higher pressure is applied during the extrusion and wears. Easy structure.

そのため、第1の板状部材の少なくとも溝部が形成される部分を、耐摩耗性の高い炭化タングステン基超硬合金により形成することにより、更に優れたハニカム構造体成形用口金が得られると考えられる。この場合、例えば、第1の板状部材全体を炭化タングステン基超硬合金で形成した場合には、第2の板状部材が炭化タングステン基超硬合金であるため、第1の板状部材と第2の板状部材とを接合するときには、炭化タングステン基超硬合金同士を接合する必要がある。しかし、ハニカム構造体成形用口金のように高い接合強度と、高い接合体精度とを要求されるものについては、炭化タングステン基超硬合金同士を接合するような構造にすることは必ずしも容易ではなかった。   Therefore, it is considered that a more excellent die for forming a honeycomb structure can be obtained by forming at least a portion of the first plate-like member with a tungsten carbide-based cemented carbide having high wear resistance. . In this case, for example, when the entire first plate-shaped member is formed of a tungsten carbide-based cemented carbide, the second plate-shaped member is a tungsten carbide-based cemented carbide, so the first plate-shaped member and When joining the second plate member, it is necessary to join the tungsten carbide base cemented carbides together. However, it is not always easy to make a structure in which cemented carbides of tungsten carbide based cemented carbides are joined for those that require high joint strength and high joint precision, such as a die for forming a honeycomb structure. It was.

例えば、セラミックハニカム構造体成形用口金のように、十分に高い接合強度が求められる場合の炭化タングステン基超硬合金同士の接合は、高負荷圧力(10MPa以上)による拡散接合方法、Coの融点近い非常に高温(1300〜1400℃)での拡散接合方法、接合する炭化タングステン基超硬合金の間にCo系の結合剤をインサートして接合する方法等によって可能となっている。これらは、いずれも、高温、高圧力、又はこれらの両方が必要である。そのため、高温により若しくは高温からの冷却により、又は高圧力によりセラミックハニカム構造体成形用口金が変形するため、上記の方法で、高い寸法精度を必要とする微細な構造を有する金型を造るのは非常に難しかった。   For example, when a sufficiently high bonding strength is required, such as a die for forming a ceramic honeycomb structure, bonding between tungsten carbide base cemented carbides is a diffusion bonding method using a high load pressure (10 MPa or more), close to the melting point of Co. This can be achieved by a diffusion bonding method at a very high temperature (1300 to 1400 ° C.), a method in which a Co-based binder is inserted between tungsten carbide base cemented carbides to be bonded, and the like. All of these require high temperature, high pressure, or both. Therefore, because the die for forming a ceramic honeycomb structure is deformed by high temperature, cooling from high temperature, or high pressure, a mold having a fine structure that requires high dimensional accuracy is produced by the above method. It was very difficult.

高温や高圧力をかけずに炭化タングステン基超硬合金同士を接合する方法としては、接合面を鏡面に仕上げてから接合する方法や、ろう付けにより接合する方法がある。これらの方法は、高温、高圧ではないため、接合体の精度を高くすることは可能である。しかし、接合面を鏡面に仕上げる方法の場合、接合面積が大きくなるほど高い接合強度を得難くなる。また、製造時間も長くなり、コストも高くなることになる。また、ろう付けにより接合する方法の場合、銀ロウや銅ロウによる接合方法が多く用いられるが、接合した炭化タングステン基超硬合金と炭化タングステン基超硬合金との間に、必ずろう材の層が残る。一般的に「ろう材」は低融点の軟質金属であるため強度は高くなく、高い接合強度と信頼性を得ることはできない。また、極端に耐摩耗性が劣るため、セラミックハニカム構造体成形用口金の様な用途には向かなかった。   As a method for joining tungsten carbide base cemented carbides together without applying high temperature or high pressure, there are a joining method after finishing the joining surface to a mirror surface, and a joining method by brazing. Since these methods are not high temperature and high pressure, it is possible to increase the accuracy of the joined body. However, in the case of the method of finishing the joining surface to a mirror surface, it becomes difficult to obtain high joining strength as the joining area increases. In addition, the manufacturing time becomes longer and the cost becomes higher. In addition, in the method of joining by brazing, a joining method using silver brazing or copper brazing is often used, but a brazing material layer is always provided between the joined tungsten carbide base cemented carbide and tungsten carbide base cemented carbide. Remains. In general, the “brazing material” is a soft metal having a low melting point, so the strength is not high, and high bonding strength and reliability cannot be obtained. In addition, since the wear resistance is extremely inferior, it is not suitable for applications such as a die for forming a ceramic honeycomb structure.

以上のように、炭化タングステン基超硬合金同士の接合は、接合強度と接合体精度の両立が難しい。つまり、接合強度を高くする場合には、高温、高圧力にする必要があるため接合精度が低下する上に、コスト高、リードタイム大となる。逆に、接合精度を高くする場合には、接合強度及び信頼性が低くなる。   As described above, it is difficult to join the tungsten carbide-based cemented carbides together with both joint strength and joined body accuracy. That is, in order to increase the bonding strength, it is necessary to set a high temperature and a high pressure, so that the bonding accuracy is lowered and the cost is increased and the lead time is increased. On the contrary, when the bonding accuracy is increased, the bonding strength and reliability are lowered.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、接合強度及び信頼性が高く、接合体精度が高い超硬合金接合体及びその製造方法を提供することを特徴とする。   The present invention has been made in view of such problems of the prior art, and provides a cemented carbide joined body having high joining strength and reliability and high joined body accuracy, and a method for manufacturing the same. To do.

本発明によって以下の超硬合金接合体及びその製造方法が提供される。   The present invention provides the following cemented carbide joined body and a method for producing the same.

[1] 炭化タングステン基超硬合金を含有し、第1の接合面を有する第1の金属部材と、前記第1の金属部材の前記第1の接合面に接合された、鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層と、第2の接合面を有し、前記第2の接合面が、前記接合層の前記第1の金属部材が接合された面とは反対側の面に接合された、炭化タングステン基超硬合金を含有する第2の金属部材とを備える超硬合金接合体。 [1] A first metal member containing a tungsten carbide base cemented carbide and having a first bonding surface, and iron as a main component bonded to the first bonding surface of the first metal member. A bonding layer containing carbon and having a copper alloy diffused therein has a second bonding surface, and the second bonding surface is opposite to the surface of the bonding layer to which the first metal member is bonded. A cemented carbide joined body comprising a second metal member containing a tungsten carbide-based cemented carbide joined to the side surface.

[2] 前記接合層の材質が、炭素鋼、合金鋼、ステンレス鋼からなる群から選択された少なくとも一種に銅合金が拡散しているものである[1]に記載の超硬合金接合体。 [2] The cemented carbide joined body according to [1], wherein a material of the joining layer is a copper alloy diffused in at least one selected from the group consisting of carbon steel, alloy steel, and stainless steel.

[3] 前記第1の金属部材が、一方の面が前記第1の接合面である板状であり、前記第2の金属部材が、一方の面が前記第2の接合面である板状であり、前記第1の金属部材の、前記第1の接合面とは反対側の面に接合され、前記第1の金属部材と接合する第3の接合面を有する、銅が内部に拡散した、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体から構成された板状の第3の金属部材を更に備える[1]又は[2]に記載の超硬合金接合体。 [3] The first metal member has a plate shape in which one surface is the first bonding surface, and the second metal member has a plate shape in which one surface is the second bonding surface. The first metal member is bonded to a surface opposite to the first bonding surface, and has a third bonding surface to be bonded to the first metal member, and copper has diffused inside. And a plate-like third metal member composed of a metal body capable of causing at least one of the three phase transformations of martensite transformation, bainite transformation, and pearlite transformation by cooling of the austenite phase. The cemented carbide joined body according to [1] or [2].

[4] 前記第1の金属部材が、成形原料を導入するための貫通孔である裏孔が形成された第1の板状部材であり、前記第2の金属部材が、前記裏孔に連通し、成形原料をハニカム形状に成形するための格子状のスリットが形成された第2の板状部材であり、前記第1の板状部材の前記接合層が接合されている側の面に、前記第2の板状部材の前記スリットに重なるように格子状に形成されるとともに前記裏孔に連通する溝部が形成され、前記接合層の、少なくとも前記第2の板状部材の前記スリットに重なる部分に、貫通孔が形成された[1]又は[2]に記載の超硬合金接合体。 [4] The first metal member is a first plate-like member in which a back hole which is a through hole for introducing a forming raw material is formed, and the second metal member communicates with the back hole. And a second plate-like member in which lattice-shaped slits for forming the forming raw material into a honeycomb shape are formed, and on the surface of the first plate-like member on which the joining layer is joined, Grooves are formed in a lattice pattern so as to overlap the slits of the second plate member and communicate with the back holes, and overlap at least the slits of the second plate member of the bonding layer. The cemented carbide joined body according to [1] or [2], wherein a through hole is formed in the portion.

[5] 前記第1の金属部材及び前記第3の金属部材が、成形原料を導入するための貫通孔である裏孔が形成された第1の板状部材であり、前記第2の金属部材が、前記裏孔に連通し、成形原料をハニカム形状に成形するための格子状のスリットが形成された第2の板状部材であり、前記第1の板状部材の前記接合層に接合される面側に、前記第2の板状部材の前記スリットに重なるように格子状に形成されるとともに前記裏孔に連通する溝部が形成され、前記接合層の、少なくとも前記第2の板状部材の前記スリットに重なる部分に、貫通孔が形成された[3]に記載の超硬合金接合体。 [5] The first metal member and the third metal member are first plate-like members in which a back hole that is a through hole for introducing a forming raw material is formed, and the second metal member Is a second plate-like member that communicates with the back hole and has a grid-like slit for forming a forming raw material into a honeycomb shape, and is joined to the joining layer of the first plate-like member. A groove portion that is formed in a lattice shape so as to overlap with the slits of the second plate member and communicates with the back hole is formed on the surface side, and at least the second plate member of the bonding layer The cemented carbide joined body according to [3], wherein a through hole is formed in a portion overlapping the slit.

[6] 前記接合層の厚さが0.005〜0.5mmである[1]〜[5]のいずれかに記載の超硬合金接合体。 [6] The cemented carbide joined body according to any one of [1] to [5], wherein the thickness of the joining layer is 0.005 to 0.5 mm.

[7] [4]又は[5]に記載の超硬合金接合体を備えるハニカム構造体成形用口金。 [7] A die for forming a honeycomb structure provided with the cemented carbide joined body according to [4] or [5].

[8] 炭化タングステン基超硬合金を含有し、第1の接合面を有する第1の金属部材と、炭化タングステン基超硬合金を含有し、第2の接合面を有する第2の金属部材と、炭素を含有し鉄を主成分とする薄板とを、前記第1の接合面と前記第2の接合面とが前記薄板を挟んで向かい合うようにするとともに、前記第1の金属部材と前記薄板との間及び前記第2の金属部材と前記薄板との間にそれぞれ銅合金箔を配置した状態で、積層し、700℃〜1200℃の温度で、0.01〜5MPaの圧力で押圧することにより、前記第1の金属部材と前記第2の金属部材とを前記薄板を介して接合して、[1]〜[3]のいずれかに記載の超硬合金接合体を作製する超硬合金接合体の製造方法。 [8] A first metal member containing a tungsten carbide-based cemented carbide and having a first joint surface; and a second metal member containing a tungsten carbide-based cemented carbide and having a second joint surface; A thin plate containing carbon and containing iron as a main component so that the first joint surface and the second joint surface face each other with the thin plate interposed therebetween, and the first metal member and the thin plate And with a copper alloy foil disposed between the second metal member and the thin plate, respectively, and pressed at a temperature of 700 ° C. to 1200 ° C. with a pressure of 0.01 to 5 MPa. The cemented carbide alloy according to any one of [1] to [3], in which the first metal member and the second metal member are joined via the thin plate. Manufacturing method of joined body.

本発明の超硬合金接合体は、炭化タングステン基超硬合金を含有する第1の金属部材と炭化タングステン基超硬合金を含有する第2の金属部材とが、鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層を介して接合されたものであるため、接合強度が大きく、接合の位置精度が高い超硬合金接合体である。   In the cemented carbide joined body of the present invention, the first metal member containing a tungsten carbide-based cemented carbide and the second metal member containing a tungsten carbide-based cemented carbide include iron as a main component and carbon. In addition, since it is bonded through a bonding layer in which the copper alloy is diffused, it is a cemented carbide alloy body having high bonding strength and high bonding positional accuracy.

本発明の超硬合金接合体の製造方法は、炭化タングステン基超硬合金を含有する第1の金属部材と、炭化タングステン基超硬合金を含有する第2の金属部材とを、「炭素を含有し鉄を主成分とする薄板」を間に挟むと共に、「第1の金属部材と上記薄板との間、及び第2の金属部材と上記薄板との間」に銅合金箔を挟んだ状態で重ね合わせ、所定の低い温度、及び低い圧力の条件で接合させるため、接合強度が大きく、接合体精度が高い超硬合金接合体を製造することができる。炭化タングステン基超硬合金を含有する第1の金属部材と「炭素を含有し鉄を主成分とする薄板」との間、及び、炭化タングステン基超硬合金を含有する第2の金属部材と「炭素を含有し鉄を主成分とする薄板」との間に、銅合金箔を挟んで、所定の温度、圧力の条件にすると、銅合金が「炭素を含有し鉄を主成分とする薄板」内に拡散し、炭化タングステン基超硬合金を含有する第1の金属部材と「炭素を含有し鉄を主成分とする薄板」とが直接接合され、炭化タングステン基超硬合金を含有する第2の金属部材と「炭素を含有し鉄を主成分とする薄板」とが直接接合された状態となる。そして、この炭化タングステン基超硬合金を含有する第1の金属部材と「炭素を含有し鉄を主成分とする薄板」との接合、及び炭化タングステン基超硬合金を含有する第2の金属部材と「炭素を含有し鉄を主成分とする薄板」との接合が強固なものであるため、「炭素を含有し鉄を主成分とする薄板」を挟んだ状態で、炭化タングステン基超硬合金を含有する第1の金属部材と炭化タングステン基超硬合金を含有する第2の金属部材とが強固に接合されることになる。このようにして製造された超硬合金接合体が、本発明の超硬合金接合体である。   The method for manufacturing a cemented carbide joined body according to the present invention includes a first metal member containing a tungsten carbide-based cemented carbide and a second metal member containing a tungsten carbide-based cemented carbide comprising “carbon-containing”. While sandwiching a “thin plate mainly composed of ferrous iron” and a copper alloy foil sandwiched between “the first metal member and the thin plate and between the second metal member and the thin plate” Since the joining is performed under the conditions of superposition, a predetermined low temperature, and a low pressure, a cemented carbide joined body having high joining strength and high joined body accuracy can be manufactured. Between the first metal member containing the tungsten carbide base cemented carbide and the “thin plate containing carbon and containing iron as a main component”, and the second metal member containing the tungsten carbide base cemented carbide and “ When the copper alloy foil is sandwiched between the `` thin plate containing carbon and containing iron as a main component '' and the conditions of temperature and pressure are set, the copper alloy is `` thin plate containing carbon and containing iron as the main component '' The first metal member which diffuses into the inside and contains the tungsten carbide base cemented carbide and the “thin plate containing carbon and containing iron as a main component” are directly joined to each other, and the second metal member containing the tungsten carbide base cemented carbide is contained. The metal member and “a thin plate containing carbon and containing iron as a main component” are directly joined. And the 1st metal member containing this tungsten carbide base cemented carbide and the 2nd metal member containing the joining of "the thin plate which contains carbon and contains iron as a main component", and a tungsten carbide base cemented carbide Tungsten Carbide Cemented Carbide with a “Sheet containing carbon and iron as main component” sandwiched between it and “Sheet containing carbon and containing iron as a main component” The first metal member containing selenium and the second metal member containing tungsten carbide-based cemented carbide are firmly bonded. The cemented carbide joined body manufactured in this way is the cemented carbide joined body of the present invention.

本発明の超硬合金接合体の一実施形態を示し、第1の金属部材の第1の接合面に直交する断面を示す模式図である。It is a schematic diagram which shows one Embodiment of the cemented carbide joined body of this invention, and shows the cross section orthogonal to the 1st joining surface of a 1st metal member. 図1Aの領域Sを拡大して示す模式図である。It is a schematic diagram which expands and shows the area | region S of FIG. 1A. 本発明の超硬合金接合体の他の実施形態を示し、第1の金属部材の第1の接合面に直交する断面を示す模式図である。It is a schematic diagram which shows other embodiment of the cemented carbide alloy joined body of this invention, and shows the cross section orthogonal to the 1st joining surface of a 1st metal member. 本発明のハニカム構造体成形用口金の一実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a die for forming a honeycomb structure of the present invention. 本発明のハニカム構造体成形用口金の一実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a die for forming a honeycomb structure of the present invention. 本発明のハニカム構造体成形用口金の一実施形態の第2の板状部材側から見た部分平面図である。It is the fragmentary top view seen from the 2nd plate-shaped member side of one Embodiment of the die for honeycomb structure formation of this invention. 図5のA−A’断面を示す模式図である。It is a schematic diagram which shows the A-A 'cross section of FIG. 本発明のハニカム構造体成形用口金の他の実施形態を示し、第1の板状部材の第1の接合面に直交する断面の一部を示す模式図である。FIG. 5 is a schematic diagram showing another embodiment of the honeycomb structure forming die of the present invention and showing a part of a cross section orthogonal to the first joint surface of the first plate-like member. 本発明の超硬合金接合体の製造方法の一実施形態において、第1の金属部材と第2の金属部材とを、「炭素を含有し鉄を主成分とする薄板」を間に挟むと共に、「第1の金属部材と上記薄板との間、及び第2の金属部材と上記薄板との間」に銅合金箔を挟んだ状態で重ね合わせるときの、それぞれの配置を示し、第1の金属部材の第1の接合面に直交する断面を示す模式図である。In one embodiment of the method for producing a cemented carbide joined body of the present invention, the first metal member and the second metal member are sandwiched between “a thin plate containing carbon and containing iron as a main component”. The arrangement of each of the first metal member and the thin plate, and the second metal member and the thin plate, when the copper alloy foil is sandwiched between the first metal member and the thin metal plate, It is a schematic diagram which shows the cross section orthogonal to the 1st joint surface of a member. 本発明の超硬合金接合体の製造方法の他の実施形態において、第1の金属部材と第2の金属部材とを、「炭素を含有し鉄を主成分とする薄板」を間に挟むと共に、「第1の金属部材と上記薄板との間、及び第2の金属部材と上記薄板との間」に銅合金箔を挟んだ状態で重ね合わせるとともに、第1の金属部材と第3の金属部材とを、間に銅合金箔を挟んだ状態で重ね合わせるときの、それぞれの配置を示し、第1の金属部材の第1の接合面に直交する断面を示す模式図である。In another embodiment of the method for producing a cemented carbide joined body of the present invention, the first metal member and the second metal member are sandwiched with a “thin plate containing carbon and containing iron as a main component”. , “A first metal member and a third metal, and a second metal member and the thin plate” are overlapped with a copper alloy foil sandwiched therebetween, and the first metal member and the third metal It is a schematic diagram which shows each arrangement | positioning when it overlaps | superposes a member on both sides of the copper alloy foil, and shows a cross section orthogonal to the 1st joining surface of a 1st metal member.

以下、本発明を実施するための形態について図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the following embodiments, and is within the scope of the present invention. It should be understood that design changes, improvements, and the like can be made as appropriate based on the general knowledge of vendors.

(1)超硬合金接合体:
図1Aに示すように、本発明の超硬合金接合体の一実施形態は、炭化タングステン基超硬合金(以下、単に「超硬合金」ということがある。)を含有し、第1の接合面5を有する第1の金属部材2と、第1の金属部材2の第1の接合面5に接合された、鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層4と、第2の接合面6を有し、第2の接合面6が、接合層4の「第1の金属部材2が接合された面とは反対側の面」に接合された、炭化タングステン基超硬合金を含有する第2の金属部材3とを備えるものである。図1Aは、本発明の超硬合金接合体の一実施形態を示し、第1の金属部材2の第1の接合面5に直交する断面を示す模式図である。
(1) Cemented carbide joined body:
As shown in FIG. 1A, one embodiment of the cemented carbide joined body of the present invention contains a tungsten carbide-based cemented carbide (hereinafter sometimes simply referred to as “carbide”), and the first joined A first metal member 2 having a surface 5, and a bonding layer 4 bonded to the first bonding surface 5 of the first metal member 2 and containing iron as a main component and containing carbon and having a copper alloy diffused; The tungsten carbide group having the second bonding surface 6 and bonded to the “surface opposite to the surface to which the first metal member 2 is bonded” of the bonding layer 4. And a second metal member 3 containing a cemented carbide. FIG. 1A is a schematic view showing an embodiment of the cemented carbide joined body of the present invention and showing a cross section orthogonal to the first joining surface 5 of the first metal member 2.

本実施形態の超硬合金接合体1は、超硬合金を含有する第1の金属部材2と超硬合金を含有する第2の金属部材3とを鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層4によって接合されているため、ろう材で超硬合金同士を接合した場合のような低い接合強度の超硬合金接合体ではなく、高い接合強度の超硬合金接合体である。   The cemented carbide joined body 1 of the present embodiment includes a first metal member 2 containing a cemented carbide and a second metal member 3 containing a cemented carbide containing iron as a main component and carbon and a copper alloy. Are bonded by the bonding layer 4 in which the cemented carbide is diffused, so that it is not a cemented carbide bonded body having a low bonding strength as in the case where cemented carbides are bonded to each other with a brazing material, but a cemented carbide bonded body having a high bonding strength. It is.

本実施形態の超硬合金接合体1は、図1Bに示すように、第1の金属部材2及び第2の金属部材3に窪み7等の欠陥があっても、窪み7等が接合層4により埋められているため、窪み7に由来する空隙が少ない、又は有さないものである。これにより、本実施形態の超硬合金接合体1は、非常に接合強度の高いものである。ここで、第1の金属部材及び第2の金属部材の窪み7の大きさは、深さが30μm程度である。図1Bは、図1Aの領域Sを拡大して示す模式図であり、第1の金属部材と接合層4との接合部分、及び第2の金属部材と接合層4との接合部分の、断面を拡大して模式的に示したものである。   As shown in FIG. 1B, the cemented carbide joined body 1 of the present embodiment has the recess 7 or the like in the bonding layer 4 even if the first metal member 2 and the second metal member 3 have defects such as the recess 7. Therefore, there are few or no voids derived from the depressions 7. Thereby, the cemented carbide joined body 1 of this embodiment has very high joining strength. Here, as for the magnitude | size of the hollow 7 of a 1st metal member and a 2nd metal member, the depth is about 30 micrometers. FIG. 1B is a schematic view showing the region S of FIG. 1A in an enlarged manner, and is a cross section of a joint portion between the first metal member and the joint layer 4 and a joint portion between the second metal member and the joint layer 4 Is schematically shown in an enlarged manner.

また、ろう材で超硬合金同士を接合した場合には、ろう材−超硬合金間で空隙が形成されることも、接合強度が低くなる原因である。これに対し、本実施形態の超硬合金接合体1は、鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層4により超硬合金同士を接合している。そして、接合層4内には空隙がないため、超硬合金接合体1は接合強度の高いものである。   Moreover, when cemented carbides are joined with a brazing material, the formation of voids between the brazing material and the cemented carbide also causes a decrease in the joint strength. On the other hand, the cemented carbide joined body 1 of the present embodiment joins cemented carbides together by a joining layer 4 containing iron as a main component, containing carbon and diffusing a copper alloy. And since there is no space | gap in the joining layer 4, the cemented carbide alloy joined body 1 is a thing with high joining strength.

本実施形態の超硬合金接合体1において、接合強度とは、「接合界面部を破断面とする3点曲げ試験」により得られた抗折強度を意味する。   In the cemented carbide joined body 1 of the present embodiment, the joining strength means a bending strength obtained by a “three-point bending test in which a joint interface is a fracture surface”.

本実施形態の超硬合金接合体1において、炭化タングステン基超硬合金とは、炭化タングステンと結合材とが焼結した合金である。結合材は、コバルト(Co)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、及びクロム(Cr)からなる群から選ばれる少なくとも1種の金属であることが好ましい。このような炭化タングステン基超硬合金は、耐摩耗性や機械的強度に特に優れている。本実施形態の超硬合金接合体1を構成する第1の金属部材及び第2の金属部材では、結合材としてコバルトを選択することがより好ましい。   In the cemented carbide joined body 1 of the present embodiment, the tungsten carbide-based cemented carbide is an alloy obtained by sintering tungsten carbide and a binder. The binder is preferably at least one metal selected from the group consisting of cobalt (Co), iron (Fe), nickel (Ni), titanium (Ti), and chromium (Cr). Such a tungsten carbide base cemented carbide is particularly excellent in wear resistance and mechanical strength. In the first metal member and the second metal member constituting the cemented carbide joined body 1 of the present embodiment, it is more preferable to select cobalt as the binder.

結合材としてコバルトが用いられる場合、コバルトの含有率が5〜25質量%であることが好ましい。このコバルトの含有率が、5質量%未満の場合には、超硬合金が脆くなることがある。また、コバルトの含有率が、25質量%を超える場合には、硬度が低くなることがある。   When cobalt is used as the binder, the cobalt content is preferably 5 to 25% by mass. When the cobalt content is less than 5% by mass, the cemented carbide may become brittle. Moreover, when the content rate of cobalt exceeds 25 mass%, hardness may become low.

本実施形態の超硬合金接合体1において、接合層4は、鉄を主成分とし炭素を含むとともに銅合金が拡散しているものである。これは、鉄を主成分として炭素を含む材料に、銅合金が拡散して形成されたものである。上記「鉄を主成分として炭素を含む材料」は、炭素量0.01〜2.2質量%であることが好ましい。「鉄を主成分とする」とは、鉄が50質量%以上含有されていることを意味する。更に、「鉄を主成分として炭素を含む材料」としては、ステンレス鋼や炭素工具鋼、合金工具鋼等を挙げることができる。そして、ステンレス鋼としては、SUS304等を、合金工具鋼としてはSKS等を挙げることができる。   In the cemented carbide bonded body 1 of the present embodiment, the bonding layer 4 includes iron as a main component, carbon, and a copper alloy diffused. This is formed by diffusing a copper alloy in a material containing iron as a main component and carbon. The “material containing iron as a main component and containing carbon” preferably has a carbon content of 0.01 to 2.2% by mass. “Iron-based” means that 50% by mass or more of iron is contained. Furthermore, examples of the “material containing iron as a main component and containing carbon” include stainless steel, carbon tool steel, and alloy tool steel. Examples of stainless steel include SUS304, and examples of alloy tool steel include SKS.

接合層4の厚さは、0.005〜0.5mmが好ましく、0.01〜0.2mmがさらに好ましく、0.01〜0.1mmが特に好ましい。薄過ぎると、拡散している銅の含有率が高くなり接合層の強度が低下するため、接合強度が低下することがある。厚過ぎると、炭化タングステン基超硬合金からコバルトや炭素が接合層側に拡散し易くなるため、炭化タングステン基超硬合金が脆化して超硬合金接合体の接合強度が低下することがあり、また、炭化タングステン基超硬合金接合体の耐摩耗性も低下することがある。   The thickness of the bonding layer 4 is preferably 0.005 to 0.5 mm, more preferably 0.01 to 0.2 mm, and particularly preferably 0.01 to 0.1 mm. If it is too thin, the content of the diffused copper is increased and the strength of the joining layer is lowered, so that the joining strength may be lowered. If it is too thick, it becomes easy for cobalt and carbon to diffuse from the tungsten carbide-based cemented carbide alloy to the bonding layer side, so that the tungsten carbide-based cemented carbide becomes brittle and the bonding strength of the cemented carbide alloy assembly may decrease, In addition, the wear resistance of the tungsten carbide base cemented carbide joined body may also be lowered.

本実施形態の超硬合金接合体1において、第1の金属部材2は、超硬合金を含有するものであるが、超硬合金が100質量%であり、超硬合金からなるものであることが好ましい。また、第2の金属部材3も、超硬合金を含有するものであるが、超硬合金が100質量%であり、超硬合金からなるものであることが好ましい。第1の金属部材2に含有される超硬合金と、第2の金属部材3に含有される超硬合金とは、同じ組成の超硬合金であってもよいし、異なる組成の超硬合金であってもよい。   In the cemented carbide joined body 1 of the present embodiment, the first metal member 2 contains a cemented carbide, but the cemented carbide is 100% by mass and is made of a cemented carbide. Is preferred. Moreover, although the 2nd metal member 3 also contains a cemented carbide alloy, a cemented carbide alloy is 100 mass%, and it is preferable that it consists of a cemented carbide alloy. The cemented carbide contained in the first metal member 2 and the cemented carbide contained in the second metal member 3 may be cemented carbides having the same composition or cemented carbides having different compositions. It may be.

第1の金属部材2及び第2の金属部材3のそれぞれの大きさは、特に限定されず、用途に合わせて、所望の大きさにすることができる。第1の接合面5及び第2の接合面6の面積は、特に限定されないが、360000mm以下であることが好ましい。360000mmより大きいと、面積が大きいために接合強度を高くし難くなることがある。 The magnitude | size of each of the 1st metal member 2 and the 2nd metal member 3 is not specifically limited, It can be made into a desired magnitude | size according to a use. Although the area of the 1st joining surface 5 and the 2nd joining surface 6 is not specifically limited, It is preferable that it is 360,000 mm < 2 > or less. If it is larger than 360000 mm 2 , it may be difficult to increase the bonding strength due to the large area.

第1の金属部材2及び第2の金属部材3のそれぞれの形状は、特に限定されず、任意の形状とすることができる。例えば、板状とすることができる。   Each shape of the 1st metal member 2 and the 2nd metal member 3 is not specifically limited, It can be set as arbitrary shapes. For example, it can be plate-shaped.

接合層4内に拡散している銅合金は、本実施形態の超硬合金接合体1の製造過程において、炭化タングステン基超硬合金と、「鉄を主成分とし炭素を含むもの(例えば、ステンレス鋼)」とを、銅合金箔を間に挟んで接合するときに、銅合金箔を構成する銅合金が「鉄を主成分とし炭素を含むもの(例えば、ステンレス鋼)」内に拡散したものである。   In the manufacturing process of the cemented carbide joined body 1 of the present embodiment, the copper alloy diffusing in the joining layer 4 and the tungsten carbide based cemented carbide and “the one whose main component is iron and containing carbon (for example, stainless steel) Steel) ", when the copper alloy foil is sandwiched between them, the copper alloy constituting the copper alloy foil is diffused into" the iron-based material containing carbon (for example, stainless steel) " It is.

次に、本発明の超硬合金接合体の他の実施形態について説明する。   Next, another embodiment of the cemented carbide joined body of the present invention will be described.

図2に示すように、本発明の超硬合金接合体の他の実施形態は、上記本発明の超硬合金接合体の一実施形態において、第1の金属部材2が、一方の面が第1の接合面5である板状であり、第2の金属部材3が、一方の面が第2の接合面6である板状であり、第1の金属部材2の、第1の接合面5とは反対側の面に接合され、第1の金属部材2と接合する第3の接合面13を有する、銅合金14が内部に拡散した、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体から構成された板状の第3の金属部材12を更に備えるものである。図2は、本発明の超硬合金接合体の他の実施形態を示し、第1の金属部材2の第1の接合面5に直交する断面を示す模式図である。   As shown in FIG. 2, another embodiment of the cemented carbide joined body of the present invention is the same as the embodiment of the cemented carbide joined body of the present invention, in which the first metal member 2 is the first side. 1 is a plate-like shape which is a joining surface 5, the second metal member 3 is a plate-like shape whose one surface is a second joining surface 6, and the first joining surface of the first metal member 2 5, having a third joint surface 13 joined to the surface opposite to the first metal member 2, copper alloy 14 diffused therein, martensitic transformation, bainite transformation by cooling of the austenite phase, And a plate-like third metal member 12 made of a metal body capable of causing at least one of the three phase transformations of the pearlite transformation. FIG. 2 is a schematic view showing another embodiment of the cemented carbide joined body of the present invention and showing a cross section orthogonal to the first joining surface 5 of the first metal member 2.

本実施形態の超硬合金接合体は、上記本発明の超硬合金接合体の一実施形態の第1の金属部材2の表面(第1の接合面5とは反対側の面)に、第3の金属部材12が配設されたものである。本実施形態の超硬合金接合体は、炭化タングステン基超硬合金同士が接合層を介して強固に接合され、炭化タングステン基超硬合金(第1の金属部材2)と、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体(第3の金属部材12)とが強固に接合されたものである。本実施形態の超硬合金接合体において、第1の金属部材2と第3の金属部材12とは、第1の金属部材2と第3の金属部材12との間に銅合金箔を挟み、加熱及び加圧することにより接合されたものである。そのため、第1の金属部材2と第3の金属部材12との接合時に、銅合金箔を構成する銅合金が、前記第3の金属部材12内に拡散し、第1の金属部材2と第3の金属部材12とが強固に接合される。そのため、本実施形態の超硬合金接合体においては、第3の金属部材12の第3の接合面13側の端部に、銅合金14が拡散している。   The cemented carbide joined body of the present embodiment is provided on the surface of the first metal member 2 of the embodiment of the cemented carbide joined body of the present invention (surface opposite to the first joined surface 5). 3 metal members 12 are disposed. In the cemented carbide joined body of this embodiment, tungsten carbide-based cemented carbides are firmly joined to each other through a joining layer, and the tungsten carbide-based cemented carbide (first metal member 2) and the austenite phase are cooled. A metal body (third metal member 12) capable of causing at least one of the three phase transformations of martensitic transformation, bainite transformation, and pearlite transformation is firmly bonded. In the cemented carbide joined body of the present embodiment, the first metal member 2 and the third metal member 12 sandwich a copper alloy foil between the first metal member 2 and the third metal member 12, Joined by heating and pressurizing. Therefore, at the time of joining the first metal member 2 and the third metal member 12, the copper alloy constituting the copper alloy foil diffuses into the third metal member 12, and the first metal member 2 and the first metal member 2 3 metal members 12 are firmly joined. Therefore, in the cemented carbide joined body of the present embodiment, the copper alloy 14 is diffused at the end of the third metal member 12 on the third joint surface 13 side.

本実施形態の超硬合金接合体において、第3の金属部材12を構成する、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体は、オーステナイト相を含む金属体であり、公知のステンレス鋼等を用いることができる。例えば、SUS630等を挙げることができる。   In the cemented carbide joined body of the present embodiment, at least one phase transformation among the three phase transformations of martensite transformation, bainite transformation, and pearlite transformation is performed by cooling the austenite phase that constitutes the third metal member 12. The metal body that can be raised is a metal body containing an austenite phase, and known stainless steel or the like can be used. For example, SUS630 etc. can be mentioned.

本実施形態の超硬合金接合体において、第1の金属部材2、第2の金属部材3及び第3の金属部材12は、板状であることが好ましい。第1の金属部材2、第2の金属部材3及び第3の金属部材12のそれぞれの形状は、板状であること以外は特に限定されず、任意の形状とすることができる。また、第1の金属部材2、第2の金属部材3及び第3の金属部材12のそれぞれの大きさは、特に限定されないが、それぞれの厚さは、0.1〜100mmが好ましく、それぞれの面積(厚さ方向に直交する断面の面積)は25〜360000mmが好ましい。 In the cemented carbide joined body of the present embodiment, the first metal member 2, the second metal member 3, and the third metal member 12 are preferably plate-shaped. Each shape of the 1st metal member 2, the 2nd metal member 3, and the 3rd metal member 12 is not specifically limited except that it is plate shape, It can be set as arbitrary shapes. Moreover, although each magnitude | size of the 1st metal member 2, the 2nd metal member 3, and the 3rd metal member 12 is not specifically limited, Each thickness is preferable 0.1-100 mm, The area (area of a cross section perpendicular to the thickness direction) is preferably 25 to 360000 mm 2 .

(2)ハニカム構造体成形用口金:
次に、本発明のハニカム構造体成形用口金について説明する。本発明のハニカム構造体成形用口金の一実施形態は、図3〜図6に示すように、上記本発明の超硬合金接合体の一実施形態において「第1の金属部材2が、成形原料を導入するための貫通孔である裏孔24が形成された第1の板状部材22であり、第2の金属部材3が、裏孔24に連通し、成形原料をハニカム形状に成形するための格子状のスリット25が形成された第2の板状部材23であり、第1の板状部材22の接合層4が接合されている側の面に、第2の板状部材23のスリット25に重なるように格子状に形成されるとともに裏孔24に連通する溝部26が形成され、接合層4の、少なくとも第2の板状部材23のスリット25に重なる部分に、貫通孔(接合層の貫通孔)27が形成された」構造の超硬合金接合体21を備えるものである。本実施形態のハニカム構造体成形用口金100は超硬合金接合体21からなるものであってもよいし、他の要素が含まれていてもよい。
(2) Die for forming honeycomb structure:
Next, the die for forming a honeycomb structure of the present invention will be described. As shown in FIGS. 3 to 6, an embodiment of the honeycomb structure forming die of the present invention is the same as the embodiment of the cemented carbide joined body of the present invention, wherein “the first metal member 2 is a forming raw material. The first plate-like member 22 is formed with a back hole 24 that is a through-hole for introducing gas, and the second metal member 3 communicates with the back hole 24 to form a forming raw material into a honeycomb shape. The second plate-like member 23 in which the lattice-like slits 25 are formed, and the slit of the second plate-like member 23 is formed on the surface of the first plate-like member 22 on the side where the joining layer 4 is joined. Grooves 26 are formed in a lattice pattern so as to overlap 25 and communicate with the back holes 24, and through holes (bonding layers) are formed in portions of the bonding layer 4 overlapping at least the slits 25 of the second plate-like member 23. A cemented carbide joined body 21 having a structure in which a through hole 27) is formed. It is. The honeycomb structure forming die 100 of the present embodiment may be made of cemented carbide joined body 21 or may contain other elements.

図3は、本発明のハニカム構造体成形用口金の一実施形態を模式的に示す斜視図である。図4は、本発明のハニカム構造体成形用口金の一実施形態を模式的に示す斜視図である。図5は、本発明のハニカム構造体成形用口金の一実施形態の第2の板状部材側から見た部分平面図である。図6は、図5のA−A’断面を示す模式図である。   FIG. 3 is a perspective view schematically showing one embodiment of a die for forming a honeycomb structure of the present invention. FIG. 4 is a perspective view schematically showing one embodiment of a die for forming a honeycomb structure of the present invention. FIG. 5 is a partial plan view of the honeycomb structure forming die according to an embodiment of the present invention as viewed from the second plate member side. FIG. 6 is a schematic diagram showing the A-A ′ cross section of FIG. 5.

このように、本実施形態のハニカム構造体成形用口金100は、上記本発明の超硬合金接合体の一実施形態において、第2の金属部材3がスリット25が形成された第2の板状部材23であり、第1の金属部材2が裏孔24が形成された第1の板状部材22であるもの(超硬合金接合体)を備えるものであるため、材質が超硬合金であることにより裏孔24、スリット25及び溝部26の部分が摩耗し難く、第1の板状部材22と第2の板状部材23との接合強度が高いものである。   As described above, the honeycomb structure forming die 100 of the present embodiment is the second plate-like shape in which the second metal member 3 is formed with the slits 25 in the embodiment of the cemented carbide joined body of the present invention. Since the first metal member 2 is the member 23 and the first metal member 2 is the first plate-like member 22 in which the back hole 24 is formed (a cemented carbide joined body), the material is a cemented carbide. Thus, the back hole 24, the slit 25, and the groove 26 are not easily worn, and the bonding strength between the first plate member 22 and the second plate member 23 is high.

図3〜図6に示される超硬合金接合体21(ハニカム構造体成形用口金100)は、第1の金属部材2が、成形原料を導入するための貫通孔である裏孔24が形成された第1の板状部材22である。超硬合金接合体21をハニカム構造体成形用口金として用いる場合、裏孔24からハニカム構造体の成形原料を導入する。   In the cemented carbide joined body 21 (honeycomb structure forming die 100) shown in FIGS. 3 to 6, the first metal member 2 is provided with a back hole 24 which is a through hole for introducing a forming raw material. This is the first plate-like member 22. When the cemented carbide joined body 21 is used as a die for forming a honeycomb structure, a forming raw material for the honeycomb structure is introduced from the back hole 24.

超硬合金接合体21(ハニカム構造体成形用口金100)は、第2の金属部材3が、裏孔24に連通し、成形原料をハニカム形状に成形するための格子状のスリット25が形成された、第2の板状部材23である。更に、第1の板状部材22の接合層4が接合されている側の面に、第2の板状部材23のスリット25に重なるように格子状に形成されるとともに裏孔24に連通する溝部26が形成されている。溝部26の幅(第1の板状部材22の表面に平行な断面における幅)は、スリット25の幅(第2の板状部材23の表面に平行な断面における幅)より広いものが好ましい。そして、接合層4の、少なくとも第2の板状部材23のスリット25に重なる部分に、貫通孔(接合層の貫通孔)27が形成されている。これは、接合層4に形成される貫通孔27は、第2の板状部材23のスリット25に重なる部分のみに形成されていてもよいし、第1の板状部材22の裏孔24及び溝部26に重なる部分に形成されていてもよいことを意味する。ここで、「接合層4の、第2の板状部材23のスリット25に重なる部分に、貫通孔27が形成されている」とは、第2の板状部材23の表面に平行な断面におけるスリット25の形状と、接合層4の表面に平行な断面における貫通孔27の形状とが同じになるように、貫通孔27が形成されていることを意味する。また、「接合層4の、第1の板状部材22の裏孔24及び溝部26に重なる部分に、貫通孔27が形成されている」とは、第1の板状部材22の表面に平行な断面における裏孔24及び溝部26の形状と、接合層4の表面に平行な断面における貫通孔27の形状とが同じになるように、貫通孔27が形成されることを意味する。尚、接合層4のスリット25に重なる部分に孔を開けると、接合層4は、スリット25の形状に沿って切り離され、離間する複数の領域(分割領域)に分割されることになるが、このような形状においても、スリット25の形状に沿った「隣接する各分割領域間の隙間」を、貫通孔27とする。接合層4の貫通孔27は、成形原料が通過するための孔である。また、裏孔24は、溝部26の交差点(スリット25の交差点)に位置するように形成されている(図3〜図6に示すハニカム構造体成形用口金100においては、裏孔24が、スリット25(又は溝部26)の交点のなかで、一つ置きの交点の位置に形成されている。)。超硬合金接合体21をハニカム構造体成形用口金として用いる場合、裏孔24から導入された成形原料が、溝部26を通って、スリット25に入り、スリット25の開口部から押しされて、ハニカム形状の成形体(ハニカム構造体)が形成される。   In the cemented carbide bonded body 21 (honeycomb structure forming die 100), the second metal member 3 communicates with the back hole 24, and lattice-like slits 25 for forming the forming raw material into a honeycomb shape are formed. In addition, the second plate-like member 23 is provided. Further, the first plate-like member 22 is formed in a lattice shape so as to overlap the slit 25 of the second plate-like member 23 on the surface where the bonding layer 4 is bonded, and communicates with the back hole 24. A groove portion 26 is formed. The width of the groove 26 (width in the cross section parallel to the surface of the first plate member 22) is preferably wider than the width of the slit 25 (width in the cross section parallel to the surface of the second plate member 23). A through hole (a through hole of the bonding layer) 27 is formed in a portion of the bonding layer 4 that overlaps at least the slit 25 of the second plate member 23. As for this, the through-hole 27 formed in the joining layer 4 may be formed only in the part which overlaps with the slit 25 of the 2nd plate-shaped member 23, and the back hole 24 of the 1st plate-shaped member 22 and It means that it may be formed in a portion overlapping the groove 26. Here, “the through-hole 27 is formed in a portion of the bonding layer 4 that overlaps the slit 25 of the second plate-like member 23” means in a cross section parallel to the surface of the second plate-like member 23. It means that the through hole 27 is formed so that the shape of the slit 25 and the shape of the through hole 27 in the cross section parallel to the surface of the bonding layer 4 are the same. Further, “the through hole 27 is formed in a portion of the bonding layer 4 that overlaps the back hole 24 and the groove 26 of the first plate-like member 22” is parallel to the surface of the first plate-like member 22. This means that the through hole 27 is formed such that the shape of the back hole 24 and the groove 26 in a simple cross section and the shape of the through hole 27 in the cross section parallel to the surface of the bonding layer 4 are the same. In addition, when a hole is opened in a portion of the bonding layer 4 that overlaps the slit 25, the bonding layer 4 is cut along the shape of the slit 25 and divided into a plurality of separated regions (divided regions). Even in such a shape, a “gap between adjacent divided regions” along the shape of the slit 25 is defined as a through hole 27. The through hole 27 of the bonding layer 4 is a hole through which the forming raw material passes. Further, the back hole 24 is formed so as to be positioned at the intersection of the groove portions 26 (intersection of the slit 25) (in the honeycomb structure forming die 100 shown in FIGS. 3 to 6, the back hole 24 is a slit. 25 (or grooves 26) are formed at every other intersection. When the cemented carbide joined body 21 is used as a die for forming a honeycomb structure, the forming raw material introduced from the back hole 24 passes through the groove portion 26 and enters the slit 25 and is pushed from the opening portion of the slit 25 to form the honeycomb structure. A shaped compact (honeycomb structure) is formed.

第1の板状部材22は、溝部26及び裏孔24の一部によって区画形成された複数の柱状部28を有している。本実施形態のハニカム構造体成形用口金100は、上記のように、第1の板状部材22の、接合層4との接合面側に、柱状部28が形成されているため、柱状部28及び接合層4を介して第1の板状部材22と第2の板状部材23とが接合される構造になっている。   The first plate-like member 22 has a plurality of columnar portions 28 that are defined by a groove portion 26 and a part of the back hole 24. In the honeycomb structure forming die 100 of the present embodiment, since the columnar portion 28 is formed on the bonding surface side of the first plate-like member 22 with the bonding layer 4 as described above, the columnar portion 28 is formed. In addition, the first plate member 22 and the second plate member 23 are bonded via the bonding layer 4.

本実施形態のハニカム構造体成形用口金100においては、第1の板状部材22の裏孔24から導入された成形原料は、溝部26まで到達し、その後に、スリット25に導入される。溝部26は、裏孔24から導入した成形原料をスリット25に導くための緩衝部分(バッファ)としても機能するため、ハニカム構造体の押出成形を行う際に、裏孔24から導入した成形原料を支障なく滑らかに移動させることができ、高精度にハニカム構造体を成形することができる。一方、スリット25の幅が非常に狭いため、溝部26内の圧力が高くなり、柱状部28に応力が集中し易い構造でもある。そのため、柱状部28が摩耗し易く、変形することもある。そのため、本実施形態のハニカム構造体成形用口金100は、柱状部28を有する第1の板状部材22の材質として、耐摩耗性及び強度の高い炭化タングステン基超硬合金を採用することにより、柱状部28の耐摩耗性及び強度を向上させている。また、本実施形態のハニカム構造体成形用口金100は、第2の板状部材23も、炭化タングステン基超硬合金を含むもの(好ましくは、炭化タングステン基超硬合金)であるため、押出成形時の成形原料によるスリット25部分の摩耗も抑制される。   In the honeycomb structure forming die 100 of the present embodiment, the forming raw material introduced from the back hole 24 of the first plate-like member 22 reaches the groove 26 and is then introduced into the slit 25. The groove portion 26 also functions as a buffer portion (buffer) for guiding the forming raw material introduced from the back hole 24 to the slit 25. Therefore, when the honeycomb structure is extruded, the forming raw material introduced from the back hole 24 is used. It can be moved smoothly without hindrance, and the honeycomb structure can be formed with high accuracy. On the other hand, since the width of the slit 25 is very narrow, the pressure in the groove 26 is increased, and stress is easily concentrated on the columnar portion 28. Therefore, the columnar portion 28 is easily worn and may be deformed. Therefore, the honeycomb structure forming die 100 of the present embodiment employs a tungsten carbide-based cemented carbide with high wear resistance and strength as the material of the first plate-like member 22 having the columnar portion 28. The wear resistance and strength of the columnar portion 28 are improved. In addition, in the honeycomb structure forming die 100 of the present embodiment, the second plate member 23 also includes a tungsten carbide-based cemented carbide (preferably a tungsten carbide-based cemented carbide). The wear of the slit 25 due to the molding material at the time is also suppressed.

本実施形態のハニカム構造体成形用口金100において、溝部26の深さ(柱状部28の高さ)Lは、0.1〜3.0mmが好ましく、0.3〜1.5mmがさらに好ましい。0.1mmより小さいと、高い成形性を実現できないことがあり、3.0mmより大きいと、スリット25により区画形成されたセルブロック29が倒れ易くなることがある。溝部26の幅は、0.01〜5mmが好ましく、0.1〜1mmがさらに好ましい。0.01mmより小さいと、スリット25を高精度に加工することが難しくなることがあり、5mmより大きいと、溝部26により区画形成された柱状部28が倒れ易くなることがある。   In the honeycomb structure forming die 100 of the present embodiment, the depth L of the groove portion 26 (height of the columnar portion 28) L is preferably 0.1 to 3.0 mm, and more preferably 0.3 to 1.5 mm. If it is smaller than 0.1 mm, high moldability may not be realized, and if it is larger than 3.0 mm, the cell block 29 partitioned by the slit 25 may be easily collapsed. The width of the groove 26 is preferably 0.01 to 5 mm, and more preferably 0.1 to 1 mm. If it is smaller than 0.01 mm, it may be difficult to process the slit 25 with high accuracy, and if it is larger than 5 mm, the columnar part 28 partitioned by the groove part 26 may easily fall down.

また、スリット25の幅については、成形するハニカム構造体の形状によって適宜決定することができる。なお、例えば、一般的な形状のハニカム構造体を押出成形するためのハニカム構造体成形用口金であれば、スリットの幅が5〜5000μmであることが好ましく、10〜500μmであることが更に好ましい。また、隣接するスリット25間の距離は、成形するハニカム構造体の形状によって適宜決定することができる。   Further, the width of the slit 25 can be appropriately determined depending on the shape of the honeycomb structure to be formed. For example, in the case of a honeycomb structure forming die for extruding a honeycomb structure having a general shape, the slit width is preferably 5 to 5000 μm, and more preferably 10 to 500 μm. . Moreover, the distance between the adjacent slits 25 can be appropriately determined depending on the shape of the honeycomb structure to be formed.

図3〜図6に示すように、本実施形態のハニカム構造体成形用口金100においては、ハニカム構造体成形用口金100の中央部の円形の領域にスリット25、裏孔24、及び溝部26が形成されているが、スリット等の形成される領域については、上記に限定されることはなく、例えば、ハニカム構造体成形用口金100の中央部の四角形、六角形、八角形等の領域にスリット等が形成されたものであってもよい。   As shown in FIGS. 3 to 6, in the honeycomb structure forming die 100 of the present embodiment, a slit 25, a back hole 24, and a groove portion 26 are formed in a circular region at the center of the honeycomb structure forming die 100. Although formed, the region where the slit is formed is not limited to the above. For example, the slit is formed in the region of the central part of the honeycomb structure forming die 100 such as a quadrangle, hexagon, or octagon. Etc. may be formed.

ハニカム構造体成形用口金100の裏孔24の形状については、導入された成形原料をスリット25に導くことができるような形状であれば特に制限はない。裏孔24の開口径の大きさ等については、ハニカム構造体成形用口金100の大きさや、押出成形するハニカム構造体の形状等によって適宜決定することができる。例えば、裏孔24の開口径の大きさは、0.1〜10mmであることが好ましく、0.5〜3mmであることが更に好ましい。このような裏孔24は、例えば、電解加工(ECM加工)、放電加工(EDM加工)、レーザ加工、ドリル等の機械加工等による従来公知の方法によって形成することができる。また、裏孔24は、第1の板状部材22の厚さ方向に平行に形成されていることが好ましい。   The shape of the back hole 24 of the die for forming a honeycomb structure 100 is not particularly limited as long as the introduced forming raw material can be guided to the slit 25. The size of the opening diameter of the back hole 24 and the like can be appropriately determined depending on the size of the honeycomb structure forming die 100, the shape of the honeycomb structure to be extruded, and the like. For example, the opening diameter of the back hole 24 is preferably 0.1 to 10 mm, and more preferably 0.5 to 3 mm. Such a back hole 24 can be formed by, for example, a conventionally known method such as electrolytic processing (ECM processing), electric discharge processing (EDM processing), laser processing, mechanical processing such as a drill. Further, the back hole 24 is preferably formed in parallel with the thickness direction of the first plate-like member 22.

第1の板状部材22及び第2の板状部材23の厚さについては特に制限はなく、例えば、スリット25と裏孔24との一般的な形状を考慮して適宜決定することができる。例えば、一般的形状のハニカム構造体成形用口金を製造する場合には、第2の板状部材22の厚さに対する、第1の板状部材22の厚さの比の値(第1の板状部材22の厚さ/第2の板状部材23の厚さ)が、0.1〜200であることが好ましく、1〜10であることが更に好ましい。   The thicknesses of the first plate-like member 22 and the second plate-like member 23 are not particularly limited, and can be appropriately determined in consideration of the general shapes of the slit 25 and the back hole 24, for example. For example, when a honeycomb structure forming die having a general shape is manufactured, the value of the ratio of the thickness of the first plate member 22 to the thickness of the second plate member 22 (first plate The thickness of the sheet-like member 22 / the thickness of the second plate-like member 23) is preferably 0.1 to 200, and more preferably 1 to 10.

次に、本発明のハニカム構造体成形用口金の他の実施形態について説明する。   Next, another embodiment of the die for forming a honeycomb structure of the present invention will be described.

図7に示すように、本実施形態のハニカム構造体成形用口金200は、上記本発明の超硬合金接合体の他の実施形態において「第1の金属部材2及び第3の金属部材12が、成形原料を導入するための貫通孔である裏孔34が形成された第1の板状部材32であり、第2の金属部材3が、裏孔34に連通し、成形原料をハニカム形状に成形するための格子状のスリット35が形成された第2の板状部材33であり、第1の板状部材32の接合層4に接合される面側に、第2の板状部材33のスリット35に重なるように格子状に形成されるとともに裏孔34に連通する溝部36が形成され、接合層4の、第1の板状部材32の裏孔34及び溝部36に重なる部分に、貫通孔(接合層の貫通孔)37が形成された構造の超硬合金接合体31を備えるものである。本実施形態のハニカム構造体成形用口金200は、超硬合金接合体31からなるものであってもよいし、他の要素が含まれていてもよい。図7は、本発明のハニカム構造体成形用口金の他の実施形態を示し、第1の板状部材の第1の接合面に直交する断面の一部を示す模式図である。   As shown in FIG. 7, the honeycomb structure forming die 200 of the present embodiment is different from the cemented carbide joined body according to another embodiment of the present invention in that “the first metal member 2 and the third metal member 12 are included. The first plate member 32 is formed with a back hole 34 which is a through hole for introducing the forming raw material, and the second metal member 3 communicates with the back hole 34 so that the forming raw material has a honeycomb shape. The second plate-like member 33 is formed with a grid-like slit 35 for molding, and the second plate-like member 33 is formed on the surface side to be joined to the joining layer 4 of the first plate-like member 32. Grooves 36 are formed so as to overlap the slits 35 and communicate with the back holes 34, and the bonding layers 4 penetrate through the portions that overlap the back holes 34 and the grooves 36 of the first plate member 32. A cemented carbide joined body 31 having a structure in which a hole (through-hole in the joining layer) 37 is formed is provided. The die 200 for forming a honeycomb structure of the present embodiment may be composed of a cemented carbide joined body 31 or may include other elements. FIG. 6 is a schematic diagram showing another embodiment of the die for forming a honeycomb structure of the invention and showing a part of a cross section orthogonal to the first joining surface of the first plate-like member.

本実施形態のハニカム構造体成形用口金200は、図3〜図6に示される上記本発明のハニカム構造体成形用口金の一実施形態(ハニカム構造体成形用口金100)の、第1の板状部材22(第1の金属部材2)の「接合層が配設されていない側の面」に、第3の金属部材12(図7を参照)が接合された構造である。そして、ハニカム構造体成形用口金200の第1の板状部材32(図7を参照)は、ハニカム構造体成形用口金100の第1の板状部材22(第1の金属部材2)(図6を参照)と、第3の金属部材12(図7を参照)とを、合わせた部分である。ハニカム構造体成形用口金200は、柱状部38付近が摩耗し易く、炭化タングステン基超硬合金を使用する必要のある部分である。そのため、本実施形態のハニカム構造体成形用口金200では、第1の板状部材32の柱状部付近(第1の金属部材2)を炭化タングステン基超硬合金とし、他の部分(第3の金属部材12)を銅が拡散するステンレス鋼としている。これにより、第3の金属部材12は加工し易いため、生産効率を向上させることができる。また、炭化タングステン基超硬合金より、銅及びステンレス鋼のほうが安価であるため、製造コストを低下させることが可能である。   The honeycomb structure forming die 200 of the present embodiment is a first plate of one embodiment (honeycomb structure forming die 100) of the honeycomb structure forming die of the present invention shown in FIGS. The third metal member 12 (see FIG. 7) is bonded to the “surface on which the bonding layer is not provided” of the shaped member 22 (first metal member 2). The first plate-like member 32 (see FIG. 7) of the honeycomb structure forming die 200 is the first plate-like member 22 (first metal member 2) of the honeycomb structure forming die 100 (see FIG. 7). 6) and the third metal member 12 (see FIG. 7) are combined. The honeycomb structure forming die 200 is a portion where the vicinity of the columnar portion 38 is easily worn, and a tungsten carbide-based cemented carbide needs to be used. Therefore, in the honeycomb structure forming die 200 of this embodiment, the vicinity of the columnar portion (first metal member 2) of the first plate-like member 32 is made of a tungsten carbide-based cemented carbide and the other portion (third The metal member 12) is made of stainless steel in which copper diffuses. Thereby, since the 3rd metal member 12 is easy to process, production efficiency can be improved. Moreover, since copper and stainless steel are cheaper than tungsten carbide base cemented carbide, manufacturing cost can be reduced.

第3の金属部材12の厚さは、溝部36の深さ(柱状部38の高さ)より厚いことが好ましく、溝部36の深さ(柱状部38の高さ)より0.1〜100mm厚いことが更に好ましい。また、第1の金属部材2の厚さは、0.1〜100mmであることが好ましく、10〜50mmであることが更に好ましい。   The thickness of the third metal member 12 is preferably thicker than the depth of the groove 36 (height of the columnar portion 38), and is 0.1 to 100 mm thicker than the depth of the groove 36 (height of the columnar portion 38). More preferably. Further, the thickness of the first metal member 2 is preferably 0.1 to 100 mm, and more preferably 10 to 50 mm.

(3)超硬合金接合体の製造方法:
次に、本発明の超硬合金接合体の製造方法の一実施形態について説明する。本実施形態の超硬合金接合体の製造方法は、図8に示すように、炭化タングステン基超硬合金を含有し、第1の接合面45を有する第1の金属部材42と、炭化タングステン基超硬合金を含有し、第2の接合面46を有する第2の金属部材43と、炭素を含有し鉄を主成分とする薄板44とを、第1の接合面45と第2の接合面46とが薄板44を間に挟んで向かい合うようにするとともに、第1の金属部材42と薄板44との間及び第2の金属部材43と薄板44との間にそれぞれ銅合金箔47を配置した状態で、積層し、700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、第1の金属部材42と第2の金属部材43とを薄板44を介して接合するものである。そして、これにより、上記本発明の超硬合金接合体の一実施形態(図1A、図1Bを参照)を得ることができる。第1の金属部材42と第2の金属部材43とを薄板44を介して接合するとは、第1の金属部材42と第2の金属部材43とを、薄板44を間に挟んだ状態で、接合するという意味である。図8は、本発明の超硬合金接合体の製造方法の一実施形態において、第1の金属部材42と第2の金属部材43とを、「炭素を含有し鉄を主成分とする薄板44」を間に挟むと共に、「第1の金属部材42と上記薄板44との間、及び第2の金属部材43と上記薄板44との間」にそれぞれ銅合金箔47を挟んだ状態で重ね合わせるときの、それぞれの配置を示し、第1の金属部材の第1の接合面に直交する断面を示す模式図である。
(3) Manufacturing method of cemented carbide joined body:
Next, an embodiment of a method for producing a cemented carbide joined body of the present invention will be described. As shown in FIG. 8, the manufacturing method of the cemented carbide joined body according to the present embodiment includes a first metal member 42 containing a tungsten carbide-based cemented carbide and having a first joining surface 45, and a tungsten carbide-based material. A second metal member 43 containing a cemented carbide and having a second joining surface 46, and a thin plate 44 containing carbon and containing iron as a main component, the first joining surface 45 and the second joining surface. 46 are arranged so as to face each other with the thin plate 44 interposed therebetween, and copper alloy foils 47 are arranged between the first metal member 42 and the thin plate 44 and between the second metal member 43 and the thin plate 44, respectively. In this state, the first metal member 42 and the second metal member 43 are joined through the thin plate 44 by being laminated and pressed at a temperature of 700 to 1200 ° C. with a pressure of 0.1 to 5 MPa. It is. And thereby, one Embodiment (refer FIG. 1A and FIG. 1B) of the cemented carbide alloy joined body of the said invention can be obtained. Joining the first metal member 42 and the second metal member 43 via the thin plate 44 means that the first metal member 42 and the second metal member 43 are sandwiched between the thin plates 44, It means to join. FIG. 8 shows an embodiment of the method for producing a cemented carbide alloy body according to the present invention. ”Between the first metal member 42 and the thin plate 44 and between the second metal member 43 and the thin plate 44 with the copper alloy foil 47 interposed therebetween. It is a schematic diagram which shows each arrangement | positioning and shows a cross section orthogonal to the 1st joining surface of a 1st metal member.

第1の金属部材42は、超硬合金を含有するものであるが、超硬合金が100質量%であり、超硬合金からなるものであることが好ましい。また、第2の金属部材43も、超硬合金を含有するものであるが、超硬合金が100質量%であり、超硬合金からなるものであることが好ましい。   Although the 1st metal member 42 contains a cemented carbide alloy, it is preferable that a cemented carbide alloy is 100 mass% and consists of a cemented carbide alloy. Moreover, although the 2nd metal member 43 also contains a cemented carbide alloy, a cemented carbide alloy is 100 mass%, and it is preferable that it consists of a cemented carbide alloy.

このように、超硬合金を含有する第1の金属部材42と、超硬合金を含有する第2の金属部材43とを、「炭素を含有し鉄を主成分とする薄板44」を間に挟むと共に、「第1の金属部材42と上記薄板44との間、及び第2の金属部材43と上記薄板44との間」にそれぞれ銅合金箔47を挟んだ状態で重ね合わせて(積層して)、所定の温度、圧力条件で接合させることにより、第1の金属部材42と薄板44とが強固に接合され、第2の金属部材43と薄板44とが強固に接合される。このとき、第1の金属部材42と薄板44とが接合される際には、間に挟まれていた銅合金箔47が薄板44内に拡散し、第1の金属部材42と薄板44とが直接接合される。そして、第2の金属部材43と薄板44とが接合される際には、間に挟まれていた銅合金箔47が薄板44内に拡散し、第2の金属部材43と薄板44とが直接接合される。これにより、第1の金属部材42と第2の金属部材43とが、薄板44を介して強固に接合されることになる。第1の金属部材42と第2の金属部材43とが、薄板44を介して接合されて形成される超硬合金接合体においては、薄板44が接合層となる。つまり、「炭素を含有し鉄を主成分とする薄板44」に銅合金が拡散して、「鉄を主成分とし炭素を含むとともに銅合金が拡散している接合層」になる。   In this way, the first metal member 42 containing the cemented carbide and the second metal member 43 containing the cemented carbide are interleaved with the “thin plate 44 containing carbon and containing iron as a main component”. In addition, the copper alloy foil 47 is overlapped (laminated) between the “first metal member 42 and the thin plate 44 and between the second metal member 43 and the thin plate 44”. Thus, the first metal member 42 and the thin plate 44 are firmly joined and the second metal member 43 and the thin plate 44 are firmly joined by joining them under predetermined temperature and pressure conditions. At this time, when the first metal member 42 and the thin plate 44 are joined, the copper alloy foil 47 sandwiched between them diffuses into the thin plate 44, and the first metal member 42 and the thin plate 44 are joined together. Directly joined. When the second metal member 43 and the thin plate 44 are joined, the copper alloy foil 47 sandwiched therebetween diffuses into the thin plate 44, and the second metal member 43 and the thin plate 44 are directly connected. Be joined. Thereby, the first metal member 42 and the second metal member 43 are firmly bonded via the thin plate 44. In the cemented carbide joined body formed by joining the first metal member 42 and the second metal member 43 via the thin plate 44, the thin plate 44 serves as a bonding layer. That is, the copper alloy diffuses in “the thin plate 44 containing carbon and containing iron as a main component”, and becomes “a bonding layer in which iron is the main component and contains carbon and the copper alloy is diffused”.

また、第1の金属部材42及び第2の金属部材43に、図1Aに示す第1の金属部材2及び第2の金属部材3の窪み7等のような欠陥があっても、当該「窪み」等が接合時に薄板44により埋められるため、「窪み」に由来する空隙が少ない、又は有さない超硬合金接合体を作製することができる。これにより、得られた超硬合金接合体は、非常に接合強度の高いものである。   Further, even if the first metal member 42 and the second metal member 43 have defects such as the depression 7 of the first metal member 2 and the second metal member 3 shown in FIG. ”And the like are filled with the thin plate 44 at the time of joining, so that a cemented carbide joined body with few or no voids derived from“ dents ”can be produced. Thereby, the cemented carbide joined body obtained has a very high joining strength.

第1の金属部材42及び第2の金属部材43の形状、大きさ等の条件は、上記本発明の超硬合金接合体の一実施形態における、第1の金属部材2及び第2の金属部材3(図1A、図1Bを参照)が得られるように適宜決定することができる。   The conditions such as the shape and size of the first metal member 42 and the second metal member 43 are the first metal member 2 and the second metal member in one embodiment of the cemented carbide joined body of the present invention. 3 (see FIGS. 1A and 1B) can be determined as appropriate.

薄板44の厚さは、0.005〜0.5mmが好ましく、0.01〜0.2mmがさらに好ましく、0.01〜0.1mmが特に好ましい。0.005mmより薄いと、接合層の銅合金の拡散量が多くなるため、第1の金属部材42と第2の金属部材43との接合強度が低下することがある。0.5mmより厚いと、炭化タングステン基超硬合金からコバルトや炭素が接合層側に拡散し易くなるため、接合強度が低くなることがある。薄板44の材質は、上記本発明の超硬合金接合体の一実施形態における「接合層」の材質と同じであることが好ましい。   The thickness of the thin plate 44 is preferably 0.005 to 0.5 mm, more preferably 0.01 to 0.2 mm, and particularly preferably 0.01 to 0.1 mm. If the thickness is less than 0.005 mm, the amount of diffusion of the copper alloy in the bonding layer increases, and the bonding strength between the first metal member 42 and the second metal member 43 may decrease. If it is thicker than 0.5 mm, cobalt and carbon are likely to diffuse from the tungsten carbide-based cemented carbide alloy toward the bonding layer, so that the bonding strength may be lowered. The material of the thin plate 44 is preferably the same as the material of the “joining layer” in one embodiment of the cemented carbide joined body of the present invention.

また、薄板44の炭素含有量は0.06〜2.14質量%であることが好ましく、0.8〜2.14質量%であることが更に好ましく、0.8〜1.3質量%であることが特に好ましい。また、薄板44の硫黄含有量は、0.030質量%以下が好ましく、0.019質量%以下が更に好ましく、0.015質量%以下が特に好ましい。硫黄含有量が、0.030質量%を超えると、超硬合金と特定ステンレス鋼との間の接合強度が低下し、接合はがれが生じやすくなることがある。   The carbon content of the thin plate 44 is preferably 0.06 to 2.14% by mass, more preferably 0.8 to 2.14% by mass, and 0.8 to 1.3% by mass. It is particularly preferred. Moreover, 0.030 mass% or less is preferable, as for the sulfur content of the thin plate 44, 0.019 mass% or less is more preferable, and 0.015 mass% or less is especially preferable. When sulfur content exceeds 0.030 mass%, the joining strength between a cemented carbide alloy and specific stainless steel will fall, and it may become easy to produce joining peeling.

銅合金箔47の厚さは、0.001〜0.1mmが好ましく、0.003〜0.05mmが更に好ましく、0.005〜0.015mmが特に好ましい。0.001mmより薄いと、窪み7等の様な欠陥を埋めることができず、空隙ができてしまうために、接合強度が低くなることがある。0.1mmより厚いと、接合層の強度が低下するため、第1の金属部材42と第2の金属部材43との接合強度が低下することがある。また、銅合金箔の銅含有率は、46〜100%であることが好ましく、70〜100%であることがより好ましい。銅合金箔の銅含有率が100%未満である場合には、パラジウム(Pd)、ケイ素(Si)、スズ(Sn)、リン(P)、マンガン(Mn)、亜鉛(Zn)、チタン(Ti)、ニオブ(Nb)、ホウ素(B)等の添加剤をさらに含んだものであることが好ましい。   The thickness of the copper alloy foil 47 is preferably 0.001 to 0.1 mm, more preferably 0.003 to 0.05 mm, and particularly preferably 0.005 to 0.015 mm. If the thickness is less than 0.001 mm, defects such as the dent 7 cannot be filled and voids are formed, so that the bonding strength may be lowered. If the thickness is greater than 0.1 mm, the strength of the bonding layer is reduced, and the bonding strength between the first metal member 42 and the second metal member 43 may be reduced. Moreover, it is preferable that the copper content rate of copper alloy foil is 46 to 100%, and it is more preferable that it is 70 to 100%. When the copper content of the copper alloy foil is less than 100%, palladium (Pd), silicon (Si), tin (Sn), phosphorus (P), manganese (Mn), zinc (Zn), titanium (Ti ), Niobium (Nb), boron (B) and the like.

超硬合金を含有する第1の金属部材42と、超硬合金を含有する第2の金属部材43とを、2枚の銅合金箔47,47及びこれら2枚の銅合金箔の間に挟まれた位置に配置された「炭素を含有し鉄を主成分とする薄板44」を間に挟んだ状態で、重ね合わせた(積層した)後に、所定の温度、圧力条件で、すなわち、700〜1200℃の温度で、0.1〜5MPaの圧力で、押圧することにより、第1の金属部材42と、第2の金属部材43とを接合させる。このように、1200℃以下の低温で、且つ5MPa以下の低圧力で接合させるため、第1の金属部材と第2の金属部材とを接合させるときに、変形が生じることを抑制でき、第1の金属部材と第2の金属部材との接合体精度の高い超硬合金接合体を得ることができる。接合させるときの温度は、700〜1200℃であり、900〜1150℃が好ましい。700℃より低いと、接合強度が低下するため好ましくない。1200℃より高いと、金属部材ならびに接合層が劣化するため好ましくない。また、接合させるときの圧力は、0.1〜5MPaであり、0.5〜3MPaが好ましい。0.1MPaより低いと、接合強度が低下するため好ましくない。5MPaより高いと、金属部材が変形し、接合体精度を悪化させるため好ましくない。尚、接合させるときの圧力は、第1の金属部材42と第2の金属部材43とを、第1の金属部材42の第1の接合面45に直交する方向であって、互いに押し付けあう方向にかけることが好ましい。また、接合するときの時間(所定の温度、圧力条件で保持する時間)は、1分〜1時間が好ましく、10分〜45分が更に好ましい。1分より短いと、接合強度が低下することがある。45分より長いと、接合層が劣化し、生産効率が低下することがある。また、接合するときの雰囲気は、真空中もしくは不活性ガス雰囲気中であることが好ましく、真空度としては、1Pa以下が好ましく、0.1Pa以下がより好ましく、0.01Pa以下が特に好ましい。上記所定の温度、圧力条件で保持する場合、真空ホットプレス接合炉等を用いて加熱することが好ましい。   A first metal member 42 containing cemented carbide and a second metal member 43 containing cemented carbide are sandwiched between two copper alloy foils 47 and 47 and the two copper alloy foils. After being superposed (laminated) with the “thin plate 44 containing carbon and containing iron as a main component” disposed between them, the layers are stacked (stacked), and then at a predetermined temperature and pressure condition, that is, 700 to The first metal member 42 and the second metal member 43 are joined by pressing at a temperature of 1200 ° C. and a pressure of 0.1 to 5 MPa. Thus, since it joins at the low temperature of 1200 degrees C or less and low pressure of 5 MPa or less, when joining the 1st metal member and the 2nd metal member, it can control that deformation arises, and the 1st It is possible to obtain a cemented carbide joined body with a high precision of the joined body of the metal member and the second metal member. The temperature at the time of joining is 700-1200 degreeC, and 900-1150 degreeC is preferable. If it is lower than 700 ° C., the bonding strength is lowered, which is not preferable. A temperature higher than 1200 ° C. is not preferable because the metal member and the bonding layer deteriorate. Moreover, the pressure at the time of joining is 0.1-5 MPa, and 0.5-3 MPa is preferable. If it is lower than 0.1 MPa, the bonding strength is unfavorable. When the pressure is higher than 5 MPa, the metal member is deformed and the accuracy of the joined body is deteriorated. The pressure at the time of joining is the direction in which the first metal member 42 and the second metal member 43 are perpendicular to the first joining surface 45 of the first metal member 42 and press each other. It is preferable to apply. Further, the time for bonding (the time for holding at a predetermined temperature and pressure condition) is preferably 1 minute to 1 hour, and more preferably 10 minutes to 45 minutes. If it is shorter than 1 minute, the bonding strength may be lowered. If it is longer than 45 minutes, the bonding layer may deteriorate and the production efficiency may decrease. Further, the atmosphere during bonding is preferably in a vacuum or an inert gas atmosphere, and the degree of vacuum is preferably 1 Pa or less, more preferably 0.1 Pa or less, and particularly preferably 0.01 Pa or less. In the case of maintaining at the predetermined temperature and pressure conditions, it is preferable to heat using a vacuum hot press bonding furnace or the like.

また、「超硬合金を含有する第1の金属部材42と、超硬合金を含有する第2の金属部材43とを、2枚の銅合金箔47,47及びこれら2枚の銅合金箔の間に挟まれた位置に配置された「炭素を含有し鉄を主成分とする薄板44」を間に挟んだ状態で、重ね合わせる」代わりに、「超硬合金を含有する第1の金属部材42と、超硬合金を含有する第2の金属部材43とを、両面に銅合金が張り合わされた「炭素を含有し鉄を主成分とする薄板44」を間に挟んで重ね合わせて」もよい。「両面に銅合金が張り合わされた薄板44」は、銅合金箔を圧延等により薄板44の両面に貼り合わせて形成されたクラッド材であってもよいし、または、薄板44の両面に銅合金をメッキして形成された部材であってもよい。薄板44の両面に張り合わされた銅合金の厚さの範囲は、銅合金箔の厚さの好ましい範囲であることが好ましい。   Further, “a first metal member 42 containing a cemented carbide and a second metal member 43 containing a cemented carbide are made up of two copper alloy foils 47, 47 and these two copper alloy foils. Instead of “stacking in a state where a thin plate 44 containing carbon and containing iron as a main component” is placed in a position sandwiched between them, “a first metal member containing a cemented carbide” 42 and the second metal member 43 containing the cemented carbide are overlapped with a “thin plate 44 containing carbon and containing iron as a main component” in which a copper alloy is laminated on both sides. Good. The “thin plate 44 in which the copper alloy is bonded to both sides” may be a clad material formed by bonding a copper alloy foil to both sides of the thin plate 44 by rolling or the like, or a copper alloy on both sides of the thin plate 44. A member formed by plating may be used. The thickness range of the copper alloy laminated on both surfaces of the thin plate 44 is preferably a preferable range of the thickness of the copper alloy foil.

次に、本発明の超硬合金接合体の製造方法の他の実施形態について説明する。   Next, other embodiment of the manufacturing method of the cemented carbide joined body of this invention is described.

本実施形態の超硬合金接合体の製造方法は、図9に示すように、炭化タングステン基超硬合金を含有し、第1の接合面45を有する第1の金属部材42と、炭化タングステン基超硬合金を含有し、第2の接合面46を有する第2の金属部材43と、炭素を含有し鉄を主成分とする薄板44とを、第1の接合面45と第2の接合面46とが薄板44を挟んで向かい合うようにするとともに、第1の金属部材42と薄板44との間及び第2の金属部材43と薄板44との間にそれぞれ銅合金箔47を配置し、更に、第1の金属部材42の第1の接合面45側に、銅合金箔47を間に挟んで第3の金属部材形成用金属板48を配置した状態で、積層し、700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、第1の金属部材42と第2の金属部材43とを薄板44を介して接合するとともに、第1の金属部材43と第3の金属部材形成用金属板48とを接合するものである。図9は、本発明の超硬合金接合体の製造方法の他の実施形態において、第1の金属部材42と第2の金属部材43とを、「炭素を含有し鉄を主成分とする薄板44」を間に挟むと共に、「第1の金属部材42と上記薄板44との間、及び第2の金属部材43と上記薄板44との間」にそれぞれ銅合金箔47を挟んだ状態で重ね合わせるとともに、第1の金属部材42と第3の金属部材形成用金属板48とを、間に銅合金箔47を挟んだ状態で重ね合わせるときの、それぞれの配置を示し、第1の金属部材42の第1の接合面45に直交する断面を示す模式図である。   As shown in FIG. 9, the manufacturing method of the cemented carbide joined body of the present embodiment includes a first metal member 42 containing a tungsten carbide-based cemented carbide and having a first joining surface 45, and a tungsten carbide-based material. A second metal member 43 containing a cemented carbide and having a second joining surface 46, and a thin plate 44 containing carbon and containing iron as a main component, the first joining surface 45 and the second joining surface. 46, and a copper alloy foil 47 is disposed between the first metal member 42 and the thin plate 44 and between the second metal member 43 and the thin plate 44, respectively. In the state where the third metal member forming metal plate 48 is disposed on the first bonding surface 45 side of the first metal member 42 with the copper alloy foil 47 interposed therebetween, the layers are laminated, and the temperature is 700 to 1200 ° C. The first metal member is pressed at a temperature of 0.1 to 5 MPa. 2 and the second metal member 43 as well as bonded via the sheet 44 is for joining the first metal member 43 and a third metal member forming metal plate 48. FIG. 9 shows another embodiment of the method for manufacturing a cemented carbide joined body according to the present invention, wherein the first metal member 42 and the second metal member 43 are made of a “thin plate containing carbon and containing iron as a main component”. 44 ”and a copper alloy foil 47 sandwiched between“ the first metal member 42 and the thin plate 44 and between the second metal member 43 and the thin plate 44 ”, respectively. The first metal member 42 and the third metal member forming metal plate 48 are overlapped with the copper alloy foil 47 sandwiched therebetween, and the respective arrangements are shown. FIG. 4 is a schematic diagram illustrating a cross section orthogonal to a first bonding surface 45 of 42.

本実施形態の超硬合金接合体の製造方法によって、上記本発明の超硬合金接合体の他の実施形態を得ることができる。   Other embodiments of the cemented carbide joined body of the present invention can be obtained by the method of manufacturing a cemented carbide joined body of the present embodiment.

第3の金属部材形成用金属板48の厚さは、特に限定されず、作製する超硬合金接合体の用途に合わせて適宜決定することができる。   The thickness of the third metal member forming metal plate 48 is not particularly limited, and can be appropriately determined according to the use of the cemented carbide joined body to be produced.

本実施形態の超硬合金接合体の製造方法において、第3の金属部材形成用金属板48は、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体から構成された板状の金属板であることが好ましく、ステンレス鋼としては、SUS630等を挙げることができる。第3の金属部材形成用金属板48と第1の金属部材とを、間に銅合金箔を挟んで積層して所定の温度及び所定の圧力で保持すると、第3の金属部材形成用金属板48に銅合金箔を構成する銅合金が拡散しながら、第3の金属部材形成用金属板48と第1の金属部材とが強固に接合される。このようにして形成された、第3の金属部材形成用金属板48に銅合金が拡散したものが、上記本発明の超硬合金接合体の他の実施形態における第3の金属部材12(図2を参照)となる。   In the method for manufacturing a cemented carbide joined body according to the present embodiment, the third metal member forming metal plate 48 has at least one of three phase transformations of martensite transformation, bainite transformation, and pearlite transformation by cooling of the austenite phase. A plate-like metal plate made of a metal body capable of causing one phase transformation is preferable, and examples of stainless steel include SUS630. When the third metal member forming metal plate 48 and the first metal member are stacked with a copper alloy foil interposed therebetween and held at a predetermined temperature and a predetermined pressure, the third metal member forming metal plate The third metal member forming metal plate 48 and the first metal member are firmly joined while the copper alloy constituting the copper alloy foil is diffused in 48. The copper metal diffused in the third metal member forming metal plate 48 formed in this manner is the third metal member 12 (see FIG. 5) in another embodiment of the cemented carbide joined body of the present invention. 2).

本実施形態の超硬合金接合体の製造方法により、炭化タングステン基超硬合金同士を、接合後に接合層になる「薄板」を介して強固に接合するとともに、炭化タングステン基超硬合金(第1の金属部材)とオーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体から構成された板状の金属板(第3の金属部材形成用金属板)とを強固に接合することができる。   According to the method for manufacturing a cemented carbide joined body of the present embodiment, tungsten carbide-based cemented carbides are firmly joined to each other via a “thin plate” that becomes a joining layer after joining, and tungsten carbide-based cemented carbide (first Metal plate) and a plate-like metal plate composed of a metal body capable of causing at least one of the three phase transformations of martensitic transformation, bainite transformation, and pearlite transformation by cooling the austenitic phase (third). The metal member forming metal plate) can be firmly joined.

本実施形態の超硬合金接合体の製造方法において、接合時の温度条件、圧力条件及び時間は、上記本発明の超硬合金接合体の製造方法の一実施形態における各条件と同様であることが好ましい。   In the method for manufacturing a cemented carbide alloy body according to the present embodiment, the temperature conditions, pressure conditions, and time at the time of bonding are the same as those in the embodiment of the method for manufacturing the cemented carbide alloy body according to the present invention. Is preferred.

本実施形態の超硬合金接合体の製造方法において用いる銅合金箔の厚さは、上記本発明の超硬合金接合体の製造方法の一実施形態における銅合金箔の厚さと同じ範囲であることが好ましい。   The thickness of the copper alloy foil used in the method for manufacturing a cemented carbide alloy body of the present embodiment is in the same range as the thickness of the copper alloy foil in one embodiment of the method for manufacturing a cemented carbide alloy body of the present invention. Is preferred.

(4)ハニカム構造体成形用口金の製造方法:
次に、図3〜図6に示される本発明のハニカム構造体成形用口金の一実施形態の製造方法について説明する。
(4) Manufacturing method of die for forming a honeycomb structure:
Next, the manufacturing method of one embodiment of the die for forming a honeycomb structure of the present invention shown in FIGS. 3 to 6 will be described.

まず、炭化タングステン基超硬合金を含有する第1の板状部材(第1の金属部材)22の一方の表面(第1の接合面)に、格子状の溝部26を形成する(工程(1))。溝部を形成する方法としては、例えば、ダイヤモンド砥石による研削加工やエンドミル加工、放電加工(EDM加工)、レーザー加工等の従来公知の方法を好適に用いることができる。   First, a lattice-like groove portion 26 is formed on one surface (first bonding surface) of a first plate-like member (first metal member) 22 containing a tungsten carbide base cemented carbide (step (1). )). As a method for forming the groove portion, for example, a conventionally known method such as a grinding process using a diamond grindstone, an end mill process, an electric discharge process (EDM process), or a laser process can be suitably used.

溝部26の幅については、上記本発明のハニカム構造体成形用口金の一実施形態の溝部の幅となるようにする。隣接する溝部26間の距離は、作製するハニカム構造体成形用口金によって成形しようとするハニカム構造体の形状に合わせて適宜決定することができる。   About the width | variety of the groove part 26, it is set as the width of the groove part of one Embodiment of the die for honeycomb structure formation of the said invention. The distance between the adjacent groove portions 26 can be appropriately determined according to the shape of the honeycomb structure to be formed by the honeycomb structure forming die to be manufactured.

第1の板状部材22の一方の表面(第1の接合面)に溝部26を形成する前、又は溝部26を形成した後に、第1の板状部材22の他方の表面から溝部26へと連通する裏孔24を形成することが好ましい。裏孔24は、溝部26の交差点の位置に形成することが好ましい。本実施形態のハニカム構造体成形用口金100の製造に際しては、格子状に形成された溝部26の交差点の位置の中の一つ置きの位置に、裏孔24を形成する。裏孔24は、第1の板状部材22の厚さ方向に平行に形成することが好ましい。裏孔を形成する方法については特に制限はないが、例えば、電解加工(ECM加工)、放電加工(EDM加工)、レーザ加工、ドリル等の機械加工等による従来公知の方法を好適に用いることができる。   Before forming the groove portion 26 on one surface (first bonding surface) of the first plate-like member 22 or after forming the groove portion 26, from the other surface of the first plate-like member 22 to the groove portion 26. It is preferable to form the back hole 24 which communicates. The back hole 24 is preferably formed at the intersection of the groove 26. When manufacturing the honeycomb structure forming die 100 of the present embodiment, the back holes 24 are formed at every other position among the intersections of the grooves 26 formed in a lattice shape. The back hole 24 is preferably formed in parallel to the thickness direction of the first plate-like member 22. Although there is no restriction | limiting in particular about the method of forming a back hole, For example, it is preferable to use the conventionally well-known method by machining, such as electrolytic processing (ECM processing), electric discharge processing (EDM processing), laser processing, a drill, etc. it can.

裏孔24は、第1の板状部材22の両面間を貫通するものであってもよいし、第1の板状部材22の第1の接合面5まで到達せず、且つ溝部26と連通するように形成されたものであってもよい。   The back hole 24 may penetrate between both surfaces of the first plate-like member 22, does not reach the first joint surface 5 of the first plate-like member 22, and communicates with the groove portion 26. It may be formed so as to.

なお、本実施の形態のハニカム構造体成形用口金の製造方法においては、上記工程(1)では裏孔を形成せずに、これ以降の工程、例えば、第1の板状部材と第2の板状部材とを接合させた後の工程において、裏孔を形成することもできる。   In the manufacturing method of the honeycomb structure forming die of the present embodiment, the back hole is not formed in the step (1), and the subsequent steps, for example, the first plate-like member and the second plate are formed. In the step after joining the plate-like member, the back hole can be formed.

次に、第1の板状部材22と、炭素を含有し鉄を主成分とする薄板と、炭化タングステン基超硬合金(超硬合金)を含有する第2の板状部材23とを積層し、700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、第1の板状部材と第2の板状部材とを薄板を間に挟んだ状態で接合する(工程(2))。工程(2)において、上記積層に際しては、第1の板状部材22の第1の接合面と第2の板状部材23の一方の面(第2の接合面)とが薄板を挟んで向かい合うようにするとともに、第1の板状部材と薄板との間、及び第2の板状部材と薄板との間に、それぞれ銅合金箔を配置した状態とする。従って、「第1の板状部材、銅合金箔、薄板、銅合金箔、第2の板状部材」の順に積層することになる。   Next, a first plate-like member 22, a thin plate containing carbon and containing iron as a main component, and a second plate-like member 23 containing a tungsten carbide base cemented carbide (a cemented carbide) are laminated. The first plate-like member and the second plate-like member are joined with a thin plate sandwiched between them by pressing at a temperature of 700 to 1200 ° C. and a pressure of 0.1 to 5 MPa (step ( 2)). In step (2), at the time of the lamination, the first joint surface of the first plate-like member 22 and one surface (second joint surface) of the second plate-like member 23 face each other with the thin plate interposed therebetween. In addition, the copper alloy foils are arranged between the first plate member and the thin plate and between the second plate member and the thin plate, respectively. Therefore, the “first plate member, copper alloy foil, thin plate, copper alloy foil, second plate member” are laminated in this order.

工程(2)は、上記積層の後、700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、第1の板状部材と第2の板状部材とを薄板を介して接合する。これにより、2枚の銅合金箔が薄板内に拡散し、第1の板状部材と第2の板状部材とが、薄板を介して強固に接合される。更に、「炭素を含有し鉄を主成分とする薄板」と、「炭化タングステン基超硬合金を含有する板状部材」とを、銅合金箔を間に挟んだ状態で、積層して接合させるときには、1200℃以下という低い温度、且つ5MPa以下という低い圧力で、強固に接合させることが可能である。したがって、上記のように「第1の板状部材、銅合金箔、薄板、銅合金箔、第2の板状部材」の順に積層したものを接合させる場合にも、1200℃以下という低い温度、且つ5MPa以下という低い圧力で、強固に接合させることが可能である。   In step (2), after the lamination, the first plate member and the second plate member are pressed through a thin plate by pressing at a temperature of 700 to 1200 ° C. and a pressure of 0.1 to 5 MPa. And join. As a result, the two copper alloy foils diffuse into the thin plate, and the first plate member and the second plate member are firmly bonded via the thin plate. Furthermore, “a thin plate containing carbon and containing iron as a main component” and “a plate-like member containing a tungsten carbide-based cemented carbide” are laminated and bonded together with a copper alloy foil sandwiched therebetween. Sometimes, it is possible to firmly bond at a low temperature of 1200 ° C. or lower and a low pressure of 5 MPa or lower. Therefore, when joining what laminated | stacked in order of "a 1st plate-shaped member, copper alloy foil, a thin plate, a copper alloy foil, a 2nd plate-shaped member" as mentioned above, low temperature of 1200 degrees C or less, In addition, it is possible to firmly bond at a low pressure of 5 MPa or less.

ハニカム構造体成形用口金の製造においては、裏孔及び溝部が形成される第1の板状部材と、スリットが形成される第2の板状部材とを接合させるときに、非常に高い精度が要求される。第1の板状部材と第2の板状部材とを接合するときに、厳密に決定された裏穴24および溝部26の位置が少しでも設計値からずれると、作製されたハニカム構造体成形用口金を用いてハニカム構造体を製造する時に、所望のハニカム構造体が得られなかったり、設備上の不具合が発生したりすることがある。そして、第1の板状部材と第2の板状部材とを、高温、高圧で接合した場合には、第2の板状部材における裏穴24および溝部26が変形し、位置ずれが生じることがあった。従って、上記、本実施形態のハニカム構造体成形用口金を製造する方法は、低温、低圧力の条件で第1の板状部材と第2の板状部材とを接合することができるため、このような第1の板状部材と第2の板状部材との位置ずれを防止するのに極めて有効な方法である。   In the manufacture of a die for forming a honeycomb structure, when a first plate member in which a back hole and a groove are formed and a second plate member in which a slit is formed are joined, a very high accuracy is obtained. Required. When joining the first plate-like member and the second plate-like member, if the positions of the back hole 24 and the groove portion 26 that are strictly determined are slightly deviated from the design values, the produced honeycomb structure is formed. When a honeycomb structure is manufactured using a die, a desired honeycomb structure may not be obtained, or equipment problems may occur. And when the 1st plate-shaped member and the 2nd plate-shaped member are joined at high temperature and high pressure, the back hole 24 and the groove part 26 in the 2nd plate-shaped member will deform | transform, and position shift will arise. was there. Therefore, the above-described method for manufacturing the honeycomb structure forming die of the present embodiment can join the first plate-like member and the second plate-like member under conditions of low temperature and low pressure. This is an extremely effective method for preventing the positional deviation between the first plate-like member and the second plate-like member.

第1の板状部材と第2の板状部材とを、薄板を介して接合させるときの、温度、圧力及び時間の各条件は、上記本発明の超硬合金接合体の製造方法の一実施形態において、第1の金属部材と第2の金属部材とを薄板を介して接合するときの各条件と同じであることが好ましい。   Each condition of temperature, pressure, and time when the first plate-like member and the second plate-like member are joined via a thin plate is one embodiment of the method for producing a cemented carbide joined body of the present invention. In the form, it is preferable that the conditions are the same as when the first metal member and the second metal member are joined via a thin plate.

本実施形態のハニカム構造体成形用口金の製造方法においては、接合させた第1の板状部材と第2の板状部材とを、0.1〜100℃/分の降温速度にて、少なくとも500℃まで、冷却することが好ましい。これにより、ハニカム構造体成形用口金の変形等を、より抑制することができる。   In the manufacturing method of the die for forming a honeycomb structure of the present embodiment, the joined first plate-like member and second plate-like member are at least at a temperature drop rate of 0.1 to 100 ° C./min. It is preferable to cool to 500 ° C. Thereby, deformation of the die for forming a honeycomb structure can be further suppressed.

次に、第2の板状部材23の、薄板との接合面(第2の接合面6)とは反対側の表面から、上記溝部26の形状(形成パターン)に対応し、溝部26と連通するスリット25を形成して本発明のハニカム構造体成形用口金の一の実施形態(ハニカム構造体成形用口金100)を得る(工程(3))。   Next, the second plate-like member 23 communicates with the groove 26 from the surface on the opposite side to the bonding surface with the thin plate (second bonding surface 6) corresponding to the shape (formation pattern) of the groove 26. A slit 25 is formed to obtain an embodiment (honeycomb structure forming die 100) of the honeycomb structure forming die of the present invention (step (3)).

第2の板状部材の表面にスリットを形成する方法については特に制限はないが、例えば、ダイヤモンド砥石による研削加工や放電加工(EDM加工)、レーザー加工等の従来公知の方法を好適に用いることができる。また、図3に示すハニカム構造体成形用口金100は、スリット25の形状(形成パターン)が四角形の格子状のものであるが、本実施形態のハニカム構造体成形用口金の製造方法においては、第2の板状部材に形成するスリット25の形状は四角形の格子状に限定されることはなく、その他の多角形の格子状であってもよい。   Although there is no restriction | limiting in particular about the method of forming a slit in the surface of a 2nd plate-shaped member, For example, conventionally well-known methods, such as a grinding process with a diamond grindstone, electrical discharge machining (EDM process), and laser processing, should be used suitably. Can do. Further, the honeycomb structure forming die 100 shown in FIG. 3 has a lattice-like shape in which the shape of the slits 25 (formation pattern) is a square, but in the manufacturing method of the honeycomb structure forming die of the present embodiment, The shape of the slit 25 formed in the second plate-like member is not limited to a square lattice shape, and may be another polygonal lattice shape.

また、第2の板状部材に形成するスリットの幅については、上記本発明のハニカム構造体成形用口金の一の実施形態におけるスリットの幅となるようにすることが好ましい。   The width of the slit formed in the second plate-shaped member is preferably set to be the width of the slit in the embodiment of the honeycomb structure forming die of the present invention.

次に、図7に示される本発明のハニカム構造体成形用口金の他の実施形態の製造方法について説明する。   Next, a manufacturing method of another embodiment of the die for forming a honeycomb structure of the present invention shown in FIG. 7 will be described.

本発明のハニカム構造体成形用口金の他の実施形態の製造方法は、上記本発明のハニカム構造体成形用口金の一実施形態の製造方法において、第1の板状部材が、第1の金属部材と第3の金属部材形成用金属板が接合されて形成されたものである。ここで、第3の金属部材形成用金属板は、上記本発明の超硬合金接合体の他の実施形態における第3の金属部材形成用金属板である。つまり、本発明のハニカム構造体成形用口金の他の実施形態の製造方法は、上記本発明のハニカム構造体成形用口金の一実施形態の製造方法の工程(2)において、第1の板状部材22となる「第1の金属部材、銅合金箔及び第3の金属部材形成用金属板」と、炭素を含有し鉄を主成分とする薄板と、炭化タングステン基超硬合金を含有する第2の板状部材23と、を積層し、700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、第1の金属部材と第2の板状部材とを薄板を介して接合するとともに、第1の金属部材と第3の金属部材形成用金属板とを接合するものである(工程(2’))。上記工程(2’)において、上記積層に際しては、第1の金属部材の第1の接合面と第2の板状部材23の一方の面(第2の接合面)とが薄板を挟んで向かい合うようにするとともに、第1の金属部材と薄板との間、及び第2の板状部材と薄板との間に、それぞれ銅合金箔を配置した状態とし、更に、第1の金属部材と第3の金属部材形成用金属板との間に、銅合金箔を配置した状態とする。従って、「第3の金属部材形成用金属板、銅合金箔、第1の金属部材、銅合金箔、薄板、銅合金箔、第2の板状部材」の順に積層することになる。   A manufacturing method of another embodiment of the die for forming a honeycomb structure of the present invention is the manufacturing method of the embodiment of the die for forming a honeycomb structure of the present invention, wherein the first plate-like member is a first metal. The member and the third metal member forming metal plate are joined and formed. Here, the third metal member forming metal plate is a third metal member forming metal plate in another embodiment of the cemented carbide joined body of the present invention. That is, the manufacturing method of another embodiment of the die for forming a honeycomb structure of the present invention is the first plate shape in step (2) of the manufacturing method of the embodiment of the die for forming a honeycomb structure of the present invention. “First metal member, copper alloy foil and third metal member forming metal plate” to be the member 22, a thin plate containing carbon and containing iron as a main component, and a first containing a tungsten carbide base cemented carbide The two plate-like members 23 are stacked and pressed at a temperature of 700 to 1200 ° C. with a pressure of 0.1 to 5 MPa, whereby the first metal member and the second plate-like member are interposed through a thin plate. And joining the first metal member and the third metal member forming metal plate (step (2 ′)). In the step (2 ′), at the time of the lamination, the first joining surface of the first metal member and one surface (second joining surface) of the second plate-like member 23 face each other with the thin plate interposed therebetween. In addition, a copper alloy foil is disposed between the first metal member and the thin plate, and between the second plate-like member and the thin plate, respectively, and the first metal member and the third plate are further disposed. It is set as the state which has arrange | positioned copper alloy foil between the metal plates for metal member formation. Therefore, the third metal member forming metal plate, the copper alloy foil, the first metal member, the copper alloy foil, the thin plate, the copper alloy foil, and the second plate member are laminated in this order.

第1の金属部材と第3の金属部材形成用金属板とを接合させるとともに、第1の金属部材と第2の板状部材とを薄板を介して接合させるときの、温度、圧力及び時間の各条件は、上記本発明の超硬合金接合体の製造方法の一実施形態において、第1の金属部材と第2の金属部材とを薄板を介して接合するときの各条件と同じであることが好ましい。   While joining the first metal member and the third metal member forming metal plate, and joining the first metal member and the second plate member through the thin plate, the temperature, pressure and time Each condition is the same as each condition when joining a 1st metal member and a 2nd metal member through a thin plate in one embodiment of a manufacturing method of a cemented carbide joined body of the above-mentioned present invention. Is preferred.

本発明のハニカム構造体成形用口金の他の実施形態の製造方法においては、第1の金属部材と第3の金属部材形成用金属板との間に、銅合金箔を配置して、所定の温度及び所定の圧力で第1の金属部材と第3の金属部材形成用金属板とを接合させて、第1の金属部材と第3の金属部材とからなる第1の板状部材を形成する。超硬合金を含有する第1の金属部材と、炭素鋼、合金鋼、ステンレス鋼等からなる第3の金属部材形成用金属板とを、銅合金箔を間に配置して積層し、所定の温度及び所定の圧力で保持すると、銅合金箔が第3の金属部材形成用金属板内に拡散しながら第1の金属部材と第3の金属部材形成用金属板とが強固に接合される。   In the manufacturing method of another embodiment of the die for forming a honeycomb structure of the present invention, a copper alloy foil is disposed between the first metal member and the third metal member forming metal plate, The first metal member and the third metal member forming metal plate are joined at a temperature and a predetermined pressure to form a first plate-like member composed of the first metal member and the third metal member. . A first metal member containing a cemented carbide and a third metal member forming metal plate made of carbon steel, alloy steel, stainless steel, or the like are laminated with a copper alloy foil interposed therebetween, When the temperature and the predetermined pressure are maintained, the first metal member and the third metal member forming metal plate are firmly joined while the copper alloy foil is diffused into the third metal member forming metal plate.

本発明のハニカム構造体成形用口金の他の実施形態の製造方法においては、第1の金属部材と第3の金属部材形成用金属板とから、第1の板状部材が形成される。第3の金属部材形成用金属板の厚さは、形成される溝部の深さ(形成される柱状部の高さ)より厚いことが好ましく、当該溝部の深さ(当該柱状部の高さ)より0.1〜100mm厚いことが更に好ましい。また、第1の金属部材の厚さは、0.1〜100mmであることが好ましく、10〜50mmであることが更に好ましい。   In the manufacturing method of another embodiment of the die for forming a honeycomb structure of the present invention, the first plate member is formed from the first metal member and the third metal member forming metal plate. The thickness of the third metal member forming metal plate is preferably greater than the depth of the groove to be formed (the height of the columnar part to be formed), and the depth of the groove (the height of the columnar part). More preferably, it is 0.1 to 100 mm thicker. Moreover, it is preferable that the thickness of a 1st metal member is 0.1-100 mm, and it is still more preferable that it is 10-50 mm.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
まず、第1の接合面を有する板状の第1の金属部材と、第2の接合面を有する板状の第2の金属部材と、ステンレス鋼(SUS)からなる薄板とを、第1の接合面と第2の接合面とが薄板を挟んで向かい合うようにするとともに、第1の金属部材と薄板との間及び第2の金属部材と薄板との間にそれぞれ純銅箔(99.9%)を配置した状態で、積層した。第1の金属部材及び第2の金属部材は、いずれも炭化タングステン基超硬合金を板状に加工したものとした。第1の金属部材は、(縦:40mm)×(横:40mm)×(厚さ:20mm)の四角形の板状とし、第1の金属部材は、(縦:40mm)×(横:40mm)×(厚さ:20mm)の四角形の板状とした。また、薄板の材質であるステンレス鋼は、更に具体的にはSUS304Hとした。組成は、C;0.06〜0.08、Si;1.0以下、Mn;2.0以下、P;0.045以下、S;0.03以下、Ni;8.0〜10.5、Cr;18〜20、Fe;残部である。薄板は、(縦:40mm)×(横:40mm)×(厚さ:0.2mm)の四角形の板状とした。銅合金箔は、いずれも(縦:40mm)×(横:40mm)×(厚さ:10μm)の四角形の箔状とした。
Example 1
First, a plate-like first metal member having a first joining surface, a plate-like second metal member having a second joining surface, and a thin plate made of stainless steel (SUS) are used. The joining surface and the second joining surface are opposed to each other with the thin plate interposed therebetween, and pure copper foil (99.9%) is provided between the first metal member and the thin plate and between the second metal member and the thin plate. ) Were placed in a stacked state. Each of the first metal member and the second metal member was obtained by processing a tungsten carbide base cemented carbide into a plate shape. The first metal member has a rectangular plate shape of (length: 40 mm) × (width: 40 mm) × (thickness: 20 mm), and the first metal member is (length: 40 mm) × (width: 40 mm) X (thickness: 20 mm) square plate shape. Further, the stainless steel that is a material of the thin plate is more specifically SUS304H. Composition: C; 0.06 to 0.08, Si; 1.0 or less, Mn; 2.0 or less, P; 0.045 or less, S; 0.03 or less, Ni; 8.0 to 10.5 , Cr; 18-20, Fe; balance. The thin plate was a rectangular plate shape of (vertical: 40 mm) × (horizontal: 40 mm) × (thickness: 0.2 mm). Each copper alloy foil was formed into a rectangular foil shape of (length: 40 mm) × (width: 40 mm) × (thickness: 10 μm).

上記、積層したものを、温度1100℃、圧力0.6MPaの条件で、真空0.01Pa以下にて0.75時間保持し、その後、およそ5℃/分の降温速度で100℃まで冷却することにより、第1の金属部材と第2の金属部材とを薄板を介して接合して、超硬合金接合体を作製した。   The above laminate is held under conditions of a temperature of 1100 ° C. and a pressure of 0.6 MPa at a vacuum of 0.01 Pa or less for 0.75 hours, and then cooled to 100 ° C. at a temperature drop rate of about 5 ° C./min. Thus, the first metal member and the second metal member were joined via a thin plate to produce a cemented carbide joined body.

得られた超硬合金接合体について、以下に示す方法で「曲げ強度(MPa)」を測定することにより、第1の金属部材と第2の金属部材との接合強度を確認した。結果を表1に示す。表1において、「薄板材質」は、薄板の材質を示す。「薄板厚さ」は、薄板の厚さを示す。「圧力」は、上記、第1の金属部材と第2の金属部材とを薄板を介して接合するときの圧力を示す。   About the obtained cemented carbide alloy joined body, the “bending strength (MPa)” was measured by the method shown below, thereby confirming the joining strength between the first metal member and the second metal member. The results are shown in Table 1. In Table 1, “Thin plate material” indicates the material of the thin plate. “Thin plate thickness” indicates the thickness of the thin plate. “Pressure” indicates the pressure when the first metal member and the second metal member are joined via a thin plate.

(曲げ強度の測定方法)
得られた超硬合金接合体(およそ、40mm×40mm×40mm)から、接合面が40mmの中央にくるように試験片を3.2mm×4.2mm×40mmに切り出し、平面研削にて面仕上げを実施し、3mm×4mm×40mmの寸法に調整する。その後、強度試験機に支点間距離30mmの3点曲げ試験冶具を設置し、接合面が破断面となるように3点曲げ(抗折)試験を実施する。得られた最大応力を、接合強度(曲げ強度)とする。強度試験機としては、INSTRON社製「万能材料試験機5581」を用いた。
(Measurement method of bending strength)
A test piece was cut out to 3.2 mm × 4.2 mm × 40 mm from the obtained cemented carbide joined body (approximately 40 mm × 40 mm × 40 mm) so that the joint surface is in the center of 40 mm, and surface finishing was performed by surface grinding. And adjust the dimensions to 3 mm × 4 mm × 40 mm. Thereafter, a three-point bending test jig with a fulcrum distance of 30 mm is installed in the strength tester, and a three-point bending (bending) test is performed so that the joint surface has a fracture surface. The obtained maximum stress is defined as bonding strength (bending strength). As the strength tester, “Universal Material Tester 5581” manufactured by INSTRON was used.

Figure 2011121081
Figure 2011121081

(実施例2〜5)
薄板の厚さを表1に示すように変更した以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Examples 2 to 5)
A cemented carbide joined body was produced in the same manner as in Example 1 except that the thickness of the thin plate was changed as shown in Table 1. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例6〜10)
薄板の材質を工具用炭素鋼(SK材)とし、薄板の厚さを表1に示すように0.01〜0.2mmの範囲で変化させた以外は、実施例1と同様にして超硬合金接合体を作製した。SK材は、組成がC;0.9〜1.1、Si;0.1〜0.35、Mn0.1〜0.5、P;0.03以下、S;0.03以下、Cu;0.25以下、Ni;0.25以下、Cr;0.3以下、Fe;残部であった。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Examples 6 to 10)
Carbide as in Example 1 except that the material of the thin plate was carbon steel for tools (SK material) and the thickness of the thin plate was changed in the range of 0.01 to 0.2 mm as shown in Table 1. An alloy joined body was produced. The SK material has a composition of C; 0.9 to 1.1, Si; 0.1 to 0.35, Mn 0.1 to 0.5, P; 0.03 or less, S; 0.03 or less, Cu; 0.25 or less, Ni; 0.25 or less, Cr; 0.3 or less, Fe; balance. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例11)
薄板の材質を工具用合金鋼(SKS材)とし、薄板の厚さを0.03mmとした以外は、実施例1と同様にして超硬合金接合体を作製した。SKS材は、組成がC;1.1〜1.3、Si;0.35以下、Mn0.5以下、P;0.03以下、S;0.03以下、Cu;0.25以下、Ni;0.25以下、Cr;0.2〜0.5、Fe;残部であった。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Example 11)
A cemented carbide joined body was produced in the same manner as in Example 1 except that the material of the thin plate was alloy steel for tools (SKS material) and the thickness of the thin plate was 0.03 mm. The SKS material has a composition of C; 1.1 to 1.3, Si; 0.35 or less, Mn 0.5 or less, P; 0.03 or less, S; 0.03 or less, Cu; 0.25 or less, Ni 0.25 or less, Cr; 0.2 to 0.5, Fe; balance. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例12)
薄板の厚さを0.005mmとした以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Example 12)
A cemented carbide joined body was produced in the same manner as in Example 1 except that the thickness of the thin plate was 0.005 mm. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例1,2)
薄板および銅合金箔を使用せず、圧力を表1に示すように変更した以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Comparative Examples 1 and 2)
A cemented carbide joined body was produced in the same manner as in Example 1 except that the thin plate and the copper alloy foil were not used and the pressure was changed as shown in Table 1. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
薄板を使用せず、厚み0.2mmの「Cu−Mn−Coろう」を用い、接合温度を1070℃とした以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Comparative Example 3)
A cemented carbide joined body was produced in the same manner as in Example 1 except that a thin plate was not used, “Cu—Mn—Co brazing” having a thickness of 0.2 mm was used, and the joining temperature was set to 1070 ° C. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
薄板を使用せず、厚み0.05mmの「銀ろう(BAg−8)」を用い、接合温度を800℃とした以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Comparative Example 4)
A cemented carbide joined body was produced in the same manner as in Example 1 except that a thin plate was not used, “silver brazing (BAg-8)” having a thickness of 0.05 mm was used, and the joining temperature was 800 ° C. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例5)
薄板を使用せず、厚み0.05mmの「銀ろう(BAg−8)」を用い、接合温度を800℃、接合圧力を2.5MPaとした以外は、実施例1と同様にして超硬合金接合体を作製した。得られた超硬合金接合体について、実施例1と同様に曲げ強度を測定した。結果を表1に示す。
(Comparative Example 5)
A cemented carbide similar to Example 1 except that a thin plate is not used, “silver brazing (BAg-8)” having a thickness of 0.05 mm is used, the joining temperature is 800 ° C., and the joining pressure is 2.5 MPa. A joined body was produced. The bending strength of the obtained cemented carbide alloy joined body was measured in the same manner as in Example 1. The results are shown in Table 1.

表1より、薄板の厚さが、0.01〜0.2mmの場合に、700MPa以上の強い曲げ強度(接合強度)が得られることが分かる。また、比較例1,2より、薄板および銅合金箔を使用しなかった場合は、接合圧力を高くすることで接合強度が向上する結果が得られているものの、その強度は十分ではない。さらに、比較例3、4、5より、「Cu−Mn−Coろう」、「銀ろう(BAg−8)」による「ろう付け」でも、高い接合強度が得られていないことが分かる。   From Table 1, it can be seen that a strong bending strength (joining strength) of 700 MPa or more can be obtained when the thickness of the thin plate is 0.01 to 0.2 mm. Further, from Comparative Examples 1 and 2, when the thin plate and the copper alloy foil were not used, although the result that the joining strength was improved by increasing the joining pressure was obtained, the strength was not sufficient. Furthermore, it can be seen from Comparative Examples 3, 4, and 5 that high bonding strength is not obtained even by “brazing” with “Cu—Mn—Co brazing” and “silver brazing (BAg-8)”.

本発明の超硬合金接合体は、ハニカム構造体成形用口金、精密金型、ダイス等として好適に利用することができる。本発明のハニカム構造体成形用口金は、内燃機関、ボイラー、化学反応機器及び燃料電池用改質器等の触媒作用を利用する触媒用担体や、排気ガス中の微粒子捕集フィルター等を成形する際に用いることができる。本発明の超硬合金接合体の製造方法は、本発明の超硬合金接合体の製造に用いるものである。   The cemented carbide joined body of the present invention can be suitably used as a die for forming a honeycomb structure, a precision mold, a die or the like. The die for forming a honeycomb structure of the present invention forms a catalyst carrier utilizing catalytic action of an internal combustion engine, a boiler, a chemical reaction device, a fuel cell reformer, a particulate collection filter in exhaust gas, and the like. Can be used. The manufacturing method of the cemented carbide bonded body of the present invention is used for manufacturing the cemented carbide bonded body of the present invention.

1:超硬合金接合体、2:第1の金属部材、3:第2の金属部材、4:接合層、5:第1の接合面、6:第2の接合面、7:窪み、11,21,31:超硬合金接合体、12:第3の金属部材、13:第3の接合面、14:銅、22,32:第1の板状部材、23,33:第2の板状部材、24,34:裏孔、25,35:スリット、26,36:溝部、27,37:接合層の貫通孔、28,38:柱状部、29:セルブロック、42:第1の金属部材、43:第2の金属部材、44:薄板、45:第1の接合面、46:第2の接合面、47:銅薄、48:第3の金属部材形成用金属板、100,200:ハニカム構造体成形用口金、L:溝部の深さ(柱状部の高さ)、S:領域。 1: cemented carbide joined body, 2: first metal member, 3: second metal member, 4: joining layer, 5: first joining surface, 6: second joining surface, 7: depression, 11 , 21, 31: cemented carbide joined body, 12: third metal member, 13: third joint surface, 14: copper, 22, 32: first plate member, 23, 33: second plate 24, 34: Back hole, 25, 35: Slit, 26, 36: Groove, 27, 37: Through hole in bonding layer, 28, 38: Columnar part, 29: Cell block, 42: First metal Member, 43: second metal member, 44: thin plate, 45: first joint surface, 46: second joint surface, 47: thin copper, 48: third metal member forming metal plate, 100, 200 : Honeycomb structure forming die, L: depth of groove (columnar height), S: region.

Claims (8)

炭化タングステン基超硬合金を含有し、第1の接合面を有する第1の金属部材と、
前記第1の金属部材の前記第1の接合面に接合された、鉄を主成分とし炭素を含むとともに銅が拡散している接合層と、
第2の接合面を有し、前記第2の接合面が、前記接合層の前記第1の金属部材が接合された面とは反対側の面に接合された、炭化タングステン基超硬合金を含有する第2の金属部材とを備える超硬合金接合体。
A first metal member containing a tungsten carbide-based cemented carbide and having a first joint surface;
A bonding layer bonded to the first bonding surface of the first metal member and containing iron as a main component and containing carbon and copper diffusing;
A tungsten carbide-based cemented carbide comprising a second bonding surface, wherein the second bonding surface is bonded to a surface of the bonding layer opposite to a surface to which the first metal member is bonded. A cemented carbide joined body comprising the second metal member to be contained.
前記接合層の材質が、炭素鋼、合金鋼、ステンレス鋼からなる群から選択された少なくとも一種に銅合金が拡散しているものである請求項1に記載の超硬合金接合体。   The cemented carbide joined body according to claim 1, wherein a material of the joining layer is a copper alloy diffused in at least one selected from the group consisting of carbon steel, alloy steel, and stainless steel. 前記第1の金属部材が、一方の面が前記第1の接合面である板状であり、前記第2の金属部材が、一方の面が前記第2の接合面である板状であり、
前記第1の金属部材の、前記第1の接合面とは反対側の面に接合され、前記第1の金属部材と接合する第3の接合面を有する、銅合金が内部に拡散した、オーステナイト相の冷却によってマルテンサイト変態、ベイナイト変態、及びパーライト変態の三つの相変態のうちの少なくとも一つの相変態を起こし得る金属体から構成された板状の第3の金属部材を更に備える請求項1又は2に記載の超硬合金接合体。
The first metal member has a plate shape in which one surface is the first bonding surface, the second metal member has a plate shape in which one surface is the second bonding surface,
Austenite having a third bonding surface bonded to the surface of the first metal member opposite to the first bonding surface and having a third bonding surface bonded to the first metal member, in which a copper alloy has diffused inside. 2. A plate-like third metal member comprising a metal body capable of causing at least one of the three phase transformations of martensitic transformation, bainite transformation, and pearlite transformation by cooling of the phase. Or the cemented carbide joined body of 2.
前記第1の金属部材が、成形原料を導入するための貫通孔である裏孔が形成された第1の板状部材であり、
前記第2の金属部材が、前記裏孔に連通し、成形原料をハニカム形状に成形するための格子状のスリットが形成された第2の板状部材であり、
前記第1の板状部材の前記接合層が接合されている側の面に、前記第2の板状部材の前記スリットに重なるように格子状に形成されるとともに前記裏孔に連通する溝部が形成され、
前記接合層の、少なくとも前記第2の板状部材の前記スリットに重なる部分に、貫通孔が形成された請求項1又は2に記載の超硬合金接合体。
The first metal member is a first plate-like member in which a back hole which is a through hole for introducing a forming raw material is formed;
The second metal member is a second plate-like member in communication with the back hole and formed with a lattice-like slit for forming a forming raw material into a honeycomb shape;
A groove portion that is formed in a lattice shape so as to overlap the slit of the second plate-shaped member and communicates with the back hole is formed on the surface of the first plate-shaped member on the side where the bonding layer is bonded. Formed,
The cemented carbide joined body according to claim 1 or 2, wherein a through hole is formed in a portion of the joining layer that overlaps at least the slit of the second plate-like member.
前記第1の金属部材及び前記第3の金属部材が、成形原料を導入するための貫通孔である裏孔が形成された第1の板状部材であり、
前記第2の金属部材が、前記裏孔に連通し、成形原料をハニカム形状に成形するための格子状のスリットが形成された第2の板状部材であり、
前記第1の板状部材の前記接合層に接合される面側に、前記第2の板状部材の前記スリットに重なるように格子状に形成されるとともに前記裏孔に連通する溝部が形成され、
前記接合層の、少なくとも前記第2の板状部材の前記スリットに重なる部分に、貫通孔が形成された請求項3に記載の超硬合金接合体。
The first metal member and the third metal member are first plate-like members in which a back hole which is a through hole for introducing a forming raw material is formed;
The second metal member is a second plate-like member in communication with the back hole and formed with a lattice-like slit for forming a forming raw material into a honeycomb shape;
A groove portion that is formed in a lattice shape so as to overlap the slit of the second plate-shaped member and communicates with the back hole is formed on a surface side of the first plate-shaped member that is bonded to the bonding layer. ,
The cemented carbide joined body according to claim 3, wherein a through hole is formed in at least a portion of the joining layer overlapping the slit of the second plate-like member.
前記接合層の厚さが0.005〜0.5mmである請求項1〜5のいずれかに記載の超硬合金接合体。   The cemented carbide joined body according to any one of claims 1 to 5, wherein a thickness of the joining layer is 0.005 to 0.5 mm. 請求項4又は5に記載の超硬合金接合体を備えるハニカム構造体成形用口金。   A die for forming a honeycomb structure comprising the cemented carbide joined body according to claim 4 or 5. 炭化タングステン基超硬合金を含有し、第1の接合面を有する第1の金属部材と、炭化タングステン基超硬合金を含有し、第2の接合面を有する第2の金属部材と、炭素を含有し鉄を主成分とする薄板とを、前記第1の接合面と前記第2の接合面とが前記薄板を挟んで向かい合うようにするとともに、前記第1の金属部材と前記薄板との間及び前記第2の金属部材と前記薄板との間にそれぞれ銅薄を配置した状態で、積層し、
700〜1200℃の温度で、0.1〜5MPaの圧力で押圧することにより、前記第1の金属部材と前記第2の金属部材とを前記薄板を介して接合して、請求項1〜3のいずれかに記載の超硬合金接合体を作製する超硬合金接合体の製造方法。
A first metal member containing a tungsten carbide-based cemented carbide and having a first bonding surface, a second metal member containing a tungsten carbide-based cemented carbide and having a second bonding surface, and carbon A thin plate containing iron as a main component so that the first joint surface and the second joint surface face each other with the thin plate interposed therebetween, and between the first metal member and the thin plate And in a state where a copper thin film is disposed between the second metal member and the thin plate,
The first metal member and the second metal member are joined via the thin plate by pressing at a temperature of 700 to 1200 ° C. with a pressure of 0.1 to 5 MPa. A method for producing a cemented carbide joined body for producing the cemented carbide joined body according to any one of the above.
JP2009279604A 2009-12-09 2009-12-09 Cemented carbide joined body and manufacturing method thereof Active JP5513865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279604A JP5513865B2 (en) 2009-12-09 2009-12-09 Cemented carbide joined body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279604A JP5513865B2 (en) 2009-12-09 2009-12-09 Cemented carbide joined body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011121081A true JP2011121081A (en) 2011-06-23
JP5513865B2 JP5513865B2 (en) 2014-06-04

Family

ID=44285530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279604A Active JP5513865B2 (en) 2009-12-09 2009-12-09 Cemented carbide joined body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5513865B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013183613A1 (en) * 2012-06-04 2016-02-01 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
JPWO2013183612A1 (en) * 2012-06-04 2016-02-01 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
US11292152B2 (en) 2015-11-20 2022-04-05 Corning Incorporated Extrusion dies for honeycomb body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021211A (en) * 2004-07-07 2006-01-26 Ngk Insulators Ltd Manufacturing method of tungsten carbide-based cemented carbide joined body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021211A (en) * 2004-07-07 2006-01-26 Ngk Insulators Ltd Manufacturing method of tungsten carbide-based cemented carbide joined body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013183613A1 (en) * 2012-06-04 2016-02-01 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
JPWO2013183612A1 (en) * 2012-06-04 2016-02-01 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
EP2857164A4 (en) * 2012-06-04 2016-03-16 Ngk Insulators Ltd Spinneret for molding honeycomb structure and manufacturing method therefor
US9616637B2 (en) 2012-06-04 2017-04-11 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method therefor
US11292152B2 (en) 2015-11-20 2022-04-05 Corning Incorporated Extrusion dies for honeycomb body

Also Published As

Publication number Publication date
JP5513865B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP4426400B2 (en) Die for forming honeycomb structure and method for manufacturing the same
EP2002949B1 (en) Die for forming a honeycomb structure and method for manufacturing the same
JP5897552B2 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
JP5361224B2 (en) Die for forming honeycomb structure and method for manufacturing the same
EP2002915B1 (en) Method of fabricating dissimilar material jointed body
US8225983B2 (en) Joining jig and method for manufacturing a bonded body of different members by using the jig
JP5185501B2 (en) Method for manufacturing die for forming honeycomb structure
JP5345487B2 (en) Bonded body and die for forming honeycomb structure
JP5513865B2 (en) Cemented carbide joined body and manufacturing method thereof
JP4754372B2 (en) Manufacturing method of dissimilar material joined body
JP4327029B2 (en) Method for producing tungsten carbide base cemented carbide joined body
JP5261100B2 (en) Die for forming honeycomb structure
JP5242200B2 (en) Manufacturing method of dissimilar material joined body
JP2011121236A (en) Mouthpiece for molding honeycomb structure
JP5162268B2 (en) Die for forming honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150