JPS5935607A - Production of bonded sintered hard alloy member - Google Patents

Production of bonded sintered hard alloy member

Info

Publication number
JPS5935607A
JPS5935607A JP14279382A JP14279382A JPS5935607A JP S5935607 A JPS5935607 A JP S5935607A JP 14279382 A JP14279382 A JP 14279382A JP 14279382 A JP14279382 A JP 14279382A JP S5935607 A JPS5935607 A JP S5935607A
Authority
JP
Japan
Prior art keywords
cemented carbide
iron
sintered
copper
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14279382A
Other languages
Japanese (ja)
Inventor
Masaya Miyake
雅也 三宅
Riyouji Kameda
亀田 諒二
Juichi Hirayama
平山 壽一
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14279382A priority Critical patent/JPS5935607A/en
Publication of JPS5935607A publication Critical patent/JPS5935607A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools

Abstract

PURPOSE:To join securely a sintered hard alloy plate and a ferrous sintered plate in the stage of joining the sintered hard alloy plate and the ferrous sintered plate by stacking an infiltration material for joining, the ferrous sintered plate and the sintered hard alloy plate successively from below and pressing and heating the laminate. CONSTITUTION:WC powder which is a superhard material is sintered with >=10% Co as a binder to manufacture a sintered hard alloy plate A. Iron powder contg. 0.8wt% C is separately sintered to manufacture a ferrous sintered plate B. The plate B and the plate A are superposed on the infiltration material C consisting of alloy powder having the compsn. composed of Cu-Mn5%-Fe4%. The thickness of the plate A is regulated to 1/10-1/3 of the entire part in this case and while the laminate is pressed with a weight D from the upper part, the laminate is heated for 1hr to 1,150 deg.C in ammonia cracking gas. The material C is melted and is sucked up by capillary force in the small holes in the plate B, whereby the plates A and B are securely joined without joining both in an excess amt.

Description

【発明の詳細な説明】 (イ)〔技術分野〕 本発明は薄い超硬合金板と鉄系焼結体とを接合した金型
素材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) [Technical Field] The present invention relates to a method for manufacturing a mold material in which a thin cemented carbide plate and an iron-based sintered body are joined.

この金型用素材は精密部品の打抜き加工に使用するダイ
ス、パンチ等に応用されるものであり、放電加工、ワイ
ヤーカット等によって任意の形状に加工して用いられる
ものである。
This mold material is applied to dies, punches, etc. used for punching precision parts, and is processed into any shape by electric discharge machining, wire cutting, etc.

(ロ)〔技術の背景〕 かかる金型素材等として超硬合金は優れた性能を発揮す
るが高価であるため必要部分のみに超硬合金を用い他は
超硬合金を支持する材料として鋼材を用い、両者を鑞付
によって接合した複合素材が従来使用されている。しか
しながらこのような素材は、金型用のような広い面積を
鑞付するため超硬合金と鋼の熱膨張係数の差によって冷
却時に超硬合金に引張応力が働き鑞付けずれが生じたり
、超硬合金に亀裂が生じるなどの問題が多かった。
(b) [Technical background] Cemented carbide exhibits excellent performance as a material for such molds, etc., but is expensive, so cemented carbide is used only in the necessary parts, and steel is used as a supporting material for the other parts. Conventionally, a composite material in which the two are joined by brazing has been used. However, when using such materials, tensile stress is applied to the cemented carbide during cooling due to the difference in thermal expansion coefficient between the cemented carbide and steel, which causes brazing misalignment due to brazing over a large area such as for molds. There were many problems such as cracks forming in the hard metal.

(ハ)発明の目的 本発明の金型素材は上記の問題を解決するものであり、
超硬合金と支持材としての鉄系焼結体鋼が完全に接合さ
れているため、接合後の熱処理やワイヤーカット等によ
る機械加工を行う際にも鋼と超硬合金との外れや超硬合
金の亀裂を生じない金型素材を提供するものである。
(c) Purpose of the invention The mold material of the present invention solves the above problems,
Because the cemented carbide and the ferrous sintered steel that serves as the supporting material are completely bonded, there is no possibility that the steel and cemented carbide may come off or the cemented carbide may come apart during post-bonding heat treatment or machining such as wire cutting. The present invention provides a mold material that does not cause alloy cracks.

に)発明の開示 本発明の金型素材は結合金属(主としてCo )10重
量%以上の超硬合金と銅溶浸した鉄系焼結体からなる複
合材であり、鉄系焼結体は炭素量0.8%以上含む鉄粉
の型押体(成型体)に銅を主成分とする溶浸材を溶浸焼
結したものであり、焼結と同時に溶浸銅材を介して超硬
合金に接合せしめるものである。超硬合金の厚みは素材
全体の厚みの1/10− t/a  とする。
B) Disclosure of the Invention The mold material of the present invention is a composite material consisting of a cemented carbide containing a bonding metal (mainly Co) of 10% by weight or more and an iron-based sintered body infiltrated with copper, and the iron-based sintered body contains carbon. This product is made by infiltrating and sintering an infiltration material mainly composed of copper into a stamped body (molded body) of iron powder containing 0.8% or more of iron powder. It is to be bonded to the alloy. The thickness of the cemented carbide is 1/10-t/a of the total thickness of the material.

超硬合金中の結合金属が10%以下であると接合後超硬
合金にがかる引張応力に十分耐えられないので10%以
上が好ましい。勿論超硬合金の主成分はWCである。
If the bonding metal content in the cemented carbide is 10% or less, it will not be able to sufficiently withstand the tensile stress applied to the cemented carbide after joining, so it is preferably 10% or more. Of course, the main component of cemented carbide is WC.

超硬合金の厚みが全体の1/10〜l/3 である理由
はl/10以下では金型材としての圧縮強度が不十分で
あり、l/3以上では結合材10%以上の超硬合金でも
亀裂が発生するので好ましくない。通常の素材では超硬
合金の厚み゛は1〜lOwULのものが用いられる。
The reason why the thickness of the cemented carbide is 1/10 to 1/3 of the total thickness is that if it is less than 1/10, the compressive strength as a mold material is insufficient, and if it is more than 1/3, the cemented carbide has a binder content of 10% or more. However, this is not desirable because it causes cracks. For ordinary materials, cemented carbide having a thickness of 1 to 10 UL is used.

また鉄系焼結体については炭素量が、0.3%以上であ
ることである。炭素量が0.3%以下では熱処理を施し
てもFe−Cu−C焼結体の硬度が低く金型素材として
は不適当である。0.3%以上であれば接合後の熱処理
によって任意の高硬度性を確保することかできる。
Further, for the iron-based sintered body, the carbon content is 0.3% or more. If the carbon content is less than 0.3%, the hardness of the Fe-Cu-C sintered body will be low even after heat treatment, making it unsuitable as a mold material. If it is 0.3% or more, a desired high hardness can be ensured by heat treatment after bonding.

鉄系焼結体に銅溶浸を施す理由は焼結鋼の空孔を埋めて
熱処理後必要な硬さを確保することと、後述の割れ防止
のためである。
The reason why the iron-based sintered body is infiltrated with copper is to fill the pores in the sintered steel to ensure the necessary hardness after heat treatment, and to prevent cracking as described below.

支持材料を銅溶浸焼結鋼とする理由は金属粉末焼結体は
多孔質であり、加熱昇温時の熱膨張の差を吸収すること
ができ、また冷却時の応力は充填された銅によって吸収
され超硬合金には大きな応力が働かないため熱処理又は
ワイヤーカットによる加工時等に接合外れや超硬合金の
割れが生じないという利点があるためである。
The reason why copper-infiltrated sintered steel is used as the supporting material is that the metal powder sintered body is porous and can absorb the difference in thermal expansion when heated, and the stress during cooling is absorbed by the copper filling. This is because the stress is absorbed by the cemented carbide and no large stress acts on the cemented carbide, which has the advantage of preventing disconnection or cracking of the cemented carbide during heat treatment or processing by wire cutting.

次に接合方法について述べる。Next, the joining method will be described.

接合方法としてAg e Cu等のロウ材を用いて超硬
合金と鉄系焼結体とを接合する方法が容易であるように
考えられるが、この場合はロウ材が鉄系焼結体中に吸収
され接合は出来ない。
As a joining method, it seems easy to join the cemented carbide and the iron-based sintered body using a brazing material such as Ag e Cu, but in this case, the brazing material is mixed into the iron-based sintered body. It is absorbed and cannot be joined.

本発明者らは鉄系焼結体への銅の溶浸現象を利用して合
金の接合面に銅を引き寄せ、溶けた銅と超硬合金を拡散
接合する方法を検討した。
The present inventors investigated a method of diffusion bonding molten copper and cemented carbide by drawing copper to the joint surface of the alloy by utilizing the phenomenon of copper infiltration into an iron-based sintered body.

焼結鋼の銅溶浸方法は通常鉄系粉末型押体スケルトンに
銅主成分の溶浸材を重ねて1120°C〜1150℃の
温度で加熱する方法であ虻銅は溶融して鉄系型押体の連
続気孔を通って浸透しスケルトン内の空孔を満すことに
よって焼結が進行する。
The copper infiltration method for sintered steel is usually a method in which a copper-based infiltrant is layered on an iron-based powder stamped skeleton and heated at a temperature of 1120°C to 1150°C. Sintering proceeds by penetrating through the continuous pores of the stamped body and filling the voids in the skeleton.

若しこの時空孔を満す量以上の溶浸材が存在し焼結鋼に
密に接して超硬合金が存在するならば余分の溶浸材は焼
結鋼と超硬合金との薄い間隙に浸出し超硬合金の表面に
おいて合金化反応を起し、結果として銅溶浸鋼と超硬合
金との接合部材が得られる。しかし下から順に超硬合金
、鉄系焼結体、溶浸材型押体の順に積重ねて加熱焼結し
た場合は溶浸した銅が多量に流れ込み接合層の隙間の調
整が難しく、また鉄系焼結体が動いたり超硬合金に沿っ
て銅が系外に流出してしまうという不、具合が生じる。
If there is more infiltrant than fills this space-time pore and there is cemented carbide in close contact with the sintered steel, the excess infiltrant will be absorbed into the thin gap between the sintered steel and the cemented carbide. The leaching causes an alloying reaction on the surface of the cemented carbide, resulting in a bonded member of copper infiltrated steel and cemented carbide. However, if the cemented carbide, iron-based sintered body, and infiltrated material stamped body are stacked one on top of the other in order from the bottom and heated and sintered, a large amount of infiltrated copper will flow in, making it difficult to adjust the gap between the bonding layers. Problems arise in which the sintered body moves or copper flows out of the system along the cemented carbide.

接合現象に関する検討の結果、上記不具合点は溶融した
銅が重力に影響されていること、接合面に溶浸銅が多量
に入るため焼結鋼と超硬合合間の摩擦力が小さくなり、
すべりが生じることによることが判明した。この点を検
討した結果本発明者笠は各部材の種重ね方を、下から溶
浸材の型押体、鉄系型押体(スケルトン)、超硬合金と
し、更にその最」二段に重りを置く等して荷重をかけた
状態で加熱焼結することにより良好な接合状態が得られ
ることを確認した。この方法によれば溶浸銅は下から上
方に向って毛細管力によってのみ吸い上げられ必要以上
の銅が接合面に入ることもなく、また荷重がか覧ってい
るため接合面間のすべりを生ぜず良好な結果が得られた
ものと思われる。
As a result of the study of the joining phenomenon, the above problems are due to the fact that the molten copper is affected by gravity, and because a large amount of infiltrated copper enters the joint surface, the frictional force between the sintered steel and the cemented carbide becomes small.
It turned out that this was due to slipping. As a result of considering this point, the present inventor, Kasa, changed the method of layering each member from the bottom to the infiltration material stamped body, iron-based stamped body (skeleton), and cemented carbide, and then the top two layers. It was confirmed that a good bonding state could be obtained by heating and sintering with a load applied, such as by placing a weight. According to this method, the infiltrated copper is sucked up only by capillary force from the bottom upwards, preventing more copper than necessary from entering the joint surfaces, and since the load is visible, slipping between the joint surfaces is prevented. It seems that good results were obtained.

発明者らは更に検討を加え、上記の方法とロウ材を併用
することによってより強固な接合が可能であることを見
出した。一般に鋼等のロウ材に使用しているAg系、C
u系のロウ材は先述の如く溶融に際し焼結体中に浸透し
てしまい接合の用をなさないが、銅溶浸法と併用する場
合にはロウ材の焼結体への浸透も防止され銅溶浸材のみ
の場合よりもより強固な接合強度が得られることがわか
った。この場合の銅溶浸材の量はロウ材不使用の場合よ
り少くすることができる。
The inventors conducted further studies and found that a stronger bond could be achieved by using the above method in combination with a brazing material. Ag-based and C-based materials commonly used in brazing materials such as steel
As mentioned above, the U-based brazing metal penetrates into the sintered body when melted, making it useless for joining, but when used in conjunction with the copper infiltration method, penetration of the brazing metal into the sintered body is also prevented. It was found that stronger bonding strength could be obtained than with only copper infiltrated material. In this case, the amount of copper infiltrant can be smaller than when no brazing material is used.

ロウ4Jとしては通常のロウ材で良いが、米国、ヘガネ
ス社の焼結鋼専用のロウ材(アンカーブレイズM2)粉
末も使用できる。この場合にはその一部が溶融し鉄と合
金化して融点が上昇し、ロウ材の凝固が起るためロウ材
の浸透は起らす銅溶浸を行わなくても焼結鋼と超硬合金
との接合ができるが、支持部材としての強度、応力吸収
の面で溶浸を行う必要がある。
As the wax 4J, a normal brazing material may be used, but powder of a brazing material (Anchor Blaze M2) exclusively for sintered steel manufactured by Hoganäs Co., Ltd. in the United States may also be used. In this case, a part of it melts and alloys with iron, raising the melting point and solidifying the solder metal, causing penetration of the solder metal.Even without copper infiltration, sintered steel and carbide Although it can be joined to alloys, it is necessary to infiltrate it in terms of strength as a support member and stress absorption.

次に実施例によって説明する。Next, an example will be explained.

実施例1゜ 1μのWC粉末80重量%とlμのCo 粉末20%を
混合し型押後焼結することにより1100xlOOx2
1111の超硬合金板(5)を製造した。
Example 1 80% by weight of 1μ WC powder and 20% lμ Co powder were mixed and sintered after stamping to produce 1100xlOOx2.
A cemented carbide plate (5) of No. 1111 was manufactured.

次に鉄粉に0.8重量%の炭素を含む混合粉末を100
x100x100x40に型押しくB)とする。又Cu
 −Mn 5%−Fe  4%組成の合金粉末を型押し
て100xlOO×1OFuLの溶浸材(C)を作製し
た。これを第1図に示す様に積重ね、その最上段に重り
の)を載せ、アンモニア分解ガス中で1150℃で1時
間加熱した。
Next, add 100% of mixed powder containing 0.8% by weight of carbon to the iron powder.
Emboss it to x100x100x40 B). Also Cu
An alloy powder having a composition of -Mn 5%-Fe 4% was pressed to produce an infiltration material (C) of 100xlOOxlOFuL. These were stacked as shown in FIG. 1, a weight () was placed on the top layer, and heated at 1150° C. for 1 hour in ammonia decomposition gas.

加熱後、溶浸材は鉄の焼結体中に溶浸拡散し、鉄系焼結
体と超硬合金の間隙にも浸透し、超硬合金と鉄系焼結体
とは完全な接合が行われた。この時鉄焼結体の硬度はH
Rc 20であった。この接合材を84・o’cで1時
間加熱後焼入れし、180°CX1.5時間で焼き戻し
を行った後の硬度はHRc 40であり、熱処理によっ
てはくり、亀裂は発生しなかった。
After heating, the infiltrant diffuses into the iron sintered body and penetrates into the gap between the iron-based sintered body and the cemented carbide, resulting in complete bonding between the cemented carbide and the iron-based sintered body. It was conducted. At this time, the hardness of the iron sintered body is H
It was Rc 20. This bonding material was heated at 84° C. for 1 hour, quenched, and tempered at 180° C. for 1.5 hours. The hardness was HRc 40, and no cracks were generated during the heat treatment.

該接合品をワイヤーカットによって切り出し、珪素鋼板
の打抜き用パンチを製作し打抜きテストを行ったところ
、ダイス鋼の約10倍の寿命を示した。また打抜き製品
のパリが少く、製品の精度が高いものが得られた。
The bonded product was cut out by wire cutting, a punch for punching a silicon steel plate was made, and a punching test was conducted, which showed that the life was about 10 times longer than that of die steel. In addition, the punched products had fewer cracks and were highly accurate.

実施例2゜ 実施例1と同じ組成の超硬合金(Nを80X100X2
mIrLの\」法に製作した。次に鉄粉に0.4重量%
の炭素を含む混合粉末を1oOXloOx40auに型
押しくB)とする。またCu−5%Mn−4%Fe組成
の合金粉末を混合した粉末を型押してloOxloox
lOmx の溶浸材(C)を作成し、さらに焼結鋼専用
のロウ材粉末を10100X20XlOのブロックに型
押しくE)とする。
Example 2 Cemented carbide with the same composition as Example 1 (80X100X2 N)
It was manufactured using the mIrL\'' method. Next, add 0.4% by weight to iron powder.
B) The mixed powder containing carbon is embossed into 1oOXloOx40au. In addition, loOxloox is made by stamping a powder mixed with alloy powder of Cu-5%Mn-4%Fe composition.
An infiltration material (C) of 1Omx is prepared, and a brazing material powder exclusively for sintered steel is embossed into a block of 10100X20X1O (E).

第1図に示す如く、(C)、(B)、(5)の順に積重
ね更にロウ材(E)を載せ、重りの)を載せてアンモニ
ア分解ガス中で1160℃で2時間加熱した。
As shown in FIG. 1, (C), (B), and (5) were stacked in this order, and then a brazing material (E) was placed on the stack, followed by a weight () and heated at 1160° C. for 2 hours in an ammonia decomposition gas.

超硬合金と銅を含む鉄系焼結体の接合が完全に行われ、
接合強度も充分であった。
The cemented carbide and iron-based sintered body containing copper are perfectly joined,
The bonding strength was also sufficient.

以上の如く本発明により大きな面積の超硬合金とその支
持材である焼結鋼との接合が可能であり大型の貼合せ超
硬合金部材としての金型素材は超精密抜型材として耐摩
耗性、エツジ部の刃立性の優れたものとして広く使用に
供することができるようになった。上記以外の用途とし
ては土木用工具として粉砕、掘削および加工工具等にも
使用可能である。
As described above, according to the present invention, it is possible to join a large area of cemented carbide and the sintered steel that is its supporting material, and the mold material used as a large bonded cemented carbide member has wear resistance as an ultra-precision cutting die material. As a result, it has become widely used as a material with excellent edge sharpness. In addition to the above applications, it can also be used as a civil engineering tool, such as crushing, excavating, and processing tools.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の詳細な説明するための正面断
面図である。 ′A;超硬合金、B;鉄系スケルトン、C;溶浸材、D
;重り、E;ロウ材。
1 and 2 are front sectional views for explaining the present invention in detail. 'A: Cemented carbide, B: Iron skeleton, C: Infiltration material, D
; Weight, E; Wax wood.

Claims (1)

【特許請求の範囲】 (])WC基超硬合金と鉄系焼結体からなる貼合せ複合
超硬合金部材であり、超硬合金の結合金属が10重量%
以上であり、かつその厚みが全体のl/10〜1/3で
あり、鉄系焼結体は炭素量0.3重量%以」ユ含む鉄系
スケルトンに銅を主成分とする溶浸材が充填されており
、超硬合金と鉄系焼結体とは溶浸材を介して強固に接合
されている貼合せ超硬合金部材の製造において、下から
銅溶浸材の型押体、鉄系粉末型押体、超硬合金の順に種
重ね更にその最」二段に重りを置いて荷重をかけた状態
で加熱焼結し、銅溶浸焼結鋼と超硬合金とを銅溶浸4゛
4成分で接合することを特徴とする貼合せ超硬合金部材
の製造法。 (2)WCC超超硬合金鉄系焼結体からなる複合部拐で
あって該超硬合金中の結合金属がlO重量%以」二であ
り、か・つその厚みが全体の1/lO〜1/3であり、
鉄系焼結体は炭素量0,3重量%以上含む鉄系スケルト
ンに銅を主成分とする溶浸材が充填されており、超硬合
金と鉄系焼結体とは溶浸材を介して強固に接合されてい
る貼合せ超硬合金部材の製造において、下から銅溶浸材
の型押体、鉄系粉末焼結体、超硬合金の順に積重ね、更
に最上段に重りとロウ材を載せた状態で加熱焼結し、銅
溶浸鋼と超硬合金とを銅溶浸成分とロウ材により接合す
ることを特徴とする貼合せ超硬合金部材の製造法。
[Claims] (]) A laminated composite cemented carbide member consisting of a WC-based cemented carbide and an iron-based sintered body, in which the bonding metal of the cemented carbide is 10% by weight.
above, and its thickness is 1/10 to 1/3 of the total thickness, and the iron-based sintered body is an infiltration material mainly composed of copper in an iron-based skeleton containing carbon content of 0.3% by weight or more. In the production of bonded cemented carbide parts, the cemented carbide and the iron-based sintered body are firmly joined via an infiltrant. The iron-based powder stamping body and the cemented carbide are seeded in that order, and then a weight is placed on the top two stages and heated and sintered under a load to bond the copper-infiltrated sintered steel and the cemented carbide. A method for manufacturing a bonded cemented carbide member, characterized by joining using four components. (2) A composite part consisting of a WCC cemented carbide iron-based sintered body, in which the bonded metal in the cemented carbide is 10% by weight or more, or the thickness is 1/10% of the whole. ~1/3,
The iron-based sintered body has an iron-based skeleton containing 0.3% by weight or more of carbon and is filled with an infiltrant whose main component is copper. In the production of laminated cemented carbide parts that are firmly bonded together, a stamped body of copper infiltration material, a sintered iron-based powder, and a cemented carbide are stacked in this order from the bottom, and then a weight and brazing material are stacked on the top layer. 1. A method for manufacturing a bonded cemented carbide member, characterized in that the copper infiltrated steel and the cemented carbide are joined together using a copper infiltrated component and a brazing material.
JP14279382A 1982-08-18 1982-08-18 Production of bonded sintered hard alloy member Pending JPS5935607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14279382A JPS5935607A (en) 1982-08-18 1982-08-18 Production of bonded sintered hard alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14279382A JPS5935607A (en) 1982-08-18 1982-08-18 Production of bonded sintered hard alloy member

Publications (1)

Publication Number Publication Date
JPS5935607A true JPS5935607A (en) 1984-02-27

Family

ID=15323738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14279382A Pending JPS5935607A (en) 1982-08-18 1982-08-18 Production of bonded sintered hard alloy member

Country Status (1)

Country Link
JP (1) JPS5935607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157797A (en) * 2013-03-19 2013-06-19 河南富耐克超硬材料股份有限公司 Tool bit blank and synthetic process thereof and synthetic mold thereof and tool bit production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157797A (en) * 2013-03-19 2013-06-19 河南富耐克超硬材料股份有限公司 Tool bit blank and synthetic process thereof and synthetic mold thereof and tool bit production method
CN103157797B (en) * 2013-03-19 2016-05-04 富耐克超硬材料股份有限公司 Cutter head blank and synthesis technique thereof and synthetic mould thereof and cutter head production method

Similar Documents

Publication Publication Date Title
US2251410A (en) Composite metal structure and method of making same
US3359623A (en) Method for making refractory metal contacts having integral welding surfaces thereon
JP2006527663A (en) CUTTING TIP, CUTTING TIP MANUFACTURING METHOD, AND CUTTING TOOL
CN101966603A (en) Driller and method for its manufacture
KR100623304B1 (en) Cutting segment, method for manufacturing cutting segment and cutting tool
US4598025A (en) Ductile composite interlayer for joining by brazing
CN104259466A (en) Method for connecting copper-based power metallurgy composite materials and steel
CN107604189A (en) A kind of foam aluminum sandwich and its Semi-Solid Thixoforming Seepage Foundry method
EP0347627A2 (en) Method for producing a piston with cavity
JP2005187944A (en) Wear-resistant mechanical component and method of producing the same
JPS5935607A (en) Production of bonded sintered hard alloy member
EP0048496B1 (en) Method for bonding sintered metal pieces
JPH0228428B2 (en)
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPS59209473A (en) Production of bonding member for sintered hard alloy and sintered steel
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same
JPS6125537B2 (en)
JPS6119705A (en) Formation of hard metal layer onto surface of metal
US6610244B2 (en) Method for connecting sintered body to a metallic support element
WO2022095112A1 (en) Slider manufacturing method, slider and textile machine using same
JP2004276072A (en) Different-metal composite
JPH09315873A (en) Sintered hard alloy based wear resistant material and its production
JPH11323409A (en) Composite member and its production
CN210968500U (en) Diamond grinding wheel with snail buckle joint
JPH11286704A (en) Friction member and its production