JP3764807B2 - COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL - Google Patents

COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL Download PDF

Info

Publication number
JP3764807B2
JP3764807B2 JP20855897A JP20855897A JP3764807B2 JP 3764807 B2 JP3764807 B2 JP 3764807B2 JP 20855897 A JP20855897 A JP 20855897A JP 20855897 A JP20855897 A JP 20855897A JP 3764807 B2 JP3764807 B2 JP 3764807B2
Authority
JP
Japan
Prior art keywords
mold
cemented carbide
layer portion
press molding
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20855897A
Other languages
Japanese (ja)
Other versions
JPH1136005A (en
Inventor
秀一 鴨田
盛 稲葉
孝司 牧
保 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Hokkaido Prefecture
Original Assignee
Hokkaido Electric Power Co Inc
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Hokkaido Prefecture filed Critical Hokkaido Electric Power Co Inc
Priority to JP20855897A priority Critical patent/JP3764807B2/en
Publication of JPH1136005A publication Critical patent/JPH1136005A/en
Application granted granted Critical
Publication of JP3764807B2 publication Critical patent/JP3764807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プレス成形用複合金型材、とくに鉱石粉末原料から焼成タイルを作製する場合のプレス工程で使用される金型を構成するためのブロックとなる金型用材、およびその製造方法、並びに該金型用材料から形成されるプレス成形用金型に関する。
【0002】
【従来の技術】
プレス成形用金型は、焼入れ、焼戻ししたダイス鋼(JIS SKD11 など) に代表される鋼製のものが多く使用されているが、プレス成形の対象物が鉱石粉体のように硬質な場合には、耐摩耗性の面で問題があるため、この問題を改善するために、結合相成分としてCo、Niを含有させた炭化タングステン(WC)からなるWC−Co系、WC−Ni系、その他の超硬合金プレートに、鋼材をろう付け接合したものが提案されている。
【0003】
しかしながら、金型のように広い面積をろう付けする場合には、ろう切れの問題があり、超硬合金と鋼材の熱膨張係数が大きく相違するため、この熱膨張係数の差に起因して超硬合金側に応力が生じ、ろう付け温度からの冷却時あるいは使用中の温度変化や僅かな衝撃で、超硬合金に変形や割れが生じるという問題もある。また、ろう付けでは接合強度も低く信頼性に欠ける。
【0004】
硬質なもののプレス成形に耐えるようにするために、金型用鋼材の表層部に、溶射、CVD、PVD、メッキなどの表面被覆法を利用して硬質材料を被覆し、高硬度とすることも提案されているが、溶射では気孔が生じ易く、CVD、PVDでは被覆厚さに限界があり、メッキにおいては好適な硬質材料が存在せず、また、これらの表面被覆法では母材との密着性が十分でなく、プレス圧を受けた場合に亀裂、剥離が生じ易くなり、いずれも満足すべき効果を達成することができない。
【0005】
これらの問題点を解決するために、表層部をCoなどの結合相成分の含有量の少ないWC基超硬合金より形成し、内層部ほど結合相成分の含有量が多くなるよう、WC基超硬合金を層状に段階的に積層した後、通電焼結して一体の複合超硬合金焼結体を作製し、表層部は耐摩耗性を高め、結合相成分含有量が多い内層部はステンレス鋼や炭素鋼材への直接溶接を可能とした超硬合金材料が提案されている。(特開平7-300375号公報)
【0006】
上記の超硬合金材料を金型材として適用した場合には、性能的には満足すべき結果を得ることができるが、この超硬合金材料に鋼材をろう付けあるいは溶接により接合した後に、これをさらに鋼材などからなる金型の裏板に、溶接、ボルト締結などの手段により固定しなければならないため、金型作製のための工程が長くなり、また、金型においては厳密な寸法公差を必要とするが、二度の接合工程を経るために、寸法面でも問題が生じ易い。
【0007】
【発明が解決しようとする課題】
本発明は、上記の難点を解消するためになされたものであり、その目的は、プレス成形面の耐摩耗性が改善され、金型の裏板に溶接、ボルト締結などによって直接固定することができ、金型作製工程の短縮を可能とするプレス成形金型を構成するためのブロックとなる複合金型材およびその製造方法、並びに該複合金型ブロックから形成されるプレス成形用金型を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明による金型を構成するためのブロックとなるプレス成形用複合金型材は、炭化タングステン基超硬合金と鋼材とを一体に接合した金型材であって、表層部は結合相成分の含有量が少なく、表層部から内層部にかけて段階的に結合相成分の含有量を増加させた少なくとも3層の炭化タングステン基超硬合金の焼結体からなり、内層部に鋼材が拡散反応によって接合していることを構成上の第1の特徴とする。
【0009】
また、上記の炭化タングステン基超硬合金の焼結体は、表層部が結合相成分を5〜12%を含有する炭化タングステン基超硬合金、中間層が結合相成分を10〜20%含有する炭化タングステン基超硬合金、内層部が結合相成分を20〜40%含有する炭化タングステン基超硬合金の3層からなることを第2の特徴とする。
【0010】
本発明によるプレス成形用金型は、上記のプレス成形用複合金型材が、表層部を上面、内層部に接合された鋼材を下面として所定形状に配列され、下面の鋼材が裏板と固定されて金型面を構成することを特徴とする。
【0011】
また、本発明による金型を構成するためのブロックとなるプレス成形用複合金型材の製造方法は、粉末材料を成形ダイ中に装入し、上パンチおよび下パンチで圧縮して圧粉体とするとともに、該圧粉体にパンチを通して電圧を印加し通電焼結することにより焼結体とする方法において、成形ダイにセットした下パンチの上に所定形状に成形した鋼材を載置し、該鋼材上に、結合相成分の含有量が段階的に少なくなるよう調整した炭化タングステン基超硬合金の粉末を順に3層以上積層充填した後、上パンチをセットして、該粉末を圧縮、通電焼結して焼結体とするとともに、該焼結体と前記鋼材とを拡散反応により接合することを特徴とする。
【0012】
本発明のプレス成形用複合金型材は、図1に示すように、炭化タングステン基超硬合金2と鋼材3とを一体に接合したものであって、炭化タングステン基超硬合金2は焼結体であり、表層部4は、Co、Ni、Feなどの結合相成分の含有量が少なく、表層部4から内層部6にかけて段階的に結合相成分の含有量を増加させた少なくとも表層部4、中間層部5、内層部6の3層からなり、内層部6に鋼材3が拡散反応によって接合している。
【0013】
本発明においては、炭化タングステン基超硬合金として、WC−Co系、WC−Ni系、WC−Co−Ni系、WC−Fe系などが使用可能である。炭化タングステン基超硬合金の焼結体2は少なくとも3層とする。この目的は、表層部4と内層部6との熱膨張係数の差を少なくし、熱膨張差に起因する応力発生を緩和するためで、層数は、結合相成分の種類、含有量、金型材の寸法などに応じて決定される。
【0014】
3層とする場合には、表層部4が結合相成分を5〜12%を含有する炭化タングステン基超硬合金、中間層5が結合相成分を10〜20%含有する炭化タングステン基超硬合金、内層部6が結合相成分を20〜40%含有する炭化タングステン基超硬合金とするのが好ましく、この構成により、表層部4と内層部6との熱膨張差を少なくして応力を減少させ、変形や割れの発生を抑制することができる。
【0015】
本発明のプレス成形用複合金型材1は、金型面を構成するエレメントとなる小ブロックであり、図2に示すように、プレス成形用複合金型材1が、表層部4を上面、内層部6に接合された鋼材3を下面として所定形状に配列され、下面の鋼材3が鋼板などの裏板8と固定されて金型面7となる。
【0016】
金型面7を構成する複合金型材のサイズを大きくすると、超硬合金部で撓みが生じ易く、割れに到る場合もあり、また超硬合金部の焼結が不均一になることもあるが、本発明では、複合金型材を小ブロックとし、このブロックを金型の形状に応じて組合わせ、裏板と固定する構成の金型面としたため、図2の1Aに示すように、各ブロックを単独で修理、取り替えることが可能となる。また、金型の使用に際して、金型面がそれぞれ独立した小ブロックから構成されているため、プレス加工時の応力が分散して、プレス加工時の応力により金型面が損傷するなどのトラブルを回避することができる。
【0017】
金型材ブロック1と裏板8の鋼板との固定は、溶接、ボルト締結などの手段により行われるが、複合金型材1の裏板8との固定側は鋼材3であるから、鋼同士の溶接となり、常法によりきわめて簡単に接合することができる。鋼材3に対するボルト孔の加工もきわめて容易であり、裏板鋼板とのボルト締結は簡単に行われる。なお、ボルト締結によった場合には、損傷した金型材ブロックを金型面から取り外し、その修理、取り替えをより簡単に実施することができるという利点がある。また、ボルト締結と、キー溝による位置決め方法を並用することにより、より精度の良い構成とすることができる。
【0018】
【発明の実施の形態】
本発明の複合金型材の製造は、通電焼結により行われる。通電焼結は、図3にその装置構成の要部を示すように、真空容器(図示せず)内に設けられた焼結炉(図示せず)に成形ダイ9と成形ダイ9に挿入される上パンチ10および下パンチ11からなる成形型を配設し、成形ダイ9内に粉末材料Mを装入して、パンチ10、11に荷重Pとして、例えば、100〜1000kg/cm2 の荷重を付加し、粉末材料Mを上下から圧縮するとともに、パンチ10、11を通して粉末材料Mに電圧を印加し通電することにより行われている。成形ダイは炭素材、超硬合金などからなり、パンチも同じく炭素材、超硬合金などから構成される。
【0019】
本発明による複合金型材を製造するには、成形ダイ9に下パンチ11をセットし、下パンチ11に予め所定形状に成形加工した炭素鋼などの鋼材12を載置し、鋼材12上に、まず、Co、Ni、Feなどの結合相成分の含有量の多い炭化タングステン(WC)基超硬合金粉末13を充填し、さらに結合相成分の含有量が段階的に少なくなる炭化タングステン(WC)基超硬合金粉末14、15を積層充填した後、上パンチ10をセットして軽く加圧して通電焼結機に装着し、パンチを作動して所定圧力まで加圧し、ついでパンチ10、11を通して通電し、超硬合金粉末を加熱焼結する。
【0020】
通電により加熱焼結を行うことによって、結合相成分の含有量が異なる3層以上の炭化タングステン(WC)基超硬合金からなる超硬合金の焼結体に鋼材が一体に接合した複合金型材が得られる。鋼材と接合する超硬合金部(内層部)は、結合相成分を多く含有しており、靭性、鋼に対する接合性(ぬれ性)が高いから、焼結温度域で鋼材と拡散反応し冶金的に強固に接合する。一方、表層部は結合相成分の含有量が少ないから、耐摩耗性に優れた金型のプレス加工面を形成することができる。
【0021】
焼結後の超硬合金における表層部、内層部などの各層の厚さは、使用条件に応じて、数mmから数十mmになるように調整する。鋼材の厚さは、プレス圧、裏板との固定法などに応じて、数mmから数百mmの範囲とする。なお、鋼材として低炭素鋼を使用する場合には、接合時に超硬合金側のC(炭素)量を減少させ、η相を形成させるため、0.6%以上の炭素量を含有する炭素鋼または合金鋼が好ましい。
【0022】
プレス成形用金型には、滑り摩耗に耐え得る硬さが要求されるとともに、材料粉末の移動に対する耐アブレシブ摩耗、高負荷に耐える剛性、耐撓み性などが必要とされるが、本発明によれば、熱処理した鋼の数倍から数十倍の耐摩耗性をそなえ、プレス加工時の高圧負荷に十分に耐え得る金型を構成できる金型材を得ることができる。
【0023】
【実施例】
以下、本発明の実施例について説明する。
実施例1
図3に示す装置構成を用い、外径55mm、内径30mmの黒鉛製の円筒状成形ダイと、同じく黒鉛製の上パンチおよび下パンチを組合わせ、まず、成形ダイ内にセットされた下パンチ上に厚さ10mmの炭素鋼板を載置し、その上に、平均粒径1.5μmのWC粉末に、平均粒径1μmのCo粉末をそれぞれ、6%、12%および24%配合したWC−Co系超硬合金粉末を、Co含有量が高い順に3段階に積層充填した。
【0024】
上パンチをセットして、上記各充填層の厚さがそれぞれ5mmとなるように、100kg/cm2 の圧力で加圧した後、通電焼結機に装着し、さらに、500kg/cm2 の加圧力で圧縮成形するとともに通電(電流:2000A)して、1200℃の温度に昇温し、120秒間保持することにより通電焼結し、径30mm、高さ17.5mm(鋼板部:10mm厚さ)の複合焼結体を得た。
【0025】
得られた複合焼結体を加圧方向に平行に半分に切断し、その一方について切断面を研磨し、切断面を顕微鏡で観察したところ、割れや気孔はみられず、各層の境界部が完全に拡散接合されているのが認められた。複合焼結体のCo:6%を含有する表層部の硬さは、Hv1750kg/mm2 であった。
【0026】
切断した複合焼結体の他方を用いて、複合焼結体の鋼板部分を厚さ30mmのステンレス鋼板にNi溶接棒を使用してアーク溶接したところ、鋼板同士の溶接のため、溶接は容易であり、溶接強度、衝撃強度の十分に高い接合部が形成された。
【0027】
ついで、ステンレス鋼板に溶接した複合焼結体を用い、Co:6%を含有する表層部について耐摩耗性試験を行った。耐摩耗試験はオルゼン型摩耗試験機により、研磨テーブル上に#80アルミナ砥粒を置き、研磨テーブルを50rpmで回転させ、乾式で、複合焼結体の表層部を荷重400kg/cm2 で押し付け、600回転後の摩耗量を測定したところ、摩耗体積は約3×10-4cm2 (重量減:約5.1mg)であり、きわめて優れた耐摩耗性を有していた。
【0028】
【発明の効果】
以上のとおり、本発明によれば、超硬合金焼結体と鋼材とが冶金的に一体に接合された金型構成用ブロックが得られるから、金型の裏板への溶接、ボルト締結手段による固定が鋼材を介して容易に行われ、当該ブロックを配列することにより種々の形状のプレス成形用金型を作製することが可能となる。金型のプレス加工面となる超硬合金焼結体の表層部は耐摩耗性に優れた特性をそなえているから、耐久性を有する金型面が形成される。金型に損傷などが生じた場合にも、各ブロックを取り外して修理し、または取り替えることにより簡単に修復することができる。
【図面の簡単な説明】
【図1】本発明によるプレス成形用複合金型材(ブロック)を示す一部断面斜視図である。
【図2】本発明による複合金型材を裏板上に配列して形成した金型の金型面を示す斜視図である。
【図3】通電焼結における成形型の配置を示す要部断面図である。
【符号の説明】
1 複合金型材
1A 修理、取り替え用複合金型材
2 複合焼結体
3 鋼材
4 表層部
5 中間層部
6 内層部
7 金型
8 裏板
9 成形ダイ
10 上パンチ
11 下パンチ
12 鋼材
13 超硬合金粉末
14 超硬合金粉末
15 超硬合金粉末
M 粉末材料
[0001]
[Industrial application fields]
The present invention relates to a composite mold material for press molding, in particular, a mold material to be a block for constituting a mold used in a pressing process in producing a fired tile from an ore powder raw material, a method for producing the same, and The present invention relates to a mold for press molding formed from a mold material.
[0002]
[Prior art]
Many stamping molds are made of steel typified by hardened and tempered die steel (JIS SKD11, etc.), but when the object of press molding is hard like ore powder. Has a problem in terms of wear resistance, and in order to improve this problem, WC-Co based, WC-Ni based, etc. composed of tungsten carbide (WC) containing Co and Ni as binder phase components. A steel plate made by brazing a steel material to a cemented carbide plate is proposed.
[0003]
However, when brazing a large area like a mold, there is a problem of brazing, and the thermal expansion coefficients of cemented carbide and steel are greatly different. There is also a problem that stress is generated on the hard alloy side, and deformation or cracking occurs in the cemented carbide due to a temperature change or a slight impact during cooling from the brazing temperature or during use. Also, brazing has low bonding strength and lacks reliability.
[0004]
In order to withstand the press molding of hard materials, the surface layer of the mold steel material may be coated with a hard material using a surface coating method such as thermal spraying, CVD, PVD, plating, etc. to make it hard. Although it has been proposed, pores are likely to occur in thermal spraying, the coating thickness is limited in CVD and PVD, and there is no suitable hard material in plating, and in these surface coating methods, adhesion to the base material is not possible. The properties are not sufficient, and cracking and peeling are likely to occur when subjected to a pressing pressure, and none of them can achieve a satisfactory effect.
[0005]
In order to solve these problems, the surface layer portion is formed from a WC-based cemented carbide having a low content of binder phase components such as Co, and the WC After laminating the hard alloy in layers, it is sintered by energization to produce an integrated composite cemented carbide sintered body. The surface layer portion is improved in wear resistance and the inner layer portion with a high binder phase component content is made of stainless steel. Cemented carbide materials that can be directly welded to steel and carbon steel have been proposed. (Japanese Patent Laid-Open No. 7-300375)
[0006]
When the above cemented carbide material is applied as a mold material, satisfactory results can be obtained in terms of performance. However, after joining the cemented carbide material by brazing or welding, In addition, since the mold back plate made of steel or the like must be fixed by means such as welding and bolt fastening, the process for producing the mold becomes longer, and the mold requires strict dimensional tolerances. However, since the bonding process is performed twice, there is a problem in terms of dimensions.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to improve the wear resistance of the press-molded surface and to fix it directly to the back plate of the mold by welding, bolt fastening or the like. Provided is a composite mold material that is a block for forming a press mold that can shorten the mold manufacturing process, a manufacturing method thereof, and a press mold formed from the composite mold block There is.
[0008]
[Means for Solving the Problems]
A composite mold material for press molding, which is a block for constituting a mold according to the present invention for achieving the above object, is a mold material obtained by integrally joining a tungsten carbide-based cemented carbide and a steel material, and has a surface layer. The portion is composed of a sintered body of at least three layers of tungsten carbide-based cemented carbide in which the content of the binder phase component is gradually increased from the surface layer portion to the inner layer portion, and the inner layer portion is formed in the inner layer portion. The first feature of the construction is that the steel materials are joined by a diffusion reaction.
[0009]
In the sintered body of the tungsten carbide-based cemented carbide, the surface layer portion includes a tungsten carbide-based cemented carbide having a binder phase component of 5 to 12%, and the intermediate layer includes a binder phase component of 10 to 20%. The second feature is that the tungsten carbide-based cemented carbide has three layers of tungsten carbide-based cemented carbide containing an inner layer portion of 20 to 40% of the binder phase component.
[0010]
The press-molding die according to the present invention has the above-described composite material for press-molding arranged in a predetermined shape with the surface layer portion as the upper surface and the steel material joined to the inner layer portion as the lower surface, and the steel material on the lower surface is fixed to the back plate. And forming a mold surface.
[0011]
Further, a method for producing a composite material for press molding, which is a block for constituting a mold according to the present invention, is a method in which a powder material is charged into a molding die and compressed by an upper punch and a lower punch. In addition, in the method of applying a voltage to the green compact through a punch and performing current sintering to form a sintered body, a steel material molded into a predetermined shape is placed on a lower punch set on a molding die, Three or more layers of tungsten carbide based cemented carbide powder adjusted so that the content of the binder phase component is reduced stepwise on the steel material are stacked and filled in order, then an upper punch is set, and the powder is compressed and energized. A sintered body is obtained by sintering, and the sintered body and the steel material are joined by a diffusion reaction.
[0012]
As shown in FIG. 1, the composite mold material for press molding of the present invention is obtained by integrally joining a tungsten carbide-based cemented carbide 2 and a steel material 3, and the tungsten carbide-based cemented carbide 2 is a sintered body. The surface layer portion 4 has a low content of binder phase components such as Co, Ni, Fe, etc., and at least the surface layer portion 4 in which the binder phase component content is gradually increased from the surface layer portion 4 to the inner layer portion 6; The intermediate layer portion 5 and the inner layer portion 6 are composed of three layers, and the steel material 3 is joined to the inner layer portion 6 by a diffusion reaction.
[0013]
In the present invention, WC—Co, WC—Ni, WC—Co—Ni, WC—Fe, and the like can be used as the tungsten carbide base cemented carbide. The sintered body 2 of the tungsten carbide base cemented carbide has at least three layers. The purpose of this is to reduce the difference in thermal expansion coefficient between the surface layer part 4 and the inner layer part 6 and to relieve the stress caused by the thermal expansion difference. The number of layers is determined based on the type, content, gold content of the binder phase component. It is determined according to the dimensions of the mold material.
[0014]
In the case of three layers, the tungsten carbide base cemented carbide in which the surface layer portion 4 contains 5 to 12% of the binder phase component, and the tungsten carbide base cemented carbide in which the intermediate layer 5 contains 10 to 20% of the binder phase component. The inner layer portion 6 is preferably a tungsten carbide base cemented carbide containing 20-40% of a binder phase component. With this configuration, the difference in thermal expansion between the surface layer portion 4 and the inner layer portion 6 is reduced to reduce stress. And the occurrence of deformation and cracking can be suppressed.
[0015]
The composite metal mold material 1 for press molding of the present invention is a small block serving as an element constituting the mold surface. As shown in FIG. 2, the composite metal mold material 1 for press molding has a surface layer portion 4 as an upper surface and an inner layer portion. The steel material 3 joined to 6 is arranged in a predetermined shape with the lower surface as a lower surface, and the lower surface steel material 3 is fixed to a back plate 8 such as a steel plate to form a mold surface 7.
[0016]
If the size of the composite mold material constituting the mold surface 7 is increased, the cemented carbide portion is likely to bend and may crack, and the cemented carbide portion may be non-uniformly sintered. However, in the present invention, the composite mold material is made into a small block, and this block is combined according to the shape of the mold, and the mold surface is configured to be fixed to the back plate. Therefore, as shown in 1A of FIG. The block can be repaired and replaced independently. In addition, when using the mold, the mold surface is composed of small blocks that are independent of each other, so the stress during the pressing process is dispersed and the mold surface is damaged by the stress during the pressing process. It can be avoided.
[0017]
The mold material block 1 and the steel plate of the back plate 8 are fixed by means such as welding and bolt fastening. However, since the fixed side of the composite mold material 1 with the back plate 8 is the steel material 3, the steel is welded together. Thus, it can be joined very easily by a conventional method. The bolt hole for the steel material 3 can be processed very easily, and the bolt fastening with the back plate steel plate is easily performed. In addition, in the case of bolt fastening, there is an advantage that a damaged mold material block can be removed from the mold surface, and its repair and replacement can be performed more easily. Moreover, it can be set as a more accurate structure by using in parallel the bolt fastening and the positioning method by a keyway.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Manufacture of the composite mold material of the present invention is performed by electric current sintering. The electric current sintering is inserted into the forming die 9 and the forming die 9 in a sintering furnace (not shown) provided in a vacuum vessel (not shown) as shown in FIG. A molding die composed of an upper punch 10 and a lower punch 11 is disposed, and a powder material M is inserted into the molding die 9, and a load P of, for example, 100 to 1000 kg / cm 2 is applied to the punches 10 and 11. The powder material M is compressed from above and below, and a voltage is applied to the powder material M through the punches 10 and 11 to energize. The forming die is made of carbon material, cemented carbide or the like, and the punch is also made of carbon material, cemented carbide or the like.
[0019]
In order to manufacture the composite mold material according to the present invention, the lower punch 11 is set on the forming die 9, and the steel material 12 such as carbon steel previously formed and processed into a predetermined shape is placed on the lower punch 11. First, tungsten carbide (WC) filled with tungsten carbide (WC) -based cemented carbide powder 13 having a high content of binder phase components such as Co, Ni, Fe, etc., and further the content of the binder phase component is gradually reduced. After the base cemented carbide powders 14 and 15 are stacked and filled, the upper punch 10 is set and lightly pressed and attached to the electric sintering machine, the punch is operated and pressurized to a predetermined pressure, and then passed through the punches 10 and 11. Energize and heat-sinter the cemented carbide powder.
[0020]
A composite mold material in which a steel material is integrally bonded to a sintered body of cemented carbide made of tungsten carbide (WC) -based cemented carbide of three or more layers having different binder phase component contents by heating and sintering by energization. Is obtained. The cemented carbide part (inner layer part) to be joined to steel contains a large amount of binder phase components, and has high toughness and weldability (wetting) to steel. Bond firmly. On the other hand, since the surface layer portion has a small content of the binder phase component, it is possible to form a press-worked surface of a mold having excellent wear resistance.
[0021]
The thickness of each layer such as a surface layer portion and an inner layer portion in the cemented carbide after sintering is adjusted to be several mm to several tens mm depending on the use conditions. The thickness of the steel material is in the range of several mm to several hundred mm depending on the pressing pressure, the fixing method with the back plate, and the like. In addition, when using low carbon steel as a steel material, carbon steel containing 0.6% or more of carbon is used to reduce the amount of C (carbon) on the cemented carbide side and form the η phase during joining. Or alloy steel is preferable.
[0022]
The mold for press molding is required to have hardness that can withstand sliding wear, and is required to have abrasive wear resistance against movement of material powder, rigidity to withstand high loads, and bending resistance. According to this, it is possible to obtain a mold material that has a wear resistance several times to several tens of times that of heat-treated steel and can constitute a mold that can sufficiently withstand a high-pressure load during press working.
[0023]
【Example】
Examples of the present invention will be described below.
Example 1
Using the apparatus configuration shown in FIG. 3, a graphite cylindrical forming die having an outer diameter of 55 mm and an inner diameter of 30 mm is combined with an upper punch and a lower punch made of graphite, and first, the upper punch is set in the forming die. A WC-Co containing 10% thick carbon steel plate and 6%, 12% and 24% Co powder having an average particle size of 1 μm mixed with WC powder having an average particle size of 1.5 μm on the WC-Co. The cemented carbide powder was stacked and filled in three stages in the order of increasing Co content.
[0024]
After setting the upper punch and pressurizing with a pressure of 100 kg / cm 2 so that the thickness of each of the packed layers is 5 mm, it is mounted on an electric current sintering machine, and further, 500 kg / cm 2 is applied. It is compression-molded with pressure and energized (current: 2000 A), heated to a temperature of 1200 ° C. and held for 120 seconds to conduct current sintering, diameter 30 mm, height 17.5 mm (steel plate part: 10 mm thickness) ) Was obtained.
[0025]
The obtained composite sintered body was cut in half parallel to the pressing direction, the cut surface was polished on one side, and when the cut surface was observed with a microscope, no cracks or pores were observed, and the boundary portion of each layer was A complete diffusion bonding was observed. The hardness of the surface layer portion containing 6% Co of the composite sintered body was Hv 1750 kg / mm 2 .
[0026]
Using the other of the cut composite sintered bodies, when the steel plate portion of the composite sintered body was arc welded to a stainless steel plate having a thickness of 30 mm using a Ni welding rod, welding was easy because the steel plates were welded together. Yes, joints with sufficiently high welding strength and impact strength were formed.
[0027]
Next, using a composite sintered body welded to a stainless steel plate, a wear resistance test was performed on the surface layer portion containing Co: 6%. For the abrasion resistance test, an # 80 alumina abrasive grain was placed on the polishing table using an Olsen-type abrasion tester, the polishing table was rotated at 50 rpm, and the surface layer portion of the composite sintered body was pressed with a load of 400 kg / cm 2 by a dry method. When the amount of wear after 600 rotations was measured, the wear volume was about 3 × 10 −4 cm 2 (weight loss: about 5.1 mg), and the wear resistance was extremely excellent.
[0028]
【The invention's effect】
As described above, according to the present invention, since a die constituting block in which a cemented carbide sintered body and a steel material are metallurgically joined together is obtained, welding to the back plate of the mold, bolt fastening means Can be easily fixed via a steel material, and by arranging the blocks, it is possible to produce press-molding dies having various shapes. Since the surface layer portion of the cemented carbide sintered body that becomes the press-worked surface of the mold has a characteristic excellent in wear resistance, a mold surface having durability is formed. Even when the mold is damaged, it can be easily repaired by removing and repairing each block or replacing it.
[Brief description of the drawings]
FIG. 1 is a partially sectional perspective view showing a composite mold material (block) for press molding according to the present invention.
FIG. 2 is a perspective view showing a mold surface of a mold formed by arranging composite mold materials according to the present invention on a back plate.
FIG. 3 is a cross-sectional view of an essential part showing the arrangement of a mold in electric sintering.
[Explanation of symbols]
1 Composite mold material
1A Composite mold material for repair and replacement 2 Composite sintered body 3 Steel material 4 Surface layer portion 5 Intermediate layer portion 6 Inner layer portion 7 Mold 8 Back plate 9 Molding die
10 top punch
11 Bottom punch
12 Steel
13 Cemented carbide powder
14 Cemented carbide powder
15 Cemented carbide powder M Powder material

Claims (4)

炭化タングステン基超硬合金と鋼材とを一体に接合した金型材であって、表層部は結合相成分の含有量が少なく、表層部から内層部にかけて段階的に結合相成分の含有量を増加させた少なくとも3層の炭化タングステン基超硬合金の焼結体からなり、内層部に鋼材が拡散反応によって接合していることを特徴とする金型を構成するためのブロックとなるプレス成形用複合金型材。A mold material in which tungsten carbide base cemented carbide and steel material are joined together. The surface layer portion has a low content of binder phase component, and the binder phase component content is gradually increased from the surface layer portion to the inner layer portion. Further, a composite metal for press molding, which is a block for forming a metal mold, comprising a sintered body of at least three layers of tungsten carbide base cemented carbide, wherein a steel material is joined to the inner layer portion by a diffusion reaction Mold material. 炭化タングステン基超硬合金の焼結体は、表層部が結合相成分を5〜12%(mass%、以下同じ)を含有する炭化タングステン基超硬合金、中間層が結合相成分を10〜20%含有する炭化タングステン基超硬合金、内層部が結合相成分を20〜40%含有する炭化タングステン基超硬合金の3層からなることを特徴とする請求項1記載のプレス成形用複合金型材。The sintered body of the tungsten carbide-based cemented carbide has a tungsten carbide-based cemented carbide whose surface layer contains 5-12% (mass%, hereinafter the same) binder phase component, and the intermediate layer has a binder phase component of 10-20. 2. The composite mold material for press molding according to claim 1, wherein the tungsten carbide-based cemented carbide contains 3%, and the inner layer portion comprises three layers of tungsten carbide-based cemented carbide containing 20 to 40% of a binder component. . 請求項1または2記載のプレス成形用複合金型材が、表層部を上面、内層部に接合された鋼材を下面として所定形状に配列され、下面の鋼材が裏板と固定されて金型面を構成することを特徴とするプレス成形用金型。The composite mold material for press molding according to claim 1 or 2 is arranged in a predetermined shape with the steel layer bonded to the upper layer as the upper surface and the lower surface as the steel material bonded to the inner layer, and the steel material on the lower surface is fixed to the back plate to form the mold surface. A press-molding die characterized by comprising. 粉末材料を成形ダイ中に装入し、上パンチおよび下パンチで圧縮して圧粉体とするとともに、該圧粉体にパンチを通して電圧を印加し通電焼結することにより焼結体とする方法において、成形ダイにセットした下パンチの上に所定形状に成形した鋼材を載置し、該鋼材上に、結合相成分の含有量が段階的に少なくなるよう調整した炭化タングステン基超硬合金の粉末を順に3層以上積層充填した後、上パンチをセットし、該粉末を圧縮、通電焼結して焼結体とするとともに、該焼結体と前記鋼材とを拡散反応により接合することを特徴とする金型を構成するためのブロックとなるプレス成形用複合金型材の製造方法。A method in which a powder material is charged into a forming die and compressed with an upper punch and a lower punch to form a green compact, and a voltage is applied to the green compact through a punch to sinter current to form a sintered body. The tungsten carbide-based cemented carbide is prepared by placing a steel material formed in a predetermined shape on a lower punch set on a forming die, and adjusting the content of the binder phase component stepwise on the steel material. After three or more layers of powder are stacked and filled in order, the upper punch is set, and the powder is compressed and energized and sintered to form a sintered body, and the sintered body and the steel material are joined by a diffusion reaction. A method for producing a composite mold material for press molding, which becomes a block for constituting a characteristic mold.
JP20855897A 1997-07-17 1997-07-17 COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL Expired - Fee Related JP3764807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20855897A JP3764807B2 (en) 1997-07-17 1997-07-17 COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20855897A JP3764807B2 (en) 1997-07-17 1997-07-17 COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL

Publications (2)

Publication Number Publication Date
JPH1136005A JPH1136005A (en) 1999-02-09
JP3764807B2 true JP3764807B2 (en) 2006-04-12

Family

ID=16558182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20855897A Expired - Fee Related JP3764807B2 (en) 1997-07-17 1997-07-17 COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL

Country Status (1)

Country Link
JP (1) JP3764807B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333236B2 (en) * 2003-07-03 2009-09-16 セイコーエプソン株式会社 Method of manufacturing mold for manufacturing liquid jet head and material block thereof
EP2653580B1 (en) * 2008-06-02 2014-08-20 Kennametal Inc. Cemented carbide-metallic alloy composites
DE112013003682T5 (en) * 2012-07-26 2015-04-30 Kennametal Inc. Metallic sintered powder composite articles
EP2900404B1 (en) * 2012-09-27 2021-08-04 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material
CN105728731A (en) * 2016-03-18 2016-07-06 沈阳飞机工业(集团)有限公司 Method for enhancing strength of cutting edge of tool through additive manufacturing technology

Also Published As

Publication number Publication date
JPH1136005A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JPH09194909A (en) Composite material and its production
US20110180199A1 (en) Powder -metallurgy braze preform and method of use
CN110257679B (en) Preparation method of molybdenum-based alloy coating
US20090274923A1 (en) Tools Having Compacted Powder Metal Work Surfaces, And Method
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
CN104942262B (en) Functional gradient die-casting die and manufacturing process thereof
JP3764807B2 (en) COMPOSITE DIE MATERIAL FOR PRESS MOLDING, ITS MANUFACTURING METHOD, AND PRESS MOLDING DIE CONTAINING THE COMPOSITE DIE MATERIAL
EP1957687B1 (en) Method of fabricating a target.
JPS60174805A (en) Manufacture of metal composite matter
JPH06218872A (en) Ultra-thin laminated composite product and its production
JPH04297506A (en) Manufacture of brake lining containing many studs and brake lining obtained by the method
JPH07300375A (en) Cemented carbide abrasion-resistant material and method for producing the same
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
WO2004052573A1 (en) Composite material member and method for producing the same
US4386959A (en) Method for compound sintering
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
JP4159654B2 (en) Manufacturing method of wear-resistant liner
WO2005123310A1 (en) Method for manufacturing composite material with hot isostatic pressing, and a composite material
US6565498B2 (en) Composite roll for manufacturing heat transfer tubes
JPH10266816A (en) Sintered valve seat member and its manufacture
US20030223903A1 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPH09300104A (en) Complex tool material of super-hard alloy system
JP6193651B2 (en) Resistance welding electrode
JPH09300024A (en) Complex tool material joining steel and cemented carbide and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees