JPS61254184A - Method of continuous culture in high concentration and device therefor - Google Patents

Method of continuous culture in high concentration and device therefor

Info

Publication number
JPS61254184A
JPS61254184A JP60094161A JP9416185A JPS61254184A JP S61254184 A JPS61254184 A JP S61254184A JP 60094161 A JP60094161 A JP 60094161A JP 9416185 A JP9416185 A JP 9416185A JP S61254184 A JPS61254184 A JP S61254184A
Authority
JP
Japan
Prior art keywords
culture
pipe
membranes
supply side
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60094161A
Other languages
Japanese (ja)
Other versions
JPS6363194B2 (en
Inventor
Eitaro Kumazawa
熊沢 栄太郎
Masao Satou
佐藤 喜砂夫
Yoshitomo Minamide
南出 芳友
Shinichi Takato
高藤 愼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP60094161A priority Critical patent/JPS61254184A/en
Publication of JPS61254184A publication Critical patent/JPS61254184A/en
Publication of JPS6363194B2 publication Critical patent/JPS6363194B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To utilize effectively a membrane area and to cultivate continuously a mold in high concentration, by discharging a filtered solution from some filter membranes among plural filter membranes, and changing channels at fixed intervals. CONSTITUTION:The solenoid value 1F is closed, the solenoid valves 2F-4F are opened, the solenoid valves 2P-4P at the filtered solution side are opened, a mold solution in the culture tank 10 is passed through the pipe 66, the circulating pump 38 and the pipes 42-44, sent to the filter changers MF2-4, filtered, the filtered solution is sent through the pipes 57-59 and the pipe 55 and discharged. The mold solution is separated into the filter chamber MF1 and the pipe 49, blended with a medium sent through the solenoid value 1S, provided with a reverse washing effect and circulated through the culture tank 10 (Step 1). Then, after a fixed time is over, the mold solution is circulated while being provided with reverse washing effect by the operation of the solenoid valves shown in the Steps 2-3. through the filter chambers MF2-4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種菌体を培養する高濃度連続培養装置及び
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-concentration continuous culture device and device for culturing various types of bacterial cells.

(従来の技術) 特願昭59−21.1747号の逆洗滌効果を利用した
高濃度培養方法と装置では、2木の膜を用いて1本の膜
から透過液の排出を、他方の膜には培地を供給し、ある
一定の時間間隔て流路を切り換えて濾過機能を交互にも
たせるものである。
(Prior art) In the high-concentration culture method and device using the backwashing effect disclosed in Japanese Patent Application No. 59-21-1747, two wooden membranes are used to discharge the permeated liquid from one membrane and drain the permeated liquid from the other membrane. A culture medium is supplied to the filter, and the flow path is switched at certain time intervals to alternately provide a filtration function.

(発明が解決しようとする問題点) 以上のような装置をスケールアップする場合、培養槽容
量の増大は勿論のこと、膜面積も増加さゼねばならない
。°しかじ、使用するホローファイバー型膜の場合、1
本の膜面積には附度があるため多数の膜を組合せてその
有効利用を図る心安がある。
(Problems to be Solved by the Invention) When scaling up the above-described apparatus, not only the capacity of the culture tank must be increased, but also the membrane area must be increased. ° However, in the case of the hollow fiber type membrane used, 1
Since the membrane area of a book is limited, it is safe to combine a large number of membranes to make effective use of the area.

特願昭59−211.747号のものによれは、lr<
油供給側及び透過液排出側共に等面積で配置するごとに
なる。この方法では設置膜面積の50%しか有効濾過面
積として利用できない。
Regarding the discrepancies in patent application No. 59-211.747, lr<
Both the oil supply side and the permeated liquid discharge side are arranged with the same area. In this method, only 50% of the installed membrane area can be used as an effective filtration area.

実I際に実験を行ったところ、培養の進行に伴い系内の
菌数が増加し、培地を用いた逆洗心の効果は認められる
も、排出側の透過液流量が低下する。これに対して培地
供給例の能力は培養経過中はとんど低下しない。
In actual experiments, the number of bacteria in the system increased as the culture progressed, and although the effect of backwashing using the culture medium was observed, the flow rate of permeate on the discharge side decreased. On the other hand, the capacity of the culture medium supply example hardly decreases during the course of culture.

したがって、培養の後期には供給側と排出側能力のアン
バランスがイ1−シ、結果的には排出側膜面積が装置1
1ヒカを決定することになる。
Therefore, in the later stages of culture, there is an imbalance between the supply side and discharge side capacities, and as a result, the membrane area on the discharge side becomes
1 hika will be decided.

(問題点を解決するための手段) したがって本発明の技術的課題は、膜培養装置における
膜面積の有効利用方法と装置を提供しようとすることを
目的とするもので、この技術的課題を解決する本発明の
技術的手段は、培養槽で各種菌体を培養するに当たって
、培養中に生産される代謝産物を培養槽と共に循環回路
を構成する複数の濾過膜を通して取り除くと共に新鮮培
地を濾過膜を通して循環回路に供給するに当たり、濾過
膜のいくつかを正流運転の透過液排出側とし、残りを逆
流運転の培地供給側として排出full対供給例の膜面
積比が少なくとも供給側にス1して排出側か数(iηと
なるように流路を選択的に切り換えて膜面積を最大限有
効に利用することを特徴とする高濃度連続培養方法と、
培養槽とOF膜等の濾過膜を使用した複数の濾過室とを
配管装置を介して可逆循環回路を構成する如く連111
!Iシ、II&゛過室のいくつかを正流運転の透過液排
出側とし、残りをjヂ流運転の培llI!!供給側とし
て排出側対供給側の膜面積比が少なくとも供給側に対し
て排出側が数倍となるようにして流路を選択的に切り換
えることができるように配管装置を構成したことを特徴
とする高濃度連続培養方法である。
(Means for Solving the Problem) Therefore, the technical problem of the present invention is to provide a method and device for effectively utilizing the membrane area in a membrane culture device, and to solve this technical problem. The technical means of the present invention, when culturing various types of bacterial cells in a culture tank, removes metabolites produced during the culture through a plurality of filtration membranes that together with the culture tank constitute a circulation circuit, and also allows fresh culture medium to pass through the filtration membranes. When supplying to the circulation circuit, some of the filtration membranes are used on the permeate discharge side in forward flow operation, and the rest are used on the medium supply side in reverse flow operation, so that the membrane area ratio of the discharge full to the supply example is at least 1 on the supply side. A high-concentration continuous culture method characterized by selectively switching the flow path so that the number of discharge sides (iη) is reached to maximize the effective use of the membrane area;
A culture tank and a plurality of filtration chambers using filtration membranes such as OF membranes are connected through a piping device to form a reversible circulation circuit 111.
! Some of the I, II & 2 passage chambers are used as the permeate discharge side for normal flow operation, and the rest are used as the culture medium for J-flow operation! ! The piping device is configured such that the flow path can be selectively switched so that the membrane area ratio of the discharge side to the supply side is at least several times that of the supply side on the supply side. This is a high concentration continuous culture method.

(発明の効果) この技術的手段によれは、特願昭59−211747司
(以下、従来法と称す)の作用効果をそのまま奏するの
は勿論のこと、以下に述べるような作用効果を奏するも
のである。
(Effects of the invention) This technical means not only achieves the effects of the patent application No. 59-211747 (hereinafter referred to as the conventional method), but also achieves the effects described below. It is.

すなわち、fj’ff来法では供給例と排出側とに等面
積に膜を配置するため4本の膜を利用する場合、有効濾
過面積ば0.1μマイクロフアイバー0.2m/i本と
すると0.2X 2−0.4 mとなるが、本発明によ
れば例えば供給側に1本、排出側に3本の股を配置した
とすると0.2X 3 =0.6m′となり、本発明は
従来法に鮫べて50%多い有効濾過面積をうろことがで
きる。
In other words, in the fj'ff conventional method, when four membranes are used to arrange the membranes in the same area on the supply and discharge sides, the effective filtration area is 0.1 μ, assuming 0.2 m/i of microfibers. However, according to the present invention, if one crotch is arranged on the supply side and three crotches on the discharge side, then 0.2X 3 =0.6 m', and the present invention Compared to conventional methods, the effective filtration area is 50% larger.

本発明にしたがって供給側を1本、排出側を3本の膜を
配置し、■ザイクルの時間を従来法と同し時間にセット
すると1本の膜の逆洗滌を受ける時間は従来法の1/2
となる。
According to the present invention, if one membrane is arranged on the supply side and three membranes are arranged on the discharge side, and the cycle time is set to the same time as the conventional method, the time required for backwashing of one membrane is the same as that of the conventional method. /2
becomes.

このように逆洗g時は本発明では半減されるが、膜面流
速が高い値をとれるため、その効果は大きく十分に実用
に供しうる。
In this way, the time of backwashing g is reduced by half in the present invention, but since the membrane surface flow velocity can take a high value, the effect is large and can be sufficiently put to practical use.

何れにしても本発明によれば、培養の後期においても供
給側と排出側能力にアンバランスか生しないし、膜培養
装置をスケールアンプすることかできる。
In any case, according to the present invention, there is no imbalance between the supply side and discharge side capacities even in the later stages of culture, and the membrane culture apparatus can be scaled up.

(実施例) 以下、図面に示す実施例について説明する。(Example) The embodiments shown in the drawings will be described below.

先ず、従来法から説明する。First, the conventional method will be explained.

第7図において、(]0)は培養槽であり、(]1)(
12)はフォローファイバーUF膜を使用した第1.2
濾過室である。
In Figure 7, (]0) is a culture tank, (]1)(
12) is No. 1.2 using follow fiber UF membrane.
It is a filtration chamber.

培養槽(10)と第1 i1!6過室(11)とはポン
プ(37)のある管(13)で連結され、第1濾過室(
11)と第2濾過室(12〉とは管(35)で連結され
ている。
The culture tank (10) and the first i1!6 filtration chamber (11) are connected by a pipe (13) with a pump (37), and the first filtration chamber (
11) and the second filtration chamber (12>) are connected through a pipe (35).

第2濾過室(12)はまた管(15)を介して培養槽(
10)に連結され、第1濾過室(11)は管(13)か
らバルブ (20)を介して分岐した管(14)で培養
槽(10)に連結されている。
The second filtration chamber (12) is also connected to the culture tank (
10), and the first filtration chamber (11) is connected to the culture tank (10) by a pipe (14) branched from the pipe (13) via a valve (20).

管(13)の途中には以上の外、バルブ(19)から分
岐した管(36)がバルブ(21)を介して管(15)
に連結されている。
In addition to the above, in the middle of the pipe (13), a pipe (36) branched from the valve (19) connects to the pipe (15) via the valve (21).
is connected to.

以」二のようなことから実線で示す矢印の正流運転時で
は培養槽(10)からの菌体液は管(13)から第1濾
過室(11)、第2濾過室(12)を経て管(]5)で
培養槽(10)に還元されるようになっていて1つの循
環回路を構成している。
From the above, in the forward flow operation indicated by the solid line, the bacterial fluid from the culture tank (10) passes through the tube (13), the first filtration chamber (11), and the second filtration chamber (12). The water is returned to the culture tank (10) through a pipe (5), forming one circulation circuit.

又、ifj線−で示す矢印の逆流運転時では’i:i(
3G )から管(15)を介して第2σV過室(12)
 、第1濾過室(11)の順に通過し、管(14)で培
養槽(10)に還元されるようになっている。
Also, during reverse flow operation as indicated by the ifj line -, 'i:i(
3G) through the tube (15) to the second σV overchamber (12)
, the first filtration chamber (11) in this order, and is returned to the culture tank (10) through a pipe (14).

第1.211&、過室には培地供給タンク(29)から
ポンプ(31)を通して培地が管(30)に送られ、バ
ルブ(32)を介して甲i’ (34)  (33)の
何れかを通して第1.2 rr=過室に押込まれイ)よ
)になっている。
1.211&, the culture medium is sent from the culture medium supply tank (29) to the pipe (30) through the pump (31), and to either of Ai' (34) (33) through the valve (32). Through the 1.2 rr = pushed into the excess chamber a) yo).

又、UF欣より除去された代謝物を含む低分子栄養成分
は第1.2濾過室(11,)  (12)から管(22
)  (40) 、バルブ(23) 、管(24> 、
ポンプ(26)を通して1ノ・!過室(27)に導かれ
、ここでRO膜を通じて代謝物の除去後、管(28)を
通して培地供給タンク(29)に還元されるようになっ
ている。
In addition, low-molecular nutritional components including metabolites removed from the UF tube are passed from the 1.2 filtration chamber (11,) (12) to the tube (22).
) (40), valve (23), pipe (24>,
1 no. through the pump (26)! The medium is led to a chamber (27) where, after removing metabolites through an RO membrane, it is returned to a medium supply tank (29) through a pipe (28).

その他、管(13)から管(16) 、ポンプ(18)
を通じて濃縮菌液が濃縮菌液回収タンク(17)に回収
されるようになっている。
Others: pipe (13) to pipe (16), pump (18)
The concentrated bacterial liquid is collected into a concentrated bacterial liquid recovery tank (17) through the tank.

さて、第7図のフローシートにしたがって具体的に説明
していくと、まず培養槽(10)で種菌を接Jili 
L、、培養を開始する。
Now, to explain it in detail according to the flow sheet in Figure 7, first, inoculate the inoculum in the culture tank (10).
L. Start culturing.

数時間後に代謝産物が蓄積され始め、ある濃度に達する
と股の運転を開始する。
After a few hours, metabolites begin to accumulate, and when they reach a certain concentration, they begin to drive.

実線矢印の正流運転時には培養槽(10)よりポンプ(
37)で引き抜いた菌体液を第1.2濾過室の順で通過
させる。
During forward flow operation as indicated by the solid line arrow, the pump (
The bacterial cell liquid drawn out in step 37) is passed through the 1st and 2nd filtration chambers in this order.

第1.2濾過室におけるUF股はフォローファイバーU
 F膜からなるもので、この場合第1濾過室(11)が
高圧側となり、代謝物を含む透過液が管(22) 、バ
ルブ(23) 、管(24) 、ポンプ(26) 、管
(25)を経て濾過室(27)に導かれ、ここでRO膜
で代謝物か除去され、代謝物が除去さく14だ低分子栄
養成分は管(28)を通し培地供給タンク (29)に
戻され、培地の有効利用か削れるようになっている。
The UF crotch in the 1.2 filtration chamber is a follow fiber U
In this case, the first filtration chamber (11) is on the high pressure side, and the permeate containing metabolites is passed through the tube (22), valve (23), tube (24), pump (26), tube ( 25) to the filtration chamber (27), where metabolites are removed by an RO membrane. This allows for effective use of the culture medium.

一方、低圧側となる第2濾過室(12)ではポンプ(3
1)により代謝物を除いた低分子栄養物及び新町培地か
タンク(29)から管(30)、バルブ(32) 、管
(33)を通じて押込まれ培養槽(10)内のタンクレ
ベルを一定に(λj持するように運転される。
On the other hand, in the second filtration chamber (12) on the low pressure side, the pump (3
1), low-molecular nutrients and Shinmachi culture medium with metabolites removed are pushed from the tank (29) through the pipe (30), valve (32), and pipe (33) to maintain a constant tank level in the culture tank (10). (It is operated so that λj is maintained.

以上のような運転状態を継続すると、第1濾過室からの
透過液速度か培養過程で菌数増加に伴って高粘度化し、
膜の目づまりにより低下するので、この時、三方電磁バ
ルブ(19)  (20)(21)  (23)  (
32)を同時に切り換え鎖線矢印で示す逆流運転に入る
If the above operating conditions are continued, the permeate rate from the first filtration chamber will increase in viscosity as the number of bacteria increases during the culture process.
At this time, the three-way solenoid valve (19) (20) (21) (23) (
32) at the same time and enters reverse flow operation as indicated by the chain arrow.

このバルブ切換により高圧側と低圧側とが逆転し、これ
まで透過液を系内から系外に排出していた第1濾過室て
は系夕)から系内に液が押し込まれる状態、すなわちタ
ンク(29) 、ポンプ(3])、管(30) 、バル
ブ(32)、管(34)を介して逆洗Hg状態に入り膜
面に何名した菌体等が除去され、次の正流運転に備えて
洗Hハを兼ねなから低分子栄養分を補給する。
By switching this valve, the high-pressure side and low-pressure side are reversed, and the permeated liquid is forced into the system from the first filtration chamber, which had previously been discharged from the system to the tank. (29), the pump (3]), the pipe (30), the valve (32), and the pipe (34) enter the backwashing Hg state, which removes the bacterial cells on the membrane surface, and then the next forward flow. In preparation for operation, it also serves as a washing machine and replenishes low-molecular nutrients.

このように第1.2濾過室の高圧、低圧側を切喚えるこ
とにより光なる機能を交互にもたせ透過流速を低下させ
ろことなく連続的に代aη1物を除きながら培養を継続
さゼ、連続的に高濃度の菌体を培j1させることかでき
る。
In this way, by energizing the high pressure and low pressure sides of the 1.2 filtration chamber, the light function is alternately provided, and the culture is continued while continuously removing substances without reducing the permeation flow rate. It is possible to culture a high concentration of bacterial cells.

以上の如く、従来法は2本の膜を用いて1本の膜から透
過液の排出を、他方の膜には培地を供給し、ある一定時
間間隔て流路を切り換えて濾過機能を交互にもたせるよ
うにしたものである。
As described above, the conventional method uses two membranes, discharges the permeate from one membrane, supplies the medium to the other membrane, and switches the flow path at certain time intervals to perform the filtration function alternately. It is designed to hold up.

これに対して、本発明のものは設置膜面積を最大限有効
に利用するようにしたものである。
In contrast, the present invention utilizes the installed membrane area as effectively as possible.

すなわち、第1図に示すものは、4本の膜を用いて16
個の電磁弁を組合せたものである。
That is, the one shown in Figure 1 uses four membranes to
This is a combination of several solenoid valves.

MFz、MF2.M7.MFz、ムJ濾過室を示すもの
で、これらと培養槽(10)とを循環ポンプ(38)で
つないで循環回路を構成している。
MFz, MF2. M7. MFz and MuJ filtration chambers are shown, and these and the culture tank (10) are connected by a circulation pump (38) to form a circulation circuit.

すなわち、培養槽(10)からの菌体液はパイプ(66
)を通じて循環ポンプ(38)で各濾過室に送られる。
That is, the bacterial fluid from the culture tank (10) is transferred to the pipe (66).
) to each filtration chamber by a circulation pump (38).

パイプ(39)  (40)はパイプ(41)  (4
2)  (43)(44)を通じて各濾過室につながり
、パイプ(45)  (46)  (47)  (48
)からパイプ(49)を通してi1″ダ養槽(10)へ
の戻りラインを構成している。
Pipe (39) (40) is pipe (41) (4
2) Connected to each filtration chamber through (43) and (44), and pipes (45) (46) (47) (48)
) constitutes a return line through the pipe (49) to the i1'' nutrient tank (10).

そして、透過液はパイプ(56)  (57)  (5
8)(59)からパイプ(55)に集められ、パイプ(
64)から枝パイプ(60)  (61,)  (62
)  (63)を通して何れかの濾過室に培地が供給さ
れるようになっている。IF、  2F、  3F、 
 、IF。
And the permeate is piped (56) (57) (5
8) Collected from (59) to pipe (55), pipe (
64) to branch pipe (60) (61,) (62
) The culture medium is supplied to either of the filtration chambers through (63). IF, 2F, 3F,
,IF.

]、R,2R,3R,4R,11〕、2P、3P。], R, 2R, 3R, 4R, 11], 2P, 3P.

4、P、Is、2S、3S、4.3は配管中の各電磁弁
を示す。
4, P, Is, 2S, 3S, 4.3 indicate each electromagnetic valve in the piping.

そこで、第3図に示すシーケンザーを用いて電磁弁を1
0分間隔て切り換え運転を行うことかでき、5tep 
]、 −−3tep 2−→5tep 3−tStep
 4−→5Lep 1−5tep2・・・・の順に膜内
の流路を切り投えると、各膜は逆洗蒔をうけて十分に滅
過隠能を発揮することができる。
Therefore, we used the sequencer shown in Figure 3 to set up one solenoid valve.
Switching operation can be performed at 0 minute intervals, 5 steps
], --3tep 2-→5tep 3-tStep
By cutting out the channels in the membrane in the order of 4-→5Lep 1-5tep2..., each membrane is backwashed and can fully exhibit its obscuring ability.

5tep 1について説明すると、電磁弁IFが閉で電
磁弁2F、3F、4Fが開の状態であるので循環ポンプ
(38)から送られた菌体液は、パイプ(42)  (
43)  (44)を通してMF2.MF3゜M Fψ
の中を分岐され」−昇して流れる。
To explain step 1, the solenoid valve IF is closed and the solenoid valves 2F, 3F, and 4F are open, so the bacterial fluid sent from the circulation pump (38) flows through the pipe (42) (
43) Through (44), MF2. MF3゜M Fψ
It branches out in the middle of the river and flows up and down.

この場合3本の膜MFユ、MFβ、 M F、J、は高
圧側にあり、透過液側電磁弁2P、3P、4Pが連動し
て開いているのでこのラインより透過液がパイプ(55
)に流出する。
In this case, the three membranes MF, MFβ, MF, and J are on the high pressure side, and the permeate side solenoid valves 2P, 3P, and 4P are opened in conjunction with each other, so the permeate flows from this line to the pipe (55
).

M F2 、 M Fう、MF、を通った菌体液はMF
/ 及びリターンラインに分かれてパイプ(49)  
(50)で培養槽(10)に戻る。
MF2, MF, the bacterial fluid that has passed through MF is MF
/ Divided into return line and pipe (49)
At (50), return to the culture tank (10).

ここでMF7 は低圧側になり、培地供給用電磁弁IS
が開いてこの膜に培地が供給され、逆洗改効果をもだ−
U゛て系内に流入する。これを第3図(ロ)に示す。
Here, MF7 is on the low pressure side, and the solenoid valve IS for culture medium supply is
When the membrane opens, medium is supplied to this membrane, creating a backwashing effect.
It flows into the system. This is shown in Figure 3 (b).

以下5tep2. 3. 4は第3図に示す電磁弁操作
によりそれぞれM F2. M F3. M F4が逆
洗滌を受げながらザイクリングすることができる。
Below are 5 steps 2. 3. 4 are respectively MF2.4 by operating the solenoid valves shown in FIG. MF3. MF4 can perform saikling while receiving backwashing.

第3図(ハ)は5tep2を示す。FIG. 3(C) shows 5tep2.

以上のよ・うな本発明のものと従来法とを比較ずろため
に、従来法により絹布てたソステムラインを第2図に示
す。第1図と同一部分には同一の符月をイ」しである。
In order to compare the method of the present invention with the conventional method as described above, the sostem line of silk cloth made by the conventional method is shown in FIG. The same parts as in Figure 1 are marked with the same symbols.

第4図に示すシーケンサ−を用いて電磁弁を開閉操作す
る動作について5teplから説明すると、電磁弁IF
が開で電磁弁2Fが閉で、しかも電磁弁IRが閉で電磁
弁2Rが開であるので、循環ポンプ(38)から送られ
た菌体液はパイプ(39)  (74)  (72) 
 (78)を通し、MF、、MF2゜の中を分岐して上
昇する。M F/ 、 M F2から流れ出た菌体液は
パイプ(75)  (77)  (76)からMF3.
MF≠に入りパイプ(79)  (73)  (50)
を通じて培養槽(10)に戻るようになっていてMF/
、MF2は高圧側でM Fj 、 M F体は低圧側と
なる。
The operation of opening and closing the solenoid valve using the sequencer shown in Fig. 4 will be explained starting from 5 steps.
is open and solenoid valve 2F is closed, and furthermore, solenoid valve IR is closed and solenoid valve 2R is open, so the bacterial fluid sent from the circulation pump (38) flows through the pipes (39) (74) (72)
(78), branches into MF, MF2° and rises. The bacterial fluid flowing out from MF/, MF2 is transferred from pipes (75) (77) (76) to MF3.
MF≠ enter pipe (79) (73) (50)
MF/
, MF2 are on the high pressure side, and M Fj and MF bodies are on the low pressure side.

そして、MF、、MF2の透過液はパイプ(68)から
排出されMF、MFψにパイプクロ4)を通じて供給さ
れることになる。したがって、低圧側は逆洗滌効果をも
つようになる。これを第4図(ロ)に示す。
The permeated liquid of MF, MF2 is discharged from the pipe (68) and supplied to MF and MFψ through the pipe clover 4). Therefore, the low pressure side has a backwashing effect. This is shown in Figure 4 (b).

5tep2によればM F、 、 M Fμが高圧側と
なり、M F、 、 M F2が低圧側となる。これを
第4図(ハ)に示す。
According to 5tep2, MF, , MFμ are on the high pressure side, and MF, , MF2 are on the low pressure side. This is shown in FIG. 4(c).

以上のものによれば、培地供給側及び透過液排出側は共
に膜面積を等しくしたもので、電磁弁の数は本発明に比
べると少なく、したがってラインは単純化されるが、透
過液側膜面積は密に0.2X 2 = 0.4mと少な
い。
According to the above, both the culture medium supply side and the permeate discharge side have the same membrane area, and the number of solenoid valves is smaller compared to the present invention, so the line is simplified, but the permeate side membrane The area is densely small, 0.2 x 2 = 0.4 m.

何れにしても供給側膜2本、排出側膜2本が交互に切替
り高圧側となる透過液排出側はその電磁弁が連動して開
き透過液が流出し、一方低圧側となる培地供給側はその
電磁弁が連動して開き、膜内に培地が供給されるもので
ある。
In any case, the two membranes on the supply side and the two membranes on the discharge side are switched alternately, and the solenoid valve on the permeate discharge side, which is the high pressure side, opens in conjunction with the solenoid valve to allow the permeate to flow out, while the medium supply, which is the low pressure side. The solenoid valve on the side opens in conjunction with the solenoid valve to supply the culture medium into the membrane.

(実験例) 以上のような本発明と従来法とを次のような実験方法で
比較してみる。
(Experimental Example) The present invention as described above and the conventional method will be compared using the following experimental method.

10ff容積培養タンクに酵母エキス1.0%、ペプト
ン1.0%、パーミニ−1〜粉3.0%、肉エキス0゜
5%、K11(POゲ0.5%、KH2PO,、IO,
1%、アスコルビン酸Na 0.1%、水93.8%か
らなる組成の培地61を仕込み、120°C15分間の
滅菌後、冷却し、あらかじめ前培養を行ったL口ong
umの種菌を接種し、35±0.5°Cの温度条件で培
養を行った後、膜1’g !Le運転に入った。
In a 10ff volumetric culture tank, yeast extract 1.0%, peptone 1.0%, permini-1 to powder 3.0%, meat extract 0°5%, K11 (POge 0.5%, KH2PO, IO,
1% Na ascorbic acid, 0.1% Na ascorbate, and 93.8% water were prepared, and after sterilization at 120°C for 15 minutes, the medium was cooled and precultured.
After inoculating um inoculum and culturing at a temperature of 35±0.5°C, 1'g of membrane was grown. I started driving Le.

なお、運転経過と共にP■は低下するので、2N  N
11.follによりl111=6.0の定I’l+培
養を行った。
Note that P■ decreases as the operation progresses, so 2N N
11. A constant I'l+ culture with l111=6.0 was carried out by foll.

他の前処理条件は従来法と同しである。Other pretreatment conditions are the same as in the conventional method.

実験に使用した膜は旭化成!0.1μマイクロファイバ
ー(膜面&J1本0.2 m )である。
The membrane used in the experiment was Asahi Kasei! It is a 0.1μ microfiber (membrane surface & J 1 piece 0.2 m).

(実験結果) 第5図は、膜運転開始後の透過液流量の変化を示すもの
である。膜運転開始時には、菌濃度も低く透過液排出能
力は十分あるが、菌体の増殖に見合った培地供給を行う
ことにより、その有効利用をaするよう運転を行った。
(Experimental Results) FIG. 5 shows the change in the permeate flow rate after the start of membrane operation. At the start of membrane operation, the bacteria concentration was low and the permeate discharge capacity was sufficient, but the operation was carried out to make effective use of the medium by supplying a medium commensurate with the growth of bacterial cells.

なお、この培地の供給速度(この値は、はぼ透過液量に
等しい)は、菌体濃度と透過液中乳糖濃度及び菌体の比
増殖速度の値から最適化を計り求めた。
The feeding rate of this medium (this value is equal to the amount of permeate) was determined by optimization from the values of the bacterial cell concentration, the lactose concentration in the permeate, and the specific growth rate of the bacterial cells.

運転開始後約5時間まではこの最適供給速度に従った運
転は可能であったが、この時期を過ぎた頃から従来法で
は透過液量は余り増加しな(なり、7〜8時間を境に低
下する(順向力9忍められた。
It was possible to operate according to this optimal supply rate until about 5 hours after the start of operation, but after this period, the amount of permeate did not increase much with the conventional method (and the amount of permeate did not increase much after 7 to 8 hours). (The positive force was sustained by 9.

これに対して、本発明では培養開始後、約10時間まで
最適化した透過流量が得られており、両者の差は明らか
に透過側膜面積の相違に起因するものと考えられる。
On the other hand, in the present invention, an optimized permeation flow rate was obtained for up to about 10 hours after the start of culture, and the difference between the two is clearly considered to be due to the difference in the membrane area on the permeate side.

第6図には両装置で実験した際の菌体の増殖速度を対比
して示すが、本発明では0〜12時間にて一定の比増殖
速度で増殖しているのに対し、従来法では5時間を過ぎ
た頃から透過液流量の増加が鈍ったためと考えられるが
、比増殖速度は低下しはじめ、培養の後期には培地を供
給しているにもかかわらず菌数を維持するのがようやく
の状態であった。
Figure 6 shows a comparison of the growth rates of bacterial cells when experimenting with both devices. In the present invention, the bacteria grew at a constant specific growth rate from 0 to 12 hours, whereas in the conventional method, the cells grew at a constant specific growth rate. This is thought to be because the increase in the permeate flow rate slowed down after 5 hours, but the specific growth rate began to decline, and in the latter stages of culture, it was difficult to maintain the number of bacteria despite supplying the medium. The situation was finally there.

したがって、12時間培養で得られた両法での最終到達
濃度には大きな開きが認められる。
Therefore, there is a large difference in the final concentrations obtained by both methods after 12 hours of culture.

このように膜面積の利用法が装置能力をも決定する大き
な要因となる事を本実験結果は示している。
The results of this experiment show that how the membrane area is used is a major factor in determining the device capacity.

なお、本実験結果より透過液側膜面積Spとb 培地供給側膜面積Ssとの比Sp/Ssの逆洗液効果に
及ぼす影響について言及すると、従来法ではこの値は1
.0であるのに対して、本発明法では3.0となってい
る。供給側膜面積Ssは従来法で0.4=に対し、本発
明法では0.’2mと172になっており、逆洗滌時に
おける膜面積通過流速は前者に対して後者は2倍の値を
示す。
In addition, referring to the effect of the ratio Sp/Ss of the membrane area on the permeate side Sp and the membrane area Ss on the medium supply side from the present experimental results, in the conventional method, this value is 1.
.. While it is 0, it is 3.0 in the method of the present invention. The supply side membrane area Ss is 0.4 in the conventional method, whereas it is 0.4 in the method of the present invention. 2m and 172, and the flow rate through the membrane area during backwashing is twice as high in the latter as in the former.

これまでにも述べてきたように、本発明はシーケンシャ
ルに電磁弁が切替わる5tepが4回あり、これに対し
て従来法ではその5tepが2回と少ない。したがって
、1ザイクルの時間を両者で同し時間に七ソトすると、
1本の膜の逆洗滌を受ける時間は本発明では従来法の1
/2となる。
As described above, in the present invention, there are four 5-step steps in which the solenoid valve is sequentially switched, whereas in the conventional method, the 5-step steps are fewer than two times. Therefore, if the time of one cycle is divided into seven times for both parties, then
In the present invention, the time required for backwashing one membrane is 1 in the conventional method.
/2.

このように逆洗流時間は本発明では半減されるが、前述
のように膜面流速が高い値を取れるため、その効果は大
きく十分に実用に供しうる。
In this way, the backwashing time is halved in the present invention, but since the membrane surface flow velocity can take a high value as described above, the effect is large and can be sufficiently put to practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による膜配置システムを示す図 第2図は従来法による膜配置システムを示ず図 第3図(イ)(ロ)(ハ)は本発明による各ステップに
おける液の流れ図 第4図(イ) (ロ) (ハ)は従来法による各ステッ
プにおける液の流れ図 第5図は透過液流量の経時変化図 第6図は菌体増殖曲線図 第7図は従来法を示す図である。 M F、 、 M F、 、 M FJ 、 M Fメ
・・・濾過室(10)・・・・培養槽 (29)・・・・培地供給タンク (38)・・・・循環ポンプ
FIG. 1 shows a membrane arrangement system according to the present invention. FIG. 2 shows a membrane arrangement system according to a conventional method. FIG. Figure 4 (a), (b), and (c) are flow diagrams of the liquid at each step according to the conventional method. Figure 5 is a diagram of the change in permeate flow rate over time. Figure 6 is a bacterial cell growth curve diagram. Figure 7 is a diagram showing the conventional method. It is. MF, , MF, , MFJ, MF Me...Filtration chamber (10)...Culture tank (29)...Medium supply tank (38)...Circulation pump

Claims (2)

【特許請求の範囲】[Claims] (1)培養槽で各種菌体を培養するに当たって、培養中
に生産される代謝産物を培養槽と共に循環回路を構成す
る複数の濾過膜を通して取り除くと共に新鮮培地を濾過
膜を通して循環回路に供給するに当たり、濾過膜のいく
つかを正流運転の透過液排出側とし、残りを逆流運転の
培地供給側として排出側対供給側の膜面積比が少なくと
も供給側に対して排出側が数倍となるように流路を選択
的に切り換えて膜面積を最大限有効に利用することを特
徴とする高濃度連続培養方法。
(1) When culturing various types of bacterial cells in a culture tank, metabolites produced during cultivation are removed through multiple filter membranes that together with the culture tank constitute a circulation circuit, and fresh culture medium is supplied to the circulation circuit through the filter membranes. , some of the filtration membranes are used as the permeate discharge side in forward flow operation, and the rest are used as the medium supply side in reverse flow operation, so that the membrane area ratio of the discharge side to the supply side is at least several times that of the supply side. A high-concentration continuous culture method characterized by selectively switching flow channels to make the most effective use of membrane area.
(2)培養槽とUF膜等の濾過膜を使用した複数の濾過
室とを配管装置を介して可逆循環回路を構成する如く連
結し、濾過室のいくつかを正流運転の透過液排出側とし
、残りを逆流運転の培地供給側として排出側対供給側の
膜面積比が少なくとも供給側に対して排出側が数倍とな
るように流路を選択的に切り換えることができるように
配管装置を構成したことを特徴とする高温度連続培養装
置。
(2) The culture tank and multiple filtration chambers using filtration membranes such as UF membranes are connected via piping equipment to form a reversible circulation circuit, and some of the filtration chambers are connected to the permeate discharge side for forward flow operation. The piping system is designed so that the flow path can be selectively switched so that the membrane area ratio of the discharge side to the supply side is at least several times that of the supply side, with the remainder being used as the culture medium supply side in reverse flow operation. A high-temperature continuous culture device characterized by the following configuration.
JP60094161A 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor Granted JPS61254184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094161A JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094161A JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Publications (2)

Publication Number Publication Date
JPS61254184A true JPS61254184A (en) 1986-11-11
JPS6363194B2 JPS6363194B2 (en) 1988-12-06

Family

ID=14102644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094161A Granted JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Country Status (1)

Country Link
JP (1) JPS61254184A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255079A (en) * 1989-03-29 1990-10-15 Shimadzu Corp Cell culture apparatus
US5627070A (en) * 1995-07-26 1997-05-06 Celltherapy, Inc. Cell growing device for in vitro cell population expansion
JP2005261342A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Plankton culture system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255079A (en) * 1989-03-29 1990-10-15 Shimadzu Corp Cell culture apparatus
US5627070A (en) * 1995-07-26 1997-05-06 Celltherapy, Inc. Cell growing device for in vitro cell population expansion
US5763261A (en) * 1995-07-26 1998-06-09 Celltherapy, Inc. Cell growing device for in vitro cell population expansion
JP2005261342A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Plankton culture system

Also Published As

Publication number Publication date
JPS6363194B2 (en) 1988-12-06

Similar Documents

Publication Publication Date Title
US7658852B2 (en) RO membrane cleaning method
US5763261A (en) Cell growing device for in vitro cell population expansion
WO2004062774A2 (en) Direct osmosis cleaning
EP2969147A1 (en) Membrane filtration system with concentrate staging and concentrate recirculation, switchable stages, or both
CN110357214A (en) Platform above formula filters water purification system and its process for purifying water
JPS6188872A (en) Method and apparatus for continuous cultivation at high concentration
JPS61254184A (en) Method of continuous culture in high concentration and device therefor
CN210528541U (en) On-table instant filtering water purification system
Liu et al. Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater
CN102586088A (en) Sterile ultrafiltration concentration enzymic preparation fermentation broth post-extraction production line
CN211770630U (en) Multi-water-quality water purification system on bench
CN212403567U (en) Reverse osmosis membrane purifier
JPS6022905A (en) Washing method of semipermeable membrane module
CN113562916B (en) System and method for high-power concentration of seawater
CN102399687A (en) Multifunctional post-extraction production line for enzyme preparation fermentation liquid
CN202201898U (en) Sterility ultrafiltration concentrated type post extraction product line for fermentation liquor of enzymic preparations
CN210419557U (en) Continuous operation&#39;s concentrated processing apparatus of multiunit modularization membrane
JPS62221493A (en) Method for treating membrane bioreactor
CN208279391U (en) Nanofiltration water system
CN210163181U (en) Two-way alternating water purification machine membrane filtration system
JPS61254185A (en) Method of continuous culture in high concentration and device therefor
CN206418064U (en) A kind of gibberellin high power concentration systems
CN114174228A (en) Multistage flash water purification technology and device with flowing flash surface
DE4208429C2 (en) Process for generating high cell densities
CN109865431A (en) A kind of film integrating device and protein matter separation method for protein matter separation concentration