JPS6363194B2 - - Google Patents

Info

Publication number
JPS6363194B2
JPS6363194B2 JP9416185A JP9416185A JPS6363194B2 JP S6363194 B2 JPS6363194 B2 JP S6363194B2 JP 9416185 A JP9416185 A JP 9416185A JP 9416185 A JP9416185 A JP 9416185A JP S6363194 B2 JPS6363194 B2 JP S6363194B2
Authority
JP
Japan
Prior art keywords
culture
membrane
filtration
pipe
supply side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9416185A
Other languages
Japanese (ja)
Other versions
JPS61254184A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60094161A priority Critical patent/JPS61254184A/en
Publication of JPS61254184A publication Critical patent/JPS61254184A/en
Publication of JPS6363194B2 publication Critical patent/JPS6363194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種菌体を培養する高濃度連続培養
方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-concentration continuous culture method and apparatus for culturing various bacterial cells.

(従来の技術) 特願昭59−211747号の逆洗滌効果を利用した高
濃度培養方法と装置では、2本の膜を用いて1本
の膜から透過液の排出を、他方の膜には培地を供
給し、ある一定の時間間隔で流路を切り換えて濾
過機能を交互にもたせるものである。
(Prior art) In the high-concentration culture method and device using the backwashing effect disclosed in Japanese Patent Application No. 59-211747, two membranes are used to discharge the permeated liquid from one membrane, and to discharge the permeate from the other membrane. A medium is supplied, and the flow path is switched at certain time intervals to alternately provide a filtration function.

(発明が解決しようとする問題点) 以上のような装置をスケールアツプする場合、
培養槽容量の増大は勿論のこと、膜面積も増加さ
せねばならない。しかし、使用するホローフアイ
バー型膜の場合、1本の膜面積には限度があるた
め多数の膜を組合せてその有効利用を図る必要が
ある。
(Problem to be solved by the invention) When scaling up the above-mentioned device,
Not only the capacity of the culture tank must be increased, but also the membrane area must be increased. However, in the case of the hollow fiber type membrane used, there is a limit to the area of one membrane, so it is necessary to combine a large number of membranes to make effective use of the membrane.

特願昭59−211747号のものによれば、培地供給
側及び透過液排出側共に等面積で配置することに
なる。この方法では設置膜面積の50%しか有効濾
過面積として利用できない。
According to Japanese Patent Application No. 59-211747, both the culture medium supply side and the permeate discharge side are arranged with the same area. In this method, only 50% of the installed membrane area can be used as an effective filtration area.

実際に実験を行つたところ、培養の進行に伴い
系内の菌数が増加し、培地を用いた逆洗滌の効果
は認められるも、排出側の透過液流量が低下す
る。これに対して培地供給側の能力は培養経過中
ほとんど低下しない。
In actual experiments, the number of bacteria in the system increased as the culture progressed, and although the effect of backwashing using the culture medium was observed, the flow rate of permeate on the discharge side decreased. On the other hand, the capacity of the medium supply side hardly decreases during the course of culture.

したがつて、培養の後期には供給側と排出側能
力のアンバランスが生じ、結果的には排出側膜面
積が装置能力を決定することになる。
Therefore, in the latter stages of culture, an imbalance occurs between the capacity on the supply side and the capacity on the discharge side, and as a result, the membrane area on the discharge side determines the capacity of the device.

(問題点を解決するための手段) したがつて本発明の技術的課題は、膜培養装置
における膜面積の有効利用方法と装置を提供しよ
うとすることを目的とするもので、この技術的課
題を解決する本発明の技術的手段は、培養槽で各
種菌体を培養するに当たつて、培養中に生産され
る代謝産物を培養槽と共に循環回路を構成する複
数の濾過膜を通して取り除くと共に新鮮培地を濾
過膜を通して循環回路に供給するに当たり、濾過
膜のいくつかを正流運転の透過液排出側とし、残
りを逆流運転の培地供給側として排出側対供給側
の膜面積比が少なくとも供給側に対して排出側が
数倍となるように流路を選択的に切り換えて膜面
積を最大限有効に利用することを特徴とする高濃
度連続培養方法と、培養槽とUF膜等の濾過膜を
使用した複数の濾過室とを配管装置を介して可逆
循環回路を構成する如く連結し、濾過室のいくつ
かを正流運転の透過液排出側とし、残りを逆流運
転の培地供給側として排出側対供給側の膜面積比
が少なくとも供給側に対して排出側が数倍となる
ようにして流路を選択的に切り換えることができ
るように配管装置を構成したことを特徴とする高
濃度連続培養装置である。
(Means for Solving the Problems) Therefore, the technical problem of the present invention is to provide a method and device for effectively utilizing the membrane area in a membrane culture device. The technical means of the present invention to solve the problem is that when culturing various types of bacterial cells in a culture tank, metabolites produced during the culture are removed through a plurality of filter membranes that constitute a circulation circuit together with the culture tank, and fresh When the culture medium is supplied to the circulation circuit through the filtration membrane, some of the filtration membranes are used as the permeate discharge side in forward flow operation, and the rest are used as the medium supply side in reverse flow operation, so that the membrane area ratio of the discharge side to the supply side is at least the supply side. A high-concentration continuous culture method characterized by selectively switching the flow path so that the discharge side is several times larger than that of the previous one to make the most effective use of the membrane area, and a culture tank and a filtration membrane such as a UF membrane. The plurality of filtration chambers used are connected via piping equipment to form a reversible circulation circuit, with some of the filtration chambers serving as the permeate discharge side for forward flow operation, and the rest serving as the medium supply side for reverse flow operation. A high-concentration continuous culture device characterized in that the piping device is configured such that the flow path can be selectively switched so that the membrane area ratio on the supply side is at least several times that on the discharge side as compared to the supply side. It is.

(発明の効果) この技術的手段によれば、特願昭59−211747号
(以下、従来法と称す)の作用効果をそのまま奏
するのは勿論のこと、以下に述べるような作用効
果を奏するものである。
(Effects of the invention) According to this technical means, not only can the functions and effects of Japanese Patent Application No. 59-211747 (hereinafter referred to as the conventional method) be achieved as they are, but also the functions and effects described below can be achieved. It is.

すなわち、従来法では供給側と排出側とに等面
積に膜を配置するため4本の膜を利用する場合、
有効濾過面積は0.1μマイクロフアイバー0.2m2
1本とすると0.2×2=0.4m2となるが、本発明に
よれば例えば供給側に1本、排出側に3本の膜を
配置したとすると0.2×3=0.6m2となり、本発明
は従来法に較べて50%多い有効濾過面積をうるこ
とができる。
In other words, in the conventional method, when four membranes are used to arrange the membranes on the supply side and the discharge side with equal area,
Effective filtration area is 0.1μ microfiber 0.2m 2 /
If one membrane is used, it will be 0.2 x 2 = 0.4 m2 , but according to the present invention, if one membrane is placed on the supply side and three membranes are placed on the discharge side, it will be 0.2 x 3 = 0.6 m2 . can obtain 50% more effective filtration area than conventional methods.

本発明にしたがつて供給側を1本、排出側を3
本の膜を配置し、1サイクルの時間を従来法と同
じ時間にセツトすると1本の膜の逆洗滌を受ける
時間は従来法の1/2となる。
According to the invention, there is one on the supply side and three on the discharge side.
If two membranes are arranged and the time for one cycle is set to the same time as the conventional method, the time required for backwashing one membrane will be 1/2 that of the conventional method.

このように逆洗滌時は本発明では半減される
が、膜面流速が高い値をとれるため、その効果は
大きく十分に実用に供しうる。
As described above, in the present invention, the backwashing time is reduced by half, but since the membrane surface flow velocity can take a high value, the effect is large and can be sufficiently put to practical use.

何れにしても本発明によれば、培養の後期にお
いても供給側と排出側能力にアンバランスが生じ
ないし、膜培養装置をスケールアツプすることが
できる。
In any case, according to the present invention, there is no imbalance between the supply side and discharge side capacities even in the later stages of culture, and the membrane culture apparatus can be scaled up.

(実施例) 以下、図面に示す実施例について説明する。(Example) The embodiments shown in the drawings will be described below.

先ず、従来法から説明する。 First, the conventional method will be explained.

第7図において、10は培養槽であり、11,
12はフオローフアイバーUF膜を使用した第1、
2濾過室である。
In FIG. 7, 10 is a culture tank, 11,
12 is the first one using the FOLLOW EYEVER UF membrane,
2 filtration chambers.

培養槽10と第1濾過室11とはポンプ37の
ある管13で連結され、第1濾過室11と第2濾
過室12とは管35で連結されている。
The culture tank 10 and the first filtration chamber 11 are connected by a pipe 13 having a pump 37, and the first filtration chamber 11 and the second filtration chamber 12 are connected by a pipe 35.

第2濾過室12はまた管15を介して培養槽1
0に連結され、第1濾過室11は管13からバル
ブ20を介して分岐した管14で培養槽10に連
結されている。
The second filtration chamber 12 is also connected to the culture tank 1 via a pipe 15.
0, and the first filtration chamber 11 is connected to the culture tank 10 by a pipe 14 branched from a pipe 13 via a valve 20.

管13の途中には以上の外、バルブ19から分
岐した管36がバルブ21を介して管15に連結
されている。
In addition to the above, a pipe 36 branched from the valve 19 is connected to the pipe 15 through a valve 21 in the middle of the pipe 13 .

以上のようなことから実線で示す矢印の正流運
転時では培養槽10からの菌体液は管13から第
1濾過室11、第2濾過室12を経て管15で培
養槽10に還元されるようになつていて1つの循
環回路を構成している。
From the above, during the forward flow operation indicated by the solid line, the bacterial fluid from the culture tank 10 is returned to the culture tank 10 through the pipe 13 through the first filtration chamber 11 and the second filtration chamber 12 through the pipe 15. They form a circular circuit.

又、鎖線で示す矢印の逆流運転時では管36か
ら管15を介して第2濾過室12、第1濾過室1
1の順に通過し、管14で培養槽10に還元され
るようになつている。
In addition, during the reverse flow operation as indicated by the arrow shown by the chain line, the second filtration chamber 12 and the first filtration chamber 1 are connected from the pipe 36 through the pipe 15.
1, and are returned to the culture tank 10 through a tube 14.

第1、2濾過室には培地供給タンク29からポ
ンプ31を通じて培地が管30に送られ、バルブ
32を介して管34,33の何れかを通じて第
1、2濾過室に押込まれるようになつている。
The culture medium is sent to the first and second filtration chambers from a culture medium supply tank 29 through a pump 31 to a pipe 30, and is pushed into the first and second filtration chambers through either a pipe 34 or 33 via a valve 32. ing.

又、UF膜より除去された代謝物を含む低分子
栄養成分は第1、2濾過室11,12から管2
2,40、バルブ23、管24、ポンプ26を通
じて濾過室27に導かれ、ここでRO膜を通じて
代謝物の除去後、管28を通じて培地供給タンク
29に還元されるようになつている。
In addition, low-molecular nutrients including metabolites removed from the UF membrane are transferred from the first and second filtration chambers 11 and 12 to the pipe 2.
2, 40, a valve 23, a pipe 24, and a pump 26 to a filtration chamber 27, where metabolites are removed through an RO membrane and then returned to a medium supply tank 29 through a pipe 28.

その他、管13から管16、ポンプ18を通じ
て濃縮菌液が濃縮菌液回収タンク17に回収され
るようになつている。
In addition, concentrated bacterial liquid is collected into a concentrated bacterial liquid recovery tank 17 through a pipe 13, a pipe 16, and a pump 18.

さて、第7図のフローシートにしたがつて具体
的に説明して行くと、まず培養槽10で種菌を接
種し、培養を開始する。
Now, to explain in detail according to the flow sheet of FIG. 7, first, seed bacteria are inoculated in the culture tank 10 and culture is started.

数時間後に代謝産物が蓄積され始め、ある濃度
に達すると膜の運転を開始する。
Metabolites begin to accumulate after a few hours, and when a certain concentration is reached, the membrane begins to operate.

実線矢印の正流運転時には培養槽10よりポン
プ37で引き抜いた菌体液を第1、2濾過室の順
で通過させる。
During forward flow operation as indicated by the solid arrow, the bacterial cell fluid drawn out from the culture tank 10 by the pump 37 is passed through the first and second filtration chambers in that order.

第1、2濾過室におけるUF膜はフオローフア
イバーUF膜からなるもので、この場合第1濾過
室11が高圧側となり、代謝物を含む透過液が管
22、バルブ23、管24、ポンプ26、管25
を経て濾過室27に導かれ、ここでRO膜で代謝
物が除去され、代謝物が除去された低分子栄養成
分は管28を通じ培地供給タンク29に戻され、
培地の有効利用が計れるようになつている。
The UF membranes in the first and second filtration chambers are composed of follow-up fiber UF membranes. In this case, the first filtration chamber 11 is on the high pressure side, and the permeate containing metabolites is passed through the pipe 22, valve 23, pipe 24, pump 26, tube 25
is led to a filtration chamber 27, where metabolites are removed by an RO membrane, and the low molecular weight nutrients from which metabolites have been removed are returned to a medium supply tank 29 through a pipe 28.
It is now possible to measure the effective use of culture media.

一方、低圧側となる第2濾過室12ではポンプ
31により代謝物を除いた低分子栄養物及び新鮮
培地がタンク29から管30、バルブ32、管3
3を通じて押込まれ培養槽10内のタンクレベル
を一定に保持するように運転される。
On the other hand, in the second filtration chamber 12 on the low-pressure side, low-molecular nutrients and fresh culture medium from which metabolites have been removed are pumped by a pump 31 from a tank 29 to a pipe 30, a valve 32, and a pipe 3.
3 and is operated to maintain the tank level in the culture tank 10 at a constant level.

以上のような運転状態を継続すると、第1濾過
室からの透過液速度が培養過程で菌数増加に伴つ
て高粘度化し、膜の目づまりにより低下するの
で、この時、三方電磁バルブ19,20,21,
23,32を同時に切り換え鎖線矢印で示す逆流
運転に入る。
If the above operating conditions are continued, the velocity of the permeate from the first filtration chamber will increase in viscosity as the number of bacteria increases during the culture process, and will decrease due to membrane clogging. 20, 21,
23 and 32 are switched simultaneously to enter a reverse flow operation as indicated by the chain arrow.

このバルブ切換により高圧側と低圧側とが逆転
し、これまで透過液を系内から系外に排出してい
た第1濾過室では系外から系内に液が押し込まれ
る状態、すなわちタンク29、ポンプ31、管3
0、バルブ32、管34を介して逆洗滌状態に入
り膜面に付着した菌体等が除去され、次の正流運
転に備えて洗滌を兼ねながら低分子栄養分を補強
する。
By switching the valve, the high pressure side and the low pressure side are reversed, and the first filtration chamber, which had previously discharged the permeated liquid from inside the system to the outside, is now in a state where liquid is forced into the system from outside the system, that is, tank 29, Pump 31, pipe 3
0, enters a backwashing state via the valve 32 and pipe 34, and removes bacterial cells adhering to the membrane surface, reinforcing low-molecular nutrients while also serving as washing in preparation for the next forward flow operation.

このように第1、2濾過室の高圧、低圧側を切
換えることにより異なる機能を交互にもたせ透過
流速を低下させることなく連続的に代謝物を除き
ながら培養を継続させ、連続的に高濃度の菌体を
培養させることができる。
In this way, by switching between the high pressure and low pressure sides of the first and second filtration chambers, different functions can be alternately provided, and the culture can be continued while continuously removing metabolites without reducing the permeation flow rate. The bacterial cells can be cultured.

以上の如く、従来法は2本の膜を用いて1本の
膜から透過液の排出を、他方の膜には培地を供給
し、ある一定時間間隔で流路を切り換えて濾過機
能を交互にもたせるようにしたものである。
As described above, the conventional method uses two membranes, discharges the permeate from one membrane, supplies the medium to the other membrane, and switches the flow path at certain time intervals to alternately perform the filtration function. It was designed to hold up.

これに対して、本発明のものは設置膜面積を最
大限有効に利用するようにしたものである。すな
わち、第1図に示すものは、4本の膜を用いて16
個の電磁弁を組合せたものである。
In contrast, the present invention utilizes the installed membrane area as effectively as possible. In other words, the one shown in Figure 1 uses four membranes to
This is a combination of several solenoid valves.

MF1,MF2,MF3,MF4は濾過室を示すもの
で、これらと培養槽10とを循環ポンプ38でつ
ないで循環回路を構成している。
MF 1 , MF 2 , MF 3 , and MF 4 indicate filtration chambers, and these and the culture tank 10 are connected by a circulation pump 38 to form a circulation circuit.

すなわち、培養槽10からの菌体液はパイプ6
6を通じて循環ポンプ38で各濾過室に送られ
る。
That is, the bacterial fluid from the culture tank 10 is transferred to the pipe 6.
6 and sent to each filtration chamber by a circulation pump 38.

パイプ39,40はパイプ41,42,43,
44を通じて各濾過室につながり、パイプ45,
46,47,48からパイプ49を通じて培養槽
10への戻りラインを構成している。
Pipes 39, 40 are pipes 41, 42, 43,
Connected to each filtration chamber through 44, pipe 45,
46, 47, and 48 constitute a return line to the culture tank 10 through a pipe 49.

そして、透過液はパイプ56,57,58,5
9からパイプ55に集められ、パイプ64から枝
パイプ60,61,62,63を通じて何れかの
濾過室に培地が供給されるようになつている。1
F,2F,3F,4F,1R,2R,3R,4
R,1P,2P,3P,4P,1S,2S,3
S,4Sは配管中の各電磁弁を示す。
And the permeate is pipe 56, 57, 58, 5
The culture medium is collected from pipe 9 into pipe 55 and supplied from pipe 64 to one of the filtration chambers through branch pipes 60, 61, 62, and 63. 1
F, 2F, 3F, 4F, 1R, 2R, 3R, 4
R, 1P, 2P, 3P, 4P, 1S, 2S, 3
S and 4S indicate each electromagnetic valve in the piping.

そこで、第3図に示すシーケンサーを用いて電
磁弁を10分間隔で切り換え運転を行うことがで
き、Step1→Step2→Step3→Step4→Step1→
Step2………の順に膜内の流路を切り換えると、
各膜は逆洗滌をうけて十分に濾過機能を発揮する
ことができる。
Therefore, using the sequencer shown in Figure 3, the solenoid valve can be switched and operated at 10 minute intervals, Step1→Step2→Step3→Step4→Step1→
Step 2: Switching the flow path in the membrane in the following order:
Each membrane can fully perform its filtration function by undergoing backwashing.

Step1について説明すると、電磁弁1Fが閉で
電磁弁2F,3F,4Fが開の状態であるので循
環ポンプ38から送られた菌体液は、パイプ4
2,43,44を通じてMF2,MF3,MF4の中
を分岐され上昇して流れる。
To explain Step 1, since the solenoid valve 1F is closed and the solenoid valves 2F, 3F, and 4F are open, the bacterial fluid sent from the circulation pump 38 is transferred to the pipe 4.
It branches through MF 2 , MF 3 , and MF 4 through MF 2 , 43 , and 44 and flows upward.

この場合3本の膜MF2,MF3,MF4は高圧側
にあり、透過液側電磁弁2P,3P,4Pが連動
して開いているのでこのラインより透過液がパイ
プ55に流出する。
In this case, the three membranes MF 2 , MF 3 , MF 4 are on the high pressure side, and the permeate side solenoid valves 2P, 3P, 4P are opened in conjunction with each other, so the permeate flows out from this line to the pipe 55 .

MF2,MF3,MF4を通つた菌体液はMF1及び
リターンラインに分かれてパイプ49,50で培
養槽10に戻る。
The bacterial fluid that has passed through MF 2 , MF 3 , and MF 4 is divided into MF 1 and a return line, and returns to the culture tank 10 through pipes 49 and 50 .

ここでMF1は低圧側になり、培地供給用電磁
弁1Sが開いてこの膜に培地が供給され、逆洗滌
効果をもたせて系内に流入する。これを第3図ロ
に示す。
Here, the MF 1 becomes the low pressure side, the medium supply electromagnetic valve 1S opens, and the medium is supplied to this membrane, causing it to flow into the system with a backwashing effect. This is shown in Figure 3B.

以下Step2、3、4は第3図に示す電磁弁操作
によりそれぞれMF2,MF3,MF4が逆洗滌を受
けながらサイクリングすることができる。第3図
ハはStep2を示す。
In steps 2, 3, and 4, MF 2 , MF 3 , and MF 4 can be cycled while receiving backwashing by operating the solenoid valves shown in FIG. 3, respectively. Figure 3C shows Step 2.

以上のような本発明のものと従来法とを比較す
るために、従来法により組立てたシステムライン
を第2図に示す。第1図と同一部分には同一の符
号を付してある。
In order to compare the present invention as described above with the conventional method, a system line assembled by the conventional method is shown in FIG. The same parts as in FIG. 1 are given the same reference numerals.

第4図に示すシーケンサーを用いて電磁弁を開
閉操作する動作についてStep1から説明すると、
電磁弁1Fが開で電磁弁2Fが閉で、しかも電磁
弁1Rが閉で電磁弁2Rが開であるので、循環ポ
ンプ38から送られた菌体液はパイプ39,7
4,72,78を通じ、MF1,MF2の中を分岐
して上昇する。MF1,MF2から流れ出た菌体液
はパイプ75,77,76からMF3,MF4に入
りパイプ79,73,50を通じて培養槽10に
戻るようになつていてMF1,MF2は高圧側で
MF3,MF4は低圧側となる。
The operation of opening and closing the solenoid valve using the sequencer shown in Figure 4 will be explained from Step 1.
Since the solenoid valve 1F is open and the solenoid valve 2F is closed, and the solenoid valve 1R is closed and the solenoid valve 2R is open, the bacterial fluid sent from the circulation pump 38 flows into the pipes 39 and 7.
4, 72, and 78, branching into MF 1 and MF 2 and ascending. The bacterial fluid flowing out from MF 1 and MF 2 enters MF 3 and MF 4 through pipes 75, 77, and 76 and returns to the culture tank 10 through pipes 79, 73, and 50, and MF 1 and MF 2 are on the high pressure side. in
MF 3 and MF 4 are on the low pressure side.

そして、MF1,MF2の透過液はパイプ68か
ら排出されMF3,MF4にパイプ64を通じて供
給されることになる。したがつて、低圧側は逆洗
滌効果をもつようになる。これを第4図ロに示
す。
The permeated liquids of MF 1 and MF 2 are discharged from pipe 68 and supplied to MF 3 and MF 4 through pipe 64. Therefore, the low pressure side has a backwashing effect. This is shown in Figure 4B.

Step2によればMF3,MF4が高圧側となり、
MF1,MF2が低圧側となる。これを第4図ハに
示す。
According to Step 2, MF 3 and MF 4 are on the high pressure side,
MF 1 and MF 2 are on the low pressure side. This is shown in Figure 4C.

以上のものによれば、培地供給側及び透過液排
出側は共に膜面積を等しくしたもので、電磁弁の
数は本発明に比べると少なく、したがつてライン
は単純化されるが、透過液側膜面積は常に0.2×
2=0.4m2と少ない。
According to the above, both the culture medium supply side and the permeated liquid discharge side have the same membrane area, and the number of solenoid valves is smaller than that of the present invention, so the line is simplified, but the permeated liquid Lateral membrane area is always 0.2×
2 = 0.4m 2 , which is small.

何れにしても供給側膜2本、排出側膜2本が交
互に切替り高圧側となる透過液排出側はその電磁
弁が連動して開き透過液が流出し、一方低圧側と
なる培地供給側はその電磁弁が連動して開き、膜
内に培地が供給されるものである。
In any case, the two membranes on the supply side and the two membranes on the discharge side are switched alternately, and the solenoid valve on the permeate discharge side, which is the high pressure side, opens in conjunction with the solenoid valve to allow the permeate to flow out, while the medium supply, which is the low pressure side. The solenoid valve on the side opens in conjunction with the solenoid valve to supply the culture medium into the membrane.

(実験例) 以上のような本発明と従来法とを次のような実
験方法で比較してみる。
(Experimental Example) The present invention as described above and the conventional method will be compared using the following experimental method.

10容積培養タンクに酵母エキス1.0%、ペプ
トン1.0%、パーミエート粉3.0%、肉エキス0.5
%、K2HPO40.5%、KH2PO40.1%、アスコルビ
ン酸Na0.1%、水93.8%からなる組成の培地6
を仕込み、120℃15分間の滅菌後、冷却し、あら
かじめ前培養を行つたBlongumの種菌を接種し、
35℃±0.5℃の温度条件で培養を行つた後、膜培
養運転に入つた。
Yeast extract 1.0%, peptone 1.0%, permeate flour 3.0%, meat extract 0.5 in a 10 volume culture tank
%, K 2 HPO 4 0.5%, KH 2 PO 4 0.1%, Na ascorbic acid 0.1%, water 93.8% Medium 6
After sterilizing at 120°C for 15 minutes, cool and inoculate with Blongum seed that had been pre-cultured.
After culturing at a temperature of 35°C ± 0.5°C, membrane culture operation was started.

なお、運転経過と共にPHは低下するので、2N
−NH4OHによりPH=6.0の定PH培養を行つた。
他の前処理条件は従来法と同じである。
In addition, as the pH decreases as the operation progresses, 2N
-NH 4 OH was used to perform constant pH culture at PH = 6.0.
Other pretreatment conditions are the same as in the conventional method.

実験に使用した膜は旭化成製0.1μマイクロフア
イバー(膜面積1本0.2m2)である。
The membrane used in the experiment was Asahi Kasei's 0.1 μ microfiber (one membrane area: 0.2 m 2 ).

(実験結果) 第5図は、膜運転開始後の透過液流量の変化を
示すものである。膜運転開始時には、菌濃度も低
く透過液排出能力は十分あるが、菌体の増殖に見
合つた培地供給を行うことにより、その有効利用
を計るよう運転を行つた。なお、この培地の供給
速度(この値は、ほぼ透過液量に等しい)は、菌
体濃度と透過液中乳糖濃度及び菌体の比増殖速度
の値から最適化を計り求めた。
(Experimental Results) FIG. 5 shows the change in the permeate flow rate after the start of membrane operation. At the start of membrane operation, the bacteria concentration was low and the permeate discharge capacity was sufficient, but operation was carried out to ensure effective utilization of the culture medium by supplying a culture medium commensurate with the growth of bacterial cells. The feeding rate of this medium (this value is approximately equal to the amount of permeated liquid) was determined by optimization from the values of the bacterial cell concentration, the lactose concentration in the permeated liquid, and the specific growth rate of the bacterial cells.

運転開始後約5時間まではこの最適供給速度に
従つた運転は可能であつたが、この時期を過ぎた
頃から従来法では透過液量は余り増加しなくな
り、7〜8時間を境に低下する傾向が認められ
た。
It was possible to operate according to this optimal supply rate until about 5 hours after the start of operation, but after this period, the amount of permeate stopped increasing with the conventional method, and decreased after 7 to 8 hours. A tendency to do so was observed.

これに対して、本発明では培養開始後、約10時
間まで最適化した透過液量が得られており、両者
の差は明らかに透過側膜面積の相違に起因するも
のと考えられる。
In contrast, in the present invention, an optimized amount of permeate was obtained up to about 10 hours after the start of culture, and the difference between the two is clearly considered to be due to the difference in the membrane area on the permeate side.

第6図には両装置で実験した際の菌体の増殖速
度を対比して示すが、本発明では0〜12時間にて
一定の比増殖速度で増殖しているのに対し、従来
法では5時間を過ぎた頃から透過液流量の増加が
鈍つたためと考えられるが、比増殖速度は低下し
はじめ、培養の後期には培地を供給しているにも
かかわらず菌数を維持するのがようやくの状態で
あつた。
Figure 6 shows a comparison of the growth rates of bacterial cells when experimenting with both devices. In the present invention, the bacteria grew at a constant specific growth rate from 0 to 12 hours, whereas in the conventional method, the cells grew at a constant specific growth rate. This is probably because the increase in the permeate flow rate slowed down after 5 hours, but the specific growth rate began to decline, and in the latter stages of culture, it was difficult to maintain the number of bacteria despite supplying the medium. It was finally in a good condition.

したがつて、12時間培養で得られた両法での最
終到達濃度には大きな開きが認められる。
Therefore, there is a large difference in the final concentrations obtained by both methods after 12 hours of culture.

このように膜面積の利用法が装置能力をも決定
する大きな要因となる事を本実験結果は示してい
る。
The results of this experiment show that how the membrane area is used is a major factor in determining the device capacity.

なお、本実験結果より透過液側膜面積Spと培
地供給側膜面積Ssとの比Sp/Ssの逆洗滌効果に
及ぼす影響について言及すると、従来法ではこの
種は1.0であるのに対して、本発明法では3.0とな
つている。供給側膜面積Ssは従来法で0.4m2に対
し、本発明法では0.2m2と1/2になつており、逆洗
滌時における膜面積通過流速は前者に対して後者
は2倍の値を示す。これまでにも述べてきたよう
に、本発明はシーケンシヤルに電磁弁が切替わる
Stepが4回あり、これに対して従来法ではその
Stepが2回と少ない。したがつて、1サイクル
の時間を両者で同じ時間にセツトすると、1本の
膜の逆洗滌を受ける時間は本発明では従来法の1/
2となる。
Furthermore, based on the results of this experiment, referring to the influence of the ratio Sp/Ss of the permeate side membrane area Sp to the medium supply side membrane area Ss on the backwashing effect, it is 1.0 in the conventional method, whereas in this type, In the method of the present invention, it is 3.0. The supply side membrane area Ss is 0.4 m 2 in the conventional method, but it is 0.2 m 2 in the method of the present invention, and the flow rate through the membrane area during backwashing is twice as high in the former as in the latter. shows. As mentioned above, the present invention sequentially switches the solenoid valve.
There are four steps, whereas in the conventional method, there are four steps.
There are only 2 steps. Therefore, if one cycle time is set to the same time for both, the time required for backwashing of one membrane is 1/1/2 of the conventional method in the present invention.
It becomes 2.

このように逆洗滌時間は本発明では半減される
が、前述のように膜面流速が高い値を取れるた
め、その効果は大きく十分に実用に供しうる。
In this way, the backwashing time is halved in the present invention, but since the membrane surface flow velocity can take a high value as described above, the effect is large and can be sufficiently put to practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による膜配置システムを示す
図、第2図は従来法による膜配置システムを示す
図、第3図イ,ロ,ハは本発明による各ステツプ
における液の流れ図、第4図イ,ロ,ハは従来法
による各ステツプにおける液の流れ図、第5図は
透過液流量の経時変化図、第6図は菌体増殖曲線
図、第7図は従来法を示す図である。 MF1,MF2,MF3,MF4……濾過室、10…
…培養槽、29……培地供給タンク、38……循
環ポンプ、55……透過液排出パイプ、64……
培地供給パイプ、{1F,2F,3F,4F,1
R,2R,3R,4R,1P,2P,3P,4
P,1S,2S,3S,4S}……電磁弁。
Fig. 1 is a diagram showing a membrane arrangement system according to the present invention, Fig. 2 is a diagram showing a membrane arrangement system according to a conventional method, Fig. 3 is a flow chart of liquid at each step according to the invention, Fig. 4 A, B, and C are flow diagrams of the liquid at each step according to the conventional method, FIG. 5 is a diagram showing changes in permeate flow rate over time, FIG. 6 is a bacterial cell growth curve diagram, and FIG. 7 is a diagram showing the conventional method. MF 1 , MF 2 , MF 3 , MF 4 ...filtration chamber, 10...
...Culture tank, 29...Medium supply tank, 38...Circulation pump, 55...Permeate discharge pipe, 64...
Medium supply pipe, {1F, 2F, 3F, 4F, 1
R, 2R, 3R, 4R, 1P, 2P, 3P, 4
P, 1S, 2S, 3S, 4S}... Solenoid valve.

Claims (1)

【特許請求の範囲】 1 培養槽で各種菌体を培養するに当たつて、培
養中に生産される代謝産物を培養槽と共に循環回
路を構成する複数の濾過膜を通して取り除くと共
に新鮮培地を濾過膜を通して循環回路に供給する
に当たり、濾過膜のいくつかを正流運転の透過液
排出側とし、残りを逆流運転の培地供給側として
排出側対供給側の膜面積比が少なくとも供給側に
対して排出側が数倍となるように流路を選択的に
切り換えて膜面積を最大限有効に利用することを
特徴とする高濃度連続培養方法。 2 培養槽とUF膜等の濾過膜を使用した複数の
濾過室とを配管装置を介して可逆循環回路を構成
する如く連結し、濾過室のいくつかを正流運転の
透過液排出側とし、残りを逆流運転の培地供給側
として排出側対供給側の膜面積比が少なくとも供
給側に対して排出側が数倍となるように流路を選
択的に切り換えることができるように配管装置を
構成したことを特徴とする高濃度連続培養装置。
[Scope of Claims] 1. When culturing various types of bacterial cells in a culture tank, metabolites produced during the culture are removed through a plurality of filtration membranes that constitute a circulation circuit together with the culture tank, and fresh culture medium is passed through the filtration membranes. When supplying to the circulation circuit through the filter, some of the filtration membranes are used as the permeate discharge side for forward flow operation, and the rest are used as the medium supply side for reverse flow operation, so that the membrane area ratio of the discharge side to the supply side is at least as high as the discharge side with respect to the supply side. A high-concentration continuous culture method characterized by selectively switching the flow path so that the side is several times as large as possible to make the most effective use of the membrane area. 2. The culture tank and a plurality of filtration chambers using filtration membranes such as UF membranes are connected via piping equipment to form a reversible circulation circuit, and some of the filtration chambers are used as the permeate discharge side of normal flow operation, The piping device was configured so that the flow path could be selectively switched so that the remaining membrane area was on the culture medium supply side in reverse flow operation and the membrane area ratio of the discharge side to the supply side was at least several times that of the supply side. A high-concentration continuous culture device characterized by:
JP60094161A 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor Granted JPS61254184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094161A JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094161A JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Publications (2)

Publication Number Publication Date
JPS61254184A JPS61254184A (en) 1986-11-11
JPS6363194B2 true JPS6363194B2 (en) 1988-12-06

Family

ID=14102644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094161A Granted JPS61254184A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Country Status (1)

Country Link
JP (1) JPS61254184A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255079A (en) * 1989-03-29 1990-10-15 Shimadzu Corp Cell culture apparatus
US5627070A (en) * 1995-07-26 1997-05-06 Celltherapy, Inc. Cell growing device for in vitro cell population expansion
JP2005261342A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Plankton culture system

Also Published As

Publication number Publication date
JPS61254184A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US20230242865A1 (en) Biological and algae harvesting and cultivation systems and methods
US7563375B2 (en) Direct osmosis cleaning
WO2000030742A1 (en) Water filtration using immersed membranes
JP3888898B2 (en) Water desalination method and apparatus
US11952567B2 (en) Biological and algae harvesting and cultivation systems and methods
JPS6363193B2 (en)
CN105217733B (en) A kind of the nanometer filtering film water processing system and method for two-way flow
CN102586088B (en) Sterile ultrafiltration concentration enzymic preparation fermentation liquid post-extraction production line
CN111170514A (en) Purified water preparation system and preparation method
EP1305106A1 (en) Multi-stage filtration and softening module and reduced scaling operation
Aydoğan et al. Effect of operating parameters on the separation of sugars by nanofiltration
JPS6363194B2 (en)
JPS6022905A (en) Washing method of semipermeable membrane module
CN102399687B (en) Multifunctional post-extraction production line for enzyme preparation fermentation liquid
CN202201898U (en) Sterility ultrafiltration concentrated type post extraction product line for fermentation liquor of enzymic preparations
CN106754289A (en) Dewatering microalgae device and method based on positive penetration theory
CN111957209B (en) Spiral microfiltration ultrafiltration continuous separation method and system
WO2021252622A1 (en) Biological and algae harvesting and cultivation systems and methods
JP3312964B2 (en) Cross flow filtration method
CN216918759U (en) MBR membrane reactor
CN220485404U (en) High-salt high-difficulty industrial wastewater anti-pollution concentration device
CN219033371U (en) Water supply device
JPS6363195B2 (en)
CN208136020U (en) Biogas slurry enrichment facility
CN116236910A (en) Tubular membrane cleaning system device and system method