JPS6363195B2 - - Google Patents

Info

Publication number
JPS6363195B2
JPS6363195B2 JP9416285A JP9416285A JPS6363195B2 JP S6363195 B2 JPS6363195 B2 JP S6363195B2 JP 9416285 A JP9416285 A JP 9416285A JP 9416285 A JP9416285 A JP 9416285A JP S6363195 B2 JPS6363195 B2 JP S6363195B2
Authority
JP
Japan
Prior art keywords
culture
filtration
membrane
gas
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9416285A
Other languages
Japanese (ja)
Other versions
JPS61254185A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60094162A priority Critical patent/JPS61254185A/en
Publication of JPS61254185A publication Critical patent/JPS61254185A/en
Publication of JPS6363195B2 publication Critical patent/JPS6363195B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、各種菌体を培養する高濃度連続培養
方法及び装置に関するものである。 (従来の技術) 特願昭59−211747号の逆洗滌効果を利用した高
濃度培養方法と装置では、2本の膜を用いて1本
の膜から透過液の排出を、他方の膜には培地を供
給し、ある一定の時間間隔で流路を切り換えて濾
過機能を交互にもたせるものである。 (発明が解決しようとする問題点) 特願昭59−211747号(以下従来法と称す)では
システムを構成するある膜が培地供給側から透過
液排出側に移行する際、膜カートリツジすなわち
濾過室内の膜面外に保持された培地は使用されな
いまま透過液と共に放流されていた。ちなみに膜
面積6m2の旭化成型マイクロフイルターの場合原
水保持量は膜面内で2.0、膜面外で2.5、総量
4.5になつている。 したがつて1回の切替えで膜面外の2.5量の
培地が損失することになる。 この損失量はシーケンシヤルに電磁弁を切替え
る時間、膜システムの組み方、運転条件等により
異なるが、大略総使用培地量の約10%にも達す
る。 (問題点を解決するための手段) したがつて本発明の枝術的課題は、培地の流出
を阻止し、その利用効率を高めることのできる高
濃度連続培養方法及び装置を提供することを目的
とするものであつて、この技術的課題を解決する
本発明の技術的手段は、培養槽で各種菌体を培養
するに当たつて、培養中に生産される代謝産物を
培養槽と共に循環回路を構成する複数の濾過膜を
通して取り除くと共に新鮮培地を濾過膜を通して
循環回路に供給するものであつて、透過液排出側
の濾過膜と培地供給側の濾過膜とを一定時間隔で
流路を切換えて濾過機能を交互にもたせるに当た
つてその切換時にガスを例えばN2ガス等の不活
性ガスを用いて培地供給側に滞留する菌液を他の
透過液排出側に向かつて送り込んで培地の有効利
用を計ることを特徴とする高濃度連続培養方法と
培養槽とUF膜等の濾過膜を使用した複数の濾過
室とを配管装置を介して可逆循環回路を構成する
如く連結し、濾過室のいくつかを正流運転の透過
液排出側とし、残りを逆流運転の培地供給側とし
て流路を選択的に切換えができる如く配置装置中
に電磁弁を配置し、かつ之等流路にガス送り込み
用の配管装置を加え、流路の切換時にガスを用い
て培地供給側に滞留する菌液を他の透過液排出側
に向かつて送り込むことができるように構成した
ことを特徴とする高濃度連続培養装置である。 (発明の効果) この技術的手段によれば、流路の切替え時に膜
カートリツジ内に滞留する培地を他の膜カートリ
ツジに送り込み、未利用培地量を皆無にすること
ができ、使用培地量の約10%を節減できる。 (実施例) 以下、図面に示す実施例について説明する。 先ず、従来法から説明する。 第5図において、10は培養槽であり、11,
12はフオローフアイバーUF膜を使用した第1、
2濾過室である。 培養槽10と第1濾過室11とはポンプ37の
ある管13で連結され、第1濾過室11と第2濾
過室12とは管35で連結されている。 第2濾過室12はまた管15を介して培養槽1
0に連結され、第1濾過室11は管13からバル
ブ20を介して分岐した管14で培養槽10に連
結されている。 管13の途中には以上の外、バルブ19から分
岐した管36がバルブ21を介して管15に連結
されている。 以上のようなことから実線で示す矢印の正流運
転時では培養槽10からの菌体液は管13から第
1濾過室11、第2濾過室12を経て管15で培
養槽10に還元されるようになつていて1つの循
環回路を構成している。 又、鎖線で示す矢印の逆流運転時では管36か
ら管15を介して第2濾過室12、第1濾過室1
1の順に通過し、管14で培養槽10に還元され
るようになつている。 第1、2濾過室には培地供給タンク29からポ
ンプ31を通じて培地が管30に送られ、バルブ
32を介して管34,33の何れかを通じて第
1、2濾過室に押込まれるようになつている。 又、UF膜より除去された代謝物を含む低分子
栄養成分は第1、2濾過室11,12から管2
2,40、バルブ23、管24、ポンプ26を通
じて濾過室27に導かれ、ここでRO膜を通じて
代謝物の除去後、管28を通じて培地供給タンク
29に還元されるようになつている。 その他、管13から管16、ポンプ18を通じ
て濃縮菌液が濃縮菌液回収タンク17に回収され
るようになつている。 さて、第5図のフローシートにしたがつて具体
的に説明していくと、まず培養槽10で種菌を接
種し、培養を開始する。 数時間後に代謝産物が蓄積され始め、ある濃度
に達すると膜の運転を開始する。 実線矢印の正流運転時には培養槽10よりポン
プ37で引き抜いた菌体液を第1、2濾過室の順
で通過させる。 第1、2濾過室におけるUF膜はフオローフア
イバーUF膜からなるもので、この場合第1濾過
室11が高圧側となり、代謝物を含む透過液が管
22、バルブ23、管24、ポンプ26、管25
を経て濾過室27に導かれ、ここでRO膜で代謝
物が除去され、代謝物が除去された低分子栄養成
分は管28を通じ培地供給タンク29に戻され、
培地の有効利用が計れるようになつている。 一方、低圧側となる第2濾過室12ではポンプ
31により代謝物を除いた低分子栄養物及び新鮮
培地がタンク29から管30、バルブ32、管3
3を通じて押込まれ培養槽10内のタンクレベル
を一定に保持するように運転される。 以上のような運転状態を継続すると、第1濾過
室からの透過液速度が培養過程で菌数増加に伴な
つて高粘度化し、膜の目づまりにより低下するの
で、この時、三方電磁バルブ19,20,21,
23,32を同時に切り換え鎖線矢印で示す逆流
運転に入る。 このバルブ切換により高圧側と低圧側とが逆転
し、これまで透過液を系内から系外に排出してい
た第1濾過室では系外から系内に液が押し込まれ
る状態、すなわちタンク29、ポンプ31、管3
0、バルブ32、管34を介して逆洗滌状態に入
り膜面に付着した菌体等が除去され、次の正逆運
転に備えて洗滌を兼ねながら低分子栄養を補給す
る。 このように第1、2濾過室の高圧、低圧側を切
換えるとことにより異なる機能を交互にもたせ透
過流速を低下させることなく連続的に代謝物を除
きながら培養を継続させ、連続的に高濃度の菌体
を培養させることができる。 以上の如く、従来法は2本の膜を用いて1本の
膜から透過液の排出を、他方の膜には培地を供給
し、ある一定時間間隔で流路を切り換えて濾過機
能を交互にもたせるようにしたものである。 ところが流路切換え時にある膜が培地供給側か
ら透過液排出側に移行する際第1図に示すように
膜カートリツジ35内で膜面外に保持される培地
は使用されないまま透過液と共に放流される。 第1図に示す36はホローフアイバー膜で培養
液(濃縮菌液)が満され、膜36の間には供給培
地又は透過排液で満されているところを示してい
る。 以上のように放流される損失量はシーケンシヤ
ルに電磁弁を切換える時間、膜システムの組み
方、運転条件等により異なるが大略総使用培地量
の約10%にも達する。 本発明は、ガス例えばN2ガスのような不活性
ガスと電磁弁を用いて前記培地の流出を阻止し、
その利用効率を高めようとするものである。 第2図は本発明の原理を示す流れ図を示してい
る。 図においてMF−1が培地供給側に、MF−2
が透過液排出側にある。この場合MF−1の膜カ
ートリツジ内は培地が満たされている。 ここにおいて本発明にあつては流路切換えの直
前に次のステツプで培地供給側となるMF−2と
なるMF−2の膜の上部右側よりN2ガスを圧入し
て膜カートリツジ内の透過液を第2図イの如く排
出し、この透過液排出と同時に流路が切換り、第
2図ロの如くMF−1からMF−2へ供給培地の
移動がスムーズに行われるようにしたものであ
る。 培地が抜けたMF−1はこの時点では透過液排
出側となり通常の動作に移る。 このようにメインラインの切換え前後約10秒間
に前述の動作を加えることにより膜カートリツジ
内に保持された供給培地を損失することなく有効
に利用することができる。 第3図は膜配置システム及び配管ラインを、第
4図には各ステツプにおける電磁弁の動作を示し
た。 第4図における電磁弁の呼称は第3図に示した
ものと同一のものである。 本発明により新に加わつた電磁弁は1G,1
H,1E,2G,2H…計12個と培地供給ポンプ
37の送り側電磁弁PF及び戻りライン側電磁弁
PRの合計14個である。 この新たに付加した電磁弁をメインライン切替
えの4ステツプの前後10秒間に前述した培地の移
動が可能となるようにシステムを組込んだ。メイ
ンライン切替え時には培地供給を一旦停止するた
め電磁弁PR,PFを連動させている。 メインライン切換え前後の時間は実施例では10
秒としているが実際には膜の大きさ、配管径等に
より、流出速度が異なるため、実施にあたつては
予め予備実験を行い決定すべきである。 いずれにせよ第4図に示す電磁弁の動作は各ス
テツプ切換え時における透過液排出、培地の移動
をスムーズに行うようになつている。 試みにステツプ1〜ステツプ2に流路を切換え
る時の本発明による動作を説明すると次のようで
ある。 すなわち、ステツプ1においては電磁弁1Fが
閉で、電磁弁2F,3F,4F、が開の状態であ
るので、循環ポンプ38から送られた菌液は
MF2,MF3,MF4の中を分岐して上昇し、この
場合3本の膜は高圧側にあり、透過液側電磁弁2
P,3P,4Pが連動して開いているのでこのラ
イン55より透過液が流出する。 MF2,MF3,MF4を通つた菌液はMF1及びリ
ターンライン50に分かれて培養槽10に戻る。
ここでMF1は低圧側になり、培地供給用電磁弁
1Sが開いてこの膜に培地が供給され逆洗滌効果
をもたせて系内に流入する。 次にMF2を逆洗滌効果をもたせ他のMF1
MF3,MF4を透過液排出側に切換える場合MF1
が培地供給側に、MF2が透過液排出側にある。
この場合MF1の膜カートリツジ内は培地が満た
されている。 そこで次のステツプで培地供給側となるMF2
の膜の上部石側より電磁弁2G,2Hを経由して
タンク76からN2ガスが圧入され、膜カートリ
ツジ内の濾過液を電磁弁2Pを経由してパイプ5
5から排出せしめる。この透過液排出と同時に流
路が切換り、電磁弁1G,1Hを経由してMF1
の上部にN2ガスが圧入され、MF1内の培地は、
電磁弁1S,2Sを経由してMF2内に移動する。 この場合MF2内のガスは電磁弁2H,2Eを
介して排出され、培地が抜けたMF1はこの時点
では透過液排出側となり通常の動作に移る。 すなわち、MF2は逆洗滌効果を受け、MF1
MF3,MF4は透過液排出側となる。 電磁弁PFとPRとは互いに連動していてPFが
閉じている時はPRは開いており、PFが開いてい
る時はPRは閉じておるもので培地供給時にはPR
は閉じ、RFは開いている。ただしMF1からMF2
に培地が移動している時にはあらたな培地は供給
されない。したがつて電磁弁RFは閉じてPRは開
き、培地供給タンク内の培地はポンプ37で循環
している。 又、ステツプ2、3、4は同様に第4図に示す
電磁弁操作によりそれぞれMF2,MF3,MF4
順次に逆洗滌を受けるからサイクリングするもの
であり、流路の切換前後約10秒間に一方の膜カー
トリツジからの透過液の排出が行われ、他方の膜
から供給培地の移動が行われるのである。 実施例の場合は嫌気性菌の場合であるが、好気
性菌の培養の場合には、培養槽10及び培地供給
タンク29でエアーレシヨン(通気)し、溶存酸
素濃度を高めて培養し、操作用のガスはN2ガス
の代わりに無菌状態の空気を用いる。 本発明と従来法との培地使用量を従来法に示す
実施例にしたがつて運転を行つた時の結果を下図
に示す。
(Industrial Application Field) The present invention relates to a high-concentration continuous culture method and apparatus for culturing various bacterial cells. (Prior art) In the high-concentration culture method and device using the backwashing effect disclosed in Japanese Patent Application No. 59-211747, two membranes are used to discharge the permeated liquid from one membrane, and to discharge the permeate from the other membrane. A medium is supplied, and the flow path is switched at certain time intervals to alternately provide a filtration function. (Problems to be Solved by the Invention) In Japanese Patent Application No. 59-211747 (hereinafter referred to as the conventional method), when a certain membrane constituting the system moves from the medium supply side to the permeate discharge side, the membrane cartridge, that is, the filtration chamber The culture medium retained outside the membrane was discharged together with the permeate without being used. By the way, in the case of the Asahi Kasei Microfilter with a membrane area of 6m2 , the raw water retention amount is 2.0 within the membrane surface and 2.5 outside the membrane surface, and the total amount is
It's now 4.5. Therefore, 2.5 volumes of medium outside the membrane surface will be lost in one change. This amount of loss varies depending on the time it takes to sequentially switch the solenoid valves, how the membrane system is assembled, operating conditions, etc., but it roughly reaches about 10% of the total amount of culture medium used. (Means for Solving the Problems) Therefore, it is an object of the present invention to provide a high-concentration continuous culture method and device that can prevent the outflow of the medium and increase its utilization efficiency. The technical means of the present invention to solve this technical problem is that, when culturing various bacterial cells in a culture tank, the metabolic products produced during the culture are circulated together with the culture tank. The fresh medium is removed through the plurality of filtration membranes constituting the filtration membrane, and the fresh medium is supplied to the circulation circuit through the filtration membranes, and the flow path is switched between the filtration membrane on the permeate discharge side and the filtration membrane on the medium supply side at regular intervals. When switching the filtration function, for example, an inert gas such as N 2 gas is used to send the bacterial liquid remaining on the culture medium supply side to the other permeated liquid discharge side to remove the culture medium. A high-concentration continuous culture method characterized by effective utilization, and a culture tank and multiple filtration chambers using filtration membranes such as UF membranes are connected via piping equipment to form a reversible circulation circuit. Solenoid valves are arranged in the arrangement device so that some of the channels can be used as the permeate discharge side in forward flow operation, and the rest can be used as the medium supply side in reverse flow operation, and the flow paths can be selectively switched. A high-concentration system characterized by a structure in which a piping device for feeding is added, and the bacterial liquid stagnant on the culture medium supply side can be sent toward the other permeated liquid discharge side using gas when switching the flow path. It is a continuous culture device. (Effects of the Invention) According to this technical means, it is possible to send the medium remaining in the membrane cartridge to another membrane cartridge when switching the flow path, completely eliminating the amount of unused medium, and reducing the amount of medium used. You can save 10%. (Example) Hereinafter, an example shown in the drawings will be described. First, the conventional method will be explained. In FIG. 5, 10 is a culture tank, 11,
12 is the first using the FOLLOW EYEVER UF membrane,
2 filtration chambers. The culture tank 10 and the first filtration chamber 11 are connected by a pipe 13 having a pump 37, and the first filtration chamber 11 and the second filtration chamber 12 are connected by a pipe 35. The second filtration chamber 12 is also connected to the culture tank 1 via a pipe 15.
0, and the first filtration chamber 11 is connected to the culture tank 10 by a pipe 14 branched from a pipe 13 via a valve 20. In addition to the above, a pipe 36 branched from the valve 19 is connected to the pipe 15 through a valve 21 in the middle of the pipe 13 . From the above, during the forward flow operation indicated by the solid line, the bacterial fluid from the culture tank 10 is returned to the culture tank 10 through the pipe 13 through the first filtration chamber 11 and the second filtration chamber 12 through the pipe 15. They form a circular circuit. In addition, during the reverse flow operation as indicated by the arrow shown by the chain line, the second filtration chamber 12 and the first filtration chamber 1 are connected from the pipe 36 through the pipe 15.
1, and are returned to the culture tank 10 through a tube 14. The culture medium is sent to the first and second filtration chambers from a culture medium supply tank 29 through a pump 31 to a pipe 30, and is pushed into the first and second filtration chambers through either a pipe 34 or 33 via a valve 32. ing. In addition, low-molecular nutrients including metabolites removed from the UF membrane are transferred from the first and second filtration chambers 11 and 12 to the pipe 2.
2, 40, a valve 23, a pipe 24, and a pump 26 to a filtration chamber 27, where metabolites are removed through an RO membrane and then returned to a medium supply tank 29 through a pipe 28. In addition, concentrated bacterial liquid is collected into a concentrated bacterial liquid recovery tank 17 through a pipe 13, a pipe 16, and a pump 18. Now, to explain it in detail according to the flow sheet of FIG. 5, first, inoculum is inoculated in the culture tank 10 and culture is started. Metabolites begin to accumulate after a few hours, and when a certain concentration is reached, the membrane begins to operate. During forward flow operation as indicated by the solid arrow, the bacterial cell fluid drawn out from the culture tank 10 by the pump 37 is passed through the first and second filtration chambers in that order. The UF membranes in the first and second filtration chambers are composed of follow-up fiber UF membranes. In this case, the first filtration chamber 11 is on the high pressure side, and the permeate containing metabolites is passed through the pipe 22, valve 23, pipe 24, pump 26, tube 25
is led to a filtration chamber 27, where metabolites are removed by an RO membrane, and the low molecular weight nutrients from which metabolites have been removed are returned to a medium supply tank 29 through a pipe 28.
It is now possible to measure the effective use of culture media. On the other hand, in the second filtration chamber 12 on the low-pressure side, low-molecular nutrients and fresh culture medium from which metabolites have been removed are pumped by a pump 31 from a tank 29 to a pipe 30, a valve 32, and a pipe 3.
3 and is operated to maintain the tank level in the culture tank 10 at a constant level. If the above operating conditions are continued, the rate of permeate from the first filtration chamber will increase in viscosity as the number of bacteria increases during the culture process, and will decrease due to clogging of the membrane. ,20,21,
23 and 32 are switched simultaneously to enter a reverse flow operation as indicated by the chain arrow. By switching the valve, the high pressure side and the low pressure side are reversed, and the first filtration chamber, which had previously discharged the permeated liquid from inside the system to the outside, is now in a state where liquid is forced into the system from outside the system, that is, tank 29, Pump 31, pipe 3
0, enters a backwashing state via the valve 32 and pipe 34, and removes bacterial cells adhering to the membrane surface, and supplies low-molecular nutrients while also serving as washing in preparation for the next forward/reverse operation. In this way, by switching between the high pressure and low pressure sides of the first and second filtration chambers, different functions can be alternately provided, and the culture can be continued while continuously removing metabolites without reducing the permeation flow rate, resulting in continuous high concentration. can be cultured. As described above, the conventional method uses two membranes, discharges the permeate from one membrane, supplies the medium to the other membrane, and switches the flow path at certain time intervals to alternately perform the filtration function. It is designed to hold up. However, when a certain membrane moves from the medium supply side to the permeate discharge side when switching the flow path, the medium held outside the membrane surface in the membrane cartridge 35 is discharged together with the permeate without being used, as shown in FIG. . Reference numeral 36 in FIG. 1 shows a hollow fiber membrane filled with a culture solution (concentrated bacterial solution), and the space between the membranes 36 is filled with a supply medium or a permeated waste liquid. The amount of loss discharged as described above varies depending on the time of sequentially switching the solenoid valves, how the membrane system is assembled, operating conditions, etc., but it roughly reaches about 10% of the total amount of medium used. The present invention uses an inert gas such as N 2 gas and a solenoid valve to prevent the medium from flowing out;
The aim is to increase the efficiency of its use. FIG. 2 shows a flowchart illustrating the principles of the invention. In the figure, MF-1 is on the medium supply side, MF-2
is on the permeate discharge side. In this case, the membrane cartridge of MF-1 is filled with a medium. Here, in the present invention, immediately before switching the flow path, N2 gas is injected from the upper right side of the membrane of MF-2, which will be the medium supply side in the next step, to collect the permeate in the membrane cartridge. The permeate is discharged as shown in Figure 2 (A), and the flow path is switched at the same time as this permeate is discharged, so that the supply medium can be smoothly transferred from MF-1 to MF-2 as shown in Figure 2 (B). be. At this point, the MF-1 from which the medium has drained becomes the permeate discharge side and returns to normal operation. By performing the above-mentioned operation approximately 10 seconds before and after switching the main line in this way, the supply medium held in the membrane cartridge can be effectively used without loss. FIG. 3 shows the membrane arrangement system and piping lines, and FIG. 4 shows the operation of the solenoid valves at each step. The designations of the solenoid valves in FIG. 4 are the same as those shown in FIG. The solenoid valve newly added by this invention is 1G, 1
H, 1E, 2G, 2H... 12 in total, the sending side solenoid valve PF of the culture medium supply pump 37, and the return line side solenoid valve
There are a total of 14 PRs. This newly added solenoid valve was incorporated into the system so that the above-mentioned culture medium could be moved for 10 seconds before and after the 4 steps of switching the main line. When switching the main line, solenoid valves PR and PF are linked to temporarily stop the culture medium supply. The time before and after switching the main line is 10 in the example.
Although the flow rate is assumed to be seconds, the actual flow rate will vary depending on the membrane size, pipe diameter, etc., so preliminary experiments should be conducted to determine the actual flow rate. In any case, the operation of the electromagnetic valve shown in FIG. 4 is designed to smoothly discharge the permeate and move the culture medium when changing each step. The operation according to the present invention when switching the flow path from step 1 to step 2 on a trial basis will be explained as follows. That is, in step 1, the solenoid valve 1F is closed and the solenoid valves 2F, 3F, and 4F are open, so the bacterial liquid sent from the circulation pump 38 is
MF 2 , MF 3 , and MF 4 are branched and ascend. In this case, the three membranes are on the high pressure side, and the permeate side solenoid valve 2
Since P, 3P, and 4P are opened in conjunction with each other, the permeate flows out from this line 55. The bacterial liquid that has passed through MF 2 , MF 3 , and MF 4 is separated into MF 1 and return line 50 and returns to culture tank 10 .
Here, the MF 1 becomes the low pressure side, the medium supply electromagnetic valve 1S opens, and the medium is supplied to this membrane and flows into the system with a backwashing effect. Next, MF 2 has a backwashing effect and other MF 1 ,
When switching MF 3 and MF 4 to the permeate discharge side, MF 1
is on the medium supply side and MF 2 is on the permeate discharge side.
In this case, the membrane cartridge of MF1 is filled with a medium. Therefore, in the next step, MF 2, which will be the medium supply side,
N2 gas is pressurized from the tank 76 through the electromagnetic valves 2G and 2H from the upper stone side of the membrane, and the filtrate in the membrane cartridge is passed through the electromagnetic valve 2P into the pipe 5.
Let it be discharged from 5. At the same time as this permeate is discharged, the flow path is switched and the MF 1
N2 gas is injected into the top of the MF1, and the medium inside the MF1 is
Moves into MF 2 via solenoid valves 1S and 2S. In this case, the gas in the MF 2 is discharged via the electromagnetic valves 2H and 2E, and the MF 1 from which the medium has drained becomes the permeate discharge side at this point and returns to normal operation. That is, MF 2 undergoes a backwashing effect, and MF 1 ,
MF 3 and MF 4 are on the permeate discharge side. The solenoid valves PF and PR are interlocked with each other. When PF is closed, PR is open, and when PF is open, PR is closed. When supplying culture medium, PR is open.
is closed and RF is open. However, from MF 1 to MF 2
No new medium is supplied when the medium is being moved. Therefore, the solenoid valve RF is closed and PR is opened, and the medium in the medium supply tank is circulated by the pump 37. Similarly, in steps 2, 3, and 4, MF 2 , MF 3 , and MF 4 are sequentially subjected to backwashing by operating the solenoid valves shown in FIG. In seconds, permeate is drained from one membrane cartridge and feed medium is transferred from the other membrane. In the case of the example, anaerobic bacteria are cultured, but in the case of culturing aerobic bacteria, the culture tank 10 and the culture medium supply tank 29 are air-conditioned (ventilated) to increase the dissolved oxygen concentration, and the culture is carried out. Aseptic air is used instead of N2 gas. The figure below shows the results obtained when operating according to the example shown in the conventional method for the amount of culture medium used according to the present invention and the conventional method.

【表】 上述のように本発明による動作を加えることに
より約10%の培地の節減が可能になつた。
[Table] By adding the operation according to the present invention as described above, it became possible to save about 10% of the medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はホローフアイバー膜断面図、第2図
イ,ロは流路切換時の培地及び透過排液の流れ
図、第3図は本発明にかかる膜配置システム及び
配管ライン図、第4図は各ステツプにおける電磁
弁の動作図、第5図は従来法にかかる膜配置シス
テム及び配管ライン図である。 10……培養槽、29……培地供給タンク、3
6……ホローフアイバー膜、38……循環ポン
プ、35,MF1,MF2,MF3,MF4……濾過室
(膜カートリツジ)、1F,2F,3F,4F,1
R,2R,3R,4R,1S,2S,3S,4
S,1P,2P,3P,4P,1G,2G,3
G,4G,1H,2H,3H,4H,1E,2
E,3E,4E……電磁弁、50……戻りライン
用パイプ、55……透過液排出パイプ。
Figure 1 is a cross-sectional view of the hollow fiber membrane, Figure 2 (a) and (b) are flow diagrams of the culture medium and permeated waste liquid during flow path switching, Figure 3 is a membrane arrangement system and piping line diagram according to the present invention, and Figure 4 is a diagram of the membrane arrangement system and piping line according to the present invention. FIG. 5 is a diagram of the operation of the electromagnetic valve in each step, and a diagram of the membrane arrangement system and piping line according to the conventional method. 10... Culture tank, 29... Culture medium supply tank, 3
6... Hollow fiber membrane, 38... Circulation pump, 35, MF 1 , MF 2 , MF 3 , MF 4 ... Filtration chamber (membrane cartridge), 1F, 2F, 3F, 4F, 1
R, 2R, 3R, 4R, 1S, 2S, 3S, 4
S, 1P, 2P, 3P, 4P, 1G, 2G, 3
G, 4G, 1H, 2H, 3H, 4H, 1E, 2
E, 3E, 4E... Solenoid valve, 50... Return line pipe, 55... Permeate discharge pipe.

Claims (1)

【特許請求の範囲】 1 培養槽で各種菌体を培養するに当たつて、培
養中に生産される代謝産物を培養槽と共に循環回
路を構成する複数の濾過膜を通して取り除くと共
に新鮮培地を濾過膜を通して循環回路に供給する
ものであつて、透過液排出側の濾過膜と培地供給
側の濾過膜とを一定時間隔で流路を切換えて濾過
機能を交互にもたせるに当たつてその切換時にガ
スを例えばN2ガス等の不活性ガスを用いて培地
供給側に滞留する菌液を他の透過液排出側に向か
つて送り込んで培地の有効利用を計ることを特徴
とする高濃度連続培養方法。 2 培養槽とUF膜等の濾過膜を使用した複数の
濾過室とを配管装置を介して可逆循環回路を構成
する如く連結し、濾過室のいくつかを正流運転の
透過液排出側とし、残りを逆流運転の培地供給側
として流路を選択的に切換えができる如く配置装
置中に電磁弁を配置し、かつ之等流路にガス送り
込み用の配管装置を加え、流路の切換時にガスを
用いて培地供給側に滞留する菌液を他の透過液排
出側に向かつて送り込むことができるように構成
したことを特徴とする高濃度連続培養装置。
[Scope of Claims] 1. When culturing various types of bacterial cells in a culture tank, metabolites produced during the culture are removed through a plurality of filtration membranes that constitute a circulation circuit together with the culture tank, and fresh culture medium is passed through the filtration membranes. The gas is supplied to the circulation circuit through the filter, and when switching the flow path between the filtration membrane on the permeate discharge side and the filtration membrane on the medium supply side at regular intervals to alternately provide the filtration function, the gas is A high-concentration continuous culture method characterized by using an inert gas such as N 2 gas to send the bacterial liquid stagnant on the medium supply side toward another permeated liquid discharge side to effectively utilize the medium. 2. The culture tank and a plurality of filtration chambers using filtration membranes such as UF membranes are connected via piping equipment to form a reversible circulation circuit, and some of the filtration chambers are used as the permeate discharge side of normal flow operation, The remaining part is used as the culture medium supply side for reverse flow operation, and a solenoid valve is placed in the arrangement device so that the flow path can be selectively switched, and a piping device for gas feed is added to the flow path, so that the gas is supplied when switching the flow path. 1. A high-concentration continuous culture device characterized in that it is configured such that a bacterial solution staying on a culture medium supply side can be sent toward another permeated liquid discharge side using a.
JP60094162A 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor Granted JPS61254185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094162A JPS61254185A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094162A JPS61254185A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Publications (2)

Publication Number Publication Date
JPS61254185A JPS61254185A (en) 1986-11-11
JPS6363195B2 true JPS6363195B2 (en) 1988-12-06

Family

ID=14102673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094162A Granted JPS61254185A (en) 1985-05-01 1985-05-01 Method of continuous culture in high concentration and device therefor

Country Status (1)

Country Link
JP (1) JPS61254185A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261342A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Plankton culture system
US9644221B2 (en) 2012-03-30 2017-05-09 Toray Industries, Inc. Method of producing chemical by continuous fermentation and continuous fermentation apparatus

Also Published As

Publication number Publication date
JPS61254185A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US7658852B2 (en) RO membrane cleaning method
EP0641248B1 (en) Membrane system and method of use for low pressure separations
US20170232394A1 (en) Used Oil Recycling Filtration Assembly
US4024059A (en) Artificial kidney
MX2007001752A (en) Integrated permeate channel membrane.
EP3227005B1 (en) Membrane cartridge with integrated functions
KR102322755B1 (en) Low Energy Method of Inducing Multiple Zero Osmotic Equalizer (Singularity) Reverse Osmosis and Forward Osmosis for Enriching Aqueous Solution to High Concentration
US7037429B2 (en) Water treatment unit
KR100323597B1 (en) Method of membrane treatment and membrane treatment apparatus
AU2009310485A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
US20170369338A1 (en) Osmotic concentration of produced and process water using hollow fiber membrane
JPS6363193B2 (en)
JPS6363195B2 (en)
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
CA2431593A1 (en) Device and method for cleaning a fluid, such as water
CN212269948U (en) VB12Purification device of zymotic fluid
CN212504132U (en) Dull and stereotyped ceramic membrane filtration system
GB1439876A (en) Apparatus for mixing or separating fluids
JP3312964B2 (en) Cross flow filtration method
JP2000176255A (en) Membrane separator and separation of water
JP3160609B2 (en) Membrane equipment and membrane treatment equipment
CN213651966U (en) Small-sized electrodialysis device for public toilet sewage zero discharge treatment
JPS61254184A (en) Method of continuous culture in high concentration and device therefor
JPS6212997B2 (en)
JP4294762B2 (en) Membrane treatment method and membrane treatment apparatus