JPS61253366A - Production of reaction sintering sic - Google Patents

Production of reaction sintering sic

Info

Publication number
JPS61253366A
JPS61253366A JP60092956A JP9295685A JPS61253366A JP S61253366 A JPS61253366 A JP S61253366A JP 60092956 A JP60092956 A JP 60092956A JP 9295685 A JP9295685 A JP 9295685A JP S61253366 A JPS61253366 A JP S61253366A
Authority
JP
Japan
Prior art keywords
sic
substrate
reaction
content
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092956A
Other languages
Japanese (ja)
Inventor
Miharu Kayane
茅根 美治
Fusao Fujita
房雄 藤田
Kazuhisa Matsumoto
和久 松本
Koji Yokoyama
横山 康志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP60092956A priority Critical patent/JPS61253366A/en
Publication of JPS61253366A publication Critical patent/JPS61253366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PURPOSE:To deposit reaction sintering SiC contg. a prescribed amount of Si by controlling the heating temp. of a substrate, the pressure during CVD and the ratio between Si and C in a gaseous starting material for depositing Si and SiC by CVD when the starting material is fed onto the substrate. CONSTITUTION:A gaseous starting material contg. CH2SiCl3 is fed onto a substrate, and the surface of the substrate is heated to >=about 650 deg.C to deposit reaction sintering SiC on the surface of the substrate. At this time, the Si content in the deposited SiC lowers in accordance with an increase in the heating temp., and the Si content in the thickness direction can be changed by changing the temp. of the substrate during CVD. The ratio between Si and SiC in the deposit can be adjusted to the desired value by regulating the pressure during CVD and the ratio between Si and C in the gaseous starting material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は反応焼結型SiCの製造方法に係り、特にSi
とSiCとを極めて均一にかつ所望の割合で含有させる
ことができる反応焼結型SiCの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing reactive sintered SiC, and in particular to a method for producing reactive sintered SiC.
It relates to a method for producing reactive sintered SiC that can contain SiC and SiC extremely uniformly in a desired ratio.

[従来の技術] 近年、高温高強度材料として、窒化珪素、炭化珪素、サ
イアロン等の非酸化物セラミックス、あるいは酸化アル
ミニウム、酸化ジルコニウム等、いわゆるニューセラミ
ックスが急゛速にクローズアップされ、多くの研究や開
発がなされている。
[Prior Art] In recent years, so-called new ceramics such as non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as aluminum oxide and zirconium oxide, have been rapidly focused on as high-temperature, high-strength materials, and many studies have been conducted. and are being developed.

これらセラミックスのうち、炭化珪素(以下rS i 
C4と略記する。)は、 ■ 軽い材料である。
Among these ceramics, silicon carbide (rS i
It is abbreviated as C4. ) is ■ a light material.

■ 常温から高温まで機械的強度が高く安定している。■ High mechanical strength and stability from room temperature to high temperature.

■ 熱膨張が小さく熱伝導性が良いため耐スポーリング
性に優れる。
■ Excellent spalling resistance due to low thermal expansion and good thermal conductivity.

■ 耐食性が極めて大きい。■ Extremely high corrosion resistance.

■ 硬度が高く、耐摩耗性に優れる。■ High hardness and excellent wear resistance.

■ 導電性があり電気素子としても使用で4きる。■ It is conductive and can be used as an electric element.

などの特徴を有し、極めて重要な工業材料として注目さ
れている。とりわけ、反応焼結法によって製造されるS
iCは、複雑な形状の物体でも緻密な高強度焼結体が得
られるということで注目されている。(本明細書におい
ては、このようにSiを含むSiCを「反応焼結型5i
CJという、)従来、反応焼結型S i Ct±、Si
C及び炭素(以下「C」と略記する。)の混合粉末を成
型し、この成形体に珪素(以下rsiJと略記する。)
溶湯を含浸させ、1500 N1600℃の高温で反応
焼結せしめ、(この反応式は、周知のようにSi+C+
SiCである。)SiC粒の間隙を、生成したSiCで
充填するようにして製造されている。
It has these characteristics and is attracting attention as an extremely important industrial material. In particular, S produced by the reactive sintering method
iC is attracting attention because it can produce dense, high-strength sintered bodies even for objects with complex shapes. (In this specification, SiC containing Si is referred to as "reactive sintering type 5i").
Conventional, reaction sintering type S i Ct±, Si
A mixed powder of C and carbon (hereinafter abbreviated as "C") is molded, and silicon (hereinafter abbreviated as rsiJ) is injected into this molded body.
The molten metal is impregnated and reacted and sintered at a high temperature of 1,500 N and 1,600°C (this reaction formula is Si + C +
It is SiC. ) It is manufactured by filling the gaps between SiC grains with the generated SiC.

このような方法によれば、焼成収縮も殆どなく、緻密で
耐熱衝撃性、寸法精度等が良好な反応焼結型SiCが得
られる。
According to such a method, reaction sintered SiC can be obtained which is dense and has good thermal shock resistance, dimensional accuracy, etc., with almost no shrinkage during firing.

[発明が解決しようとする問題点] 上記従来法で得られる反応焼結型SiCは焼結体中に未
反応のSiを含有する。このSiは焼結体中に均一に分
散している場合には、SiCの靭性を高めるという利点
を有するが、上述の従来の方法で得られた反応焼結Si
Cに残留するSiは、Si溶湯に由来するものであるこ
とから、焼結体中で塊状あるいは細長い回状になって存
在する。このような残留Si部分は、該当箇所に応力が
集中したり、低硬度で耐食性に劣る部分を形成すること
となる。
[Problems to be Solved by the Invention] The reactive sintered SiC obtained by the above conventional method contains unreacted Si in the sintered body. When this Si is uniformly dispersed in a sintered body, it has the advantage of increasing the toughness of SiC, but the reaction sintered Si obtained by the conventional method described above
Since the Si remaining in C is derived from the molten Si, it exists in the form of a lump or an elongated circle in the sintered body. Such residual Si portions may cause stress to be concentrated in the corresponding portions, or may form portions with low hardness and poor corrosion resistance.

[問題点を解決するための手段] 本発明は上記従来法の欠点を解決し、所望量のSiが均
一に分散した反応焼結型SiCを製造する方法を提供す
るものであって、 SiとSiCとをCVD反応によって析出させるCVD
原料ガスを基板上に導きSiCを析出させるに際し、加
熱温度、圧力及び該原料ガスのSi:Cの含有比のうち
1又は2以上の因子を選定することにより、所定量のS
iを含む反応焼結型SiCを析出させるようにした工程
を有することを特徴とする反応焼結型SiCの製造方法
、を要旨とするものである。
[Means for Solving the Problems] The present invention solves the drawbacks of the above-mentioned conventional methods and provides a method for producing reactive sintered SiC in which a desired amount of Si is uniformly dispersed. CVD in which SiC is deposited by CVD reaction
When introducing the raw material gas onto the substrate and depositing SiC, a predetermined amount of S
The gist of the present invention is a method for producing reactive sintered SiC, which comprises a step of precipitating reactive sintered SiC containing i.

[作用] 本発明者らは、次のようなSiCを得るための周知のC
VD反応、即ち ■ 熱分解、例えば CHaSiC文3→SiC+3HC1 あるいは ■ 金属ハロゲン化物の還元、例えば 5iCu++CH4→S ic+4HcJL等について
研究を重ねた結果、熱分解反応温度、反応圧力、あるい
は原料ガス中のSi:C比を制御することにより、これ
らの因子に応じてSi含有量の異なる反応焼結型SiC
が得られること、しかも得られた反応焼結型SiC中の
Siは極めて均一に分散していることを見い出し、本発
明を完成させたものである。
[Function] The present inventors used the well-known C to obtain the following SiC.
As a result of repeated research on the VD reaction, i.e. ■ thermal decomposition, for example CHaSiC3→SiC+3HC1 or ■ reduction of metal halides, for example 5iCu++CH4→SiC+4HcJL, we have found that the thermal decomposition reaction temperature, reaction pressure, or Si in the source gas: By controlling the C ratio, reactive sintered SiC with different Si contents can be produced depending on these factors.
We have completed the present invention by discovering that the following can be obtained, and that Si in the obtained reaction-sintered SiC is extremely uniformly dispersed.

即ち、例えば、CH3S i CJL3の熱分解により
SiCを生成する反応においては、650〜1100℃
の範囲で温度を設定することにより、Siを含有する反
応焼結型SiCを得ることができる。しかも、この熱分
解温度を650〜1100℃の範囲で変化させることに
より、得られる反応焼結型SiC中のSi含有量を任意
に調整することが可能である。
That is, for example, in the reaction of producing SiC by thermal decomposition of CH3S i CJL3, the temperature is 650 to 1100°C.
By setting the temperature within this range, reactive sintered SiC containing Si can be obtained. Furthermore, by varying this thermal decomposition temperature in the range of 650 to 1100°C, it is possible to arbitrarily adjust the Si content in the resulting reactive sintered SiC.

しかして、得られる反応焼結型SiCは、気相反応によ
る析出物であるため、Siが極めて均一かつ微細に分散
している。
Since the resulting reactive sintered SiC is a precipitate resulting from a gas phase reaction, Si is extremely uniformly and finely dispersed.

[実施例] 以下に本発明の実施例を図面を参照して詳細に説明する
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図(5L)〜(C)は本発明の一実施例による反応
焼結型SiCの製造過程を説明する概略的な断面図であ
る。
FIGS. 1(5L) to 1(C) are schematic cross-sectional views illustrating the manufacturing process of reactive sintering type SiC according to an embodiment of the present invention.

本実施例においては、第1図(a)の如く、まず基板l
を用意し、基板l上にCH35iCJLaを含むCVD
原料ガスを供給するが、その際に基板1の少なくとも表
面を650℃以上の範囲の温度に加熱する。  〜 加熱方法は、特に限定されないが、断面楕円形の筒状体
内の2焦点に赤外線源を配置し、前焦点の中間に基板を
セットする赤外線加熱炉や基板lの形状が単純であった
り導電性である場合は、装置構成の簡易な高周波誘導加
熱炉等が有利である。その他、反応容器の外側から加熱
する外部加熱方法も採用可能である。
In this embodiment, as shown in FIG. 1(a), first, the substrate l is
Prepare a CVD film containing CH35iCJLa on the substrate l.
When supplying the raw material gas, at least the surface of the substrate 1 is heated to a temperature in the range of 650° C. or higher. ~ The heating method is not particularly limited, but may be an infrared heating furnace in which an infrared source is placed at two focal points in a cylindrical body with an elliptical cross section and a substrate is set between the front focal points, or an infrared heating furnace in which the substrate l has a simple shape or is conductive. In this case, a high-frequency induction heating furnace or the like with a simple device configuration is advantageous. In addition, an external heating method in which the reaction container is heated from outside can also be adopted.

このようにして加熱された基板lの表面にCVD原料ガ
スを供給し、CVD反応させて、第1図(b)の如く、
表面に反応焼結z5tc(符号2)を析出させる。析出
する反応焼結型SiC中のSi含有量は加熱温度により
異なり、高温はどSi含有量が少なく、低温はどSi含
有量の多いものが得られる0例えば加熱温度1020”
cにおいてはCHa S i C1gの熱分解により約
10〜12%のSiを含む反応焼結型SiCが得られる
。Si含有量はCVD原料ガス組成によっても若干具な
り、 CH3S i CJ13 /H2(++ jJ 
7ガス)にCxHy (x 、Yは整数)の炭化水素ガ
スを混入させると同温度で81含有量の少ない反応焼結
型SiCが得られる。
A CVD raw material gas is supplied to the surface of the substrate l heated in this way, and a CVD reaction is caused, as shown in FIG. 1(b).
Reactive sintered z5tc (code 2) is deposited on the surface. The Si content in the reaction-sintered SiC that precipitates varies depending on the heating temperature; a high temperature results in a low Si content, while a low temperature results in a high Si content.For example, heating temperature 1020"
In c, reactive sintered SiC containing about 10 to 12% Si is obtained by thermal decomposition of 1 g of CHa S i C. The Si content varies slightly depending on the CVD raw material gas composition, and is expressed as CH3S i CJ13 /H2(++ jJ
When a hydrocarbon gas of CxHy (x and Y are integers) is mixed into 7 gas), reactive sintered SiC with a low 81 content can be obtained at the same temperature.

反応焼結型SiCの析出速度はCVD原料ガスの供給量
又は加熱時間を調節することにより容易に調整し得る。
The deposition rate of reactive sintered SiC can be easily adjusted by adjusting the supply amount or heating time of CVD raw material gas.

反応焼結型SiCを所望厚さに析出させた後、必要に応
じて研磨等の表面処理を施して使用に供す。
After the reactive sintered SiC is deposited to a desired thickness, it is subjected to surface treatment such as polishing if necessary, and then used.

なお、基板!上の反応焼結型SfCの層2は、その使用
目的に応じて、第1図(C)の如く、基板lから切り離
すことも可能である。この場合には、基板lとして反応
焼結型SiCと異なる熱膨張率を有し、しかも反応焼結
型SiCと実質的に反応しない材質からなるものを用い
ることにより1反応焼結型S t C2は基板lより容
易に剥離することができる。剥離には、軽い機械的衝撃
を反応焼結型SiCの層2と基板lとの界面に与えるか
、あるいは、該界面近傍を加熱もしくは冷却し熱膨張率
の差を利用して剥離する等の方法が採用される。
In addition, the board! The upper reactive sintered SfC layer 2 can be separated from the substrate 1, as shown in FIG. 1(C), depending on its intended use. In this case, one reaction sintering type S t C2 can be obtained by using a substrate l made of a material that has a coefficient of thermal expansion different from that of reaction sintering type SiC and does not substantially react with reaction sintering type SiC. can be peeled off more easily than the substrate l. Peeling can be done by applying a light mechanical shock to the interface between the reactive sintered SiC layer 2 and the substrate l, or by heating or cooling the vicinity of the interface and peeling by utilizing the difference in thermal expansion coefficient. method is adopted.

その他、基板lとして、燃焼除去あるいは溶解除去可能
な材質よりなるものを用い、基板1を除去することによ
り、反応焼結型SiC2のみを得ることもできる。燃焼
除去可能なものとしては、炭素等が挙げられる。また溶
解除去可能なものとしては、例えば酸に溶解するものと
して、Ni等が挙げられる。
Alternatively, by using a material that can be removed by combustion or dissolution as the substrate 1 and removing the substrate 1, only the reactive sintered SiC 2 can be obtained. Examples of substances that can be removed by combustion include carbon. Further, as a material that can be dissolved and removed, for example, Ni and the like can be mentioned as a material that dissolves in acid.

本発明の方法においては、基板の温度を処理途中に変更
し、厚さ方向でSi含有量が異なる反応焼結型SiCを
析出させることもできる。
In the method of the present invention, it is also possible to change the temperature of the substrate during the process to precipitate reactive sintered SiC having a different Si content in the thickness direction.

即ち、第2図において基板lをCVD原料ガス供給初期
においては650℃付近に加熱し、Si含有量の多い反
応焼結型SfCを析出させ、徐々に加熱温度を上げ矢印
Aの方向にSi含有量の少ない反応焼結型SiC層2を
析出させてゆき、最終的に純SiCを析出させるように
することができる。このような方法は、金属製の基板に
Si0層2を形成する場合、基板lとSfC暦2との界
面はSi含有量の多いものとし、Si0層2と基板1と
のなじみを良くするのに有利である。
That is, in FIG. 2, the substrate l is heated to around 650° C. at the beginning of CVD raw material gas supply to precipitate reactive sintered SfC with a high Si content, and the heating temperature is gradually increased to increase the Si content in the direction of the arrow A. It is possible to deposit a small amount of reactive sintered SiC layer 2 and finally to deposit pure SiC. In this method, when forming the Si0 layer 2 on a metal substrate, the interface between the substrate 1 and the SfC calendar 2 should have a high Si content to improve the compatibility between the Si0 layer 2 and the substrate 1. It is advantageous for

本発明の方法によれば反応焼結型SiC製の管状部材を
製造することもできる。
According to the method of the present invention, a reaction-sintered SiC tubular member can also be manufactured.

この場合、管の内面をSiCのみからなるものとして、
外面側をSiを含む構成とすれば、耐食性の高い内面を
有し、かつ全体としての強度、靭性にも優れた管状部材
が得られる。このような管状部材は半導体シリコンウェ
ハーの蒸着処理用反応管として極めて好適である。
In this case, the inner surface of the tube is made of only SiC,
If the outer surface side is configured to contain Si, a tubular member having an inner surface with high corrosion resistance and excellent overall strength and toughness can be obtained. Such a tubular member is extremely suitable as a reaction tube for vapor deposition processing of semiconductor silicon wafers.

管状部材の製造例を次に説明する。第3図(a)に示す
如き炭素部の円筒3を基体とし、円筒3を例えば650
〜800℃に加熱し、CH35iC交3/H2ガス(H
2はキャリアガス)を円筒3内に供給し、Siを比較的
多く含有する反応焼結型SiCの層4を析出させる0次
に徐々に加熱温度を上げて約1100’Oとし、純Si
Cの層5を析出させる。(第3図(b))。
An example of manufacturing a tubular member will be described next. The cylinder 3 of the carbon part as shown in FIG. 3(a) is used as a base, and the cylinder 3 is made of
Heat to ~800°C and add CH35iC/H2 gas (H
2 is a carrier gas) is supplied into the cylinder 3 to precipitate a layer 4 of reactive sintered SiC containing a relatively large amount of Si.Next, the heating temperature is gradually raised to about 1100'O to form pure Si.
A layer 5 of C is deposited. (Figure 3(b)).

次いで円筒3を燃焼除去し、第3図(C)の如き、外周
側が5iC−3f、内周側が純SiCの管状部材6を得
る。
Next, the cylinder 3 is burned and removed to obtain a tubular member 6 whose outer circumferential side is made of 5iC-3f and whose inner circumferential side is made of pure SiC, as shown in FIG. 3(C).

なお1本製造例においては円筒状基体の内部にCVD原
料ガスを供給して反応焼結型SiCを析出させる例を示
したが、円筒状基体の外周にCVD原料ガスを供給し、
外周部に反応焼結型SiCを析出させることによっても
、同様にして良好な反応管を得ることができる。この場
合には、CVD原料ガス供給開始初期における基体加熱
温度を1100℃近傍とし、徐々・に加熱温度を下げて
ゆくことにより、外周側が5iC−5i、内周側が純S
iCよりなる管状部材を製造することができる。
Note that in this production example, an example was shown in which CVD raw material gas was supplied to the inside of a cylindrical substrate to precipitate reactive sintered SiC, but CVD raw material gas was supplied to the outer periphery of the cylindrical substrate,
A good reaction tube can be obtained in the same manner by depositing reactive sintered SiC on the outer periphery. In this case, by setting the substrate heating temperature at around 1100°C at the beginning of CVD raw material gas supply and gradually lowering the heating temperature, the outer circumferential side is 5iC-5i and the inner circumferential side is pure S.
A tubular member made of iC can be manufactured.

上記実施例においては、CVD原料ガスとしてCHaS
fC文3を用い、SfC二C生成割合の制御因子として
温度を調節するようにしたが1本発明は、その他のCV
D原料ガスを採用し、その他の制御因子を調節しても良
い。
In the above embodiment, CHaS is used as the CVD raw material gas.
fC statement 3 was used to adjust the temperature as a control factor for the SfC2C production rate; however, the present invention
D raw material gas may be employed and other control factors may be adjusted.

その他のCVD原料ガスとしては次のものが挙げられる
Other CVD raw material gases include the following.

■ S i H4/ CH4 ■ S i H4/ C2H4 ■ S i H4/ C3Hδ ■ S i Cl 4 / CCjL 4■ S f 
Cfl、 4 / C3Ha■ (CH3) 2 S 
i CJ12また、その他の制御因子としては次のもの
が挙げられる。
■ S i H4/ CH4 ■ S i H4/ C2H4 ■ S i H4/ C3Hδ ■ S i Cl 4 / CCjL 4 ■ S f
Cfl, 4/C3Ha■ (CH3) 2 S
i CJ12 Other controlling factors include the following.

(イ)反応時の圧力 (ロ)原料ガス中におけるSi :C含有比これら(イ
)、(ロ)の因子及び上記温度の3因子のうち、原料の
特性に応じていずれかl又は2以上の因子を調節するこ
とにより、析出物中のSi:SiC比を所望比率とする
ことが可能である。
(a) Pressure during reaction (b) Si:C content ratio in raw material gas Among these three factors (a), (b) and the above temperature, any one of 1 or 2 or more depending on the characteristics of the raw material By adjusting the factors, it is possible to set the Si:SiC ratio in the precipitate to a desired ratio.

以下具体例を説明する。A specific example will be explained below.

例」、 第1図において説明した本発明の方法により、基板lの
加熱温度を650〜1100℃の範囲で変化させてCH
aSiCJL3ガスの熱分解反応によるCVD反応を行
なわせ、得られる反応焼結型SiC膜の形成速度(IL
/mi n) 、 S i C膜のヌープ硬さくkg/
mm″)及びSiC含有率に対する温度の影響を調べた
ところ、第4因の結果が得られた。1s4図より650
〜1100℃の範囲で、温度が高くなる程Si含有量が
少なくなりヌープ硬度も高くなることが認められる。
Example", by the method of the present invention explained in FIG.
The formation rate (IL
/min), Knoop hardness of S i C film kg/
When we investigated the effect of temperature on the SiC content (mm") and SiC content, we obtained the result of the fourth factor. From the 1s4 diagram, 650
It is recognized that in the range of ~1100°C, the higher the temperature, the lower the Si content and the higher the Knoop hardness.

また、650℃よりも低い温度では実質的に殆どSiの
みが析出し、1100℃よりも低い温度では実質的にS
iCのみが析出していることも認められる。
Moreover, at temperatures lower than 650°C, almost only Si precipitates, and at temperatures lower than 1100°C, substantially S
It is also observed that only iC is precipitated.

なお、SiC含有率の測定はX線回折法によった。Note that the SiC content was measured by X-ray diffraction method.

涯ヱ CHs S i C13にCH4を混合し、(混合割合
は2.5,7.5及び12.5%の3種類とした)、例
1と同様にしてSiCの析出を行なわせた。
CH4 was mixed with CHs Si C13 (the mixing ratio was 2.5%, 7.5%, and 12.5%), and SiC was precipitated in the same manner as in Example 1.

SiC含有量の同定及び硬度の測定を行ったところ1例
1と同様に650℃未満ではsl′のみが析出し、65
0〜1100℃ではsiとsicとが混在し、1100
℃を超えるとSiCのみが析出すること、そして650
 N1100”Cの間では温度が高くなる程、SiC量
が増大することが認められた。
When the SiC content was identified and the hardness was measured, only sl' precipitated at temperatures below 650°C, as in Example 1.
At 0 to 1100°C, si and sic coexist, and 1100°C
If the temperature exceeds 650°C, only SiC will precipitate.
It was observed that the amount of SiC increased as the temperature increased between N1100''C.

[効果] 以上詳述した通り、本発明の反応焼結型SiCの製造方
法は、CVD原料ガスをCVD反応させるに際し、温度
、圧力、あるいは原料ガス中のSi :C比を調節する
ものであり。
[Effects] As detailed above, the method for producing reactive sintered SiC of the present invention adjusts the temperature, pressure, or Si:C ratio in the raw material gas when subjecting the CVD raw material gas to a CVD reaction. .

■ 気相反応のためSfが均一かつ微細に分散した反応
焼結型SiCを製造できる。
(2) Because of the gas phase reaction, reactive sintered SiC in which Sf is uniformly and finely dispersed can be produced.

■ 従って、得られる反応焼結型SiCは極めて高強度
、高靭性で耐食性に優れる。
(2) Therefore, the resulting reactive sintered SiC has extremely high strength, high toughness, and excellent corrosion resistance.

■ 得られる反応焼結型SiC中のSiを、所望の含有
量に容易に調整することができる。
(2) The Si content in the resulting reactive sintered SiC can be easily adjusted to a desired content.

■ 気相反応であるのでSi含有量の調整を連続的に行
なうことができ、同一部材内においてもSi含有量が変
化する反応焼結型SiCを得ることが可能である。
(2) Since it is a gas phase reaction, the Si content can be adjusted continuously, and it is possible to obtain reactive sintered SiC in which the Si content changes even within the same member.

■ 条件を選定することにより、従来の反応焼結法の翅
理温度(約1500℃)よりもかなり低い温度でSiC
を製造できる。
■ By selecting the conditions, SiC can be produced at a temperature considerably lower than the sintering temperature of the conventional reaction sintering method (approximately 1500℃).
can be manufactured.

■ CVD法によるため高純度で緻密なものを製造でき
、しかも複雑形状物の製造も可能である。
■ Since it uses the CVD method, it is possible to manufacture highly pure and dense products, and it is also possible to manufacture products with complex shapes.

■ 条件を選定することにより1反応焼結型SiCの生
成速度を低温であるにもかかわらず速くすることができ
る6例えば、通常のCVDによるSiCの生成速度の約
4.5倍程度にもなし得る。
■ By selecting the conditions, the production rate of one-reaction sintered SiC can be increased despite the low temperature.6For example, the production rate of SiC by normal CVD is about 4.5 times faster. obtain.

等の利点を有し、工業的に極めて有利である。It has the following advantages and is extremely advantageous industrially.

本発明の方法は、例えば、特に半導体ウェハー処理用の
反応管を製造する用途に供し得る。
The method of the invention can be used, for example, to manufacture reaction tubes, especially for processing semiconductor wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)、第2図及び第3図(a)〜(C
)は本発明による反応焼結型SiCの製造過程の一例を
説明する概略断面図、第4図は実施例における測定結果
を示すグラフである。 l・・・・・・基板、   2・・・・・・反応焼結型
SiC層。 代理人  弁理士  重 野  鋼 部1図 (a) 1lt (b) (C) 第3図 (a)
Figures 1 (a) to (C), Figures 2 and 3 (a) to (C)
) is a schematic cross-sectional view illustrating an example of the manufacturing process of reactive sintered SiC according to the present invention, and FIG. 4 is a graph showing measurement results in Examples. 1...Substrate, 2...Reactive sintered SiC layer. Agent Patent Attorney Shigeno Steel Department Figure 1 (a) 1lt (b) (C) Figure 3 (a)

Claims (1)

【特許請求の範囲】[Claims] (1)SiとSiCとをCVD反応によって析出させる
CVD原料ガスを基板上に導きSiCを析出させるに際
し、加熱温度、圧力及び該原料ガスのSi:Cの含有比
のうち1又は2以上の因子を選定することにより、所定
量のSiを含む反応焼結型SiCを析出させるようにし
た工程を有することを特徴とする反応焼結型SiCの製
造方法。
(1) Precipitating Si and SiC by CVD reaction When introducing the CVD raw material gas onto the substrate and depositing SiC, one or more factors among the heating temperature, pressure, and Si:C content ratio of the raw material gas are selected. 1. A method for producing reactive sintered SiC, comprising the step of precipitating reactive sintered SiC containing a predetermined amount of Si.
JP60092956A 1985-04-30 1985-04-30 Production of reaction sintering sic Pending JPS61253366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092956A JPS61253366A (en) 1985-04-30 1985-04-30 Production of reaction sintering sic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092956A JPS61253366A (en) 1985-04-30 1985-04-30 Production of reaction sintering sic

Publications (1)

Publication Number Publication Date
JPS61253366A true JPS61253366A (en) 1986-11-11

Family

ID=14068905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092956A Pending JPS61253366A (en) 1985-04-30 1985-04-30 Production of reaction sintering sic

Country Status (1)

Country Link
JP (1) JPS61253366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472699A (en) * 1987-09-12 1989-03-17 Sony Corp Speaker diaphragm and its manufacture
JP2003034867A (en) * 2001-07-27 2003-02-07 Tokai Carbon Co Ltd TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472699A (en) * 1987-09-12 1989-03-17 Sony Corp Speaker diaphragm and its manufacture
JP2003034867A (en) * 2001-07-27 2003-02-07 Tokai Carbon Co Ltd TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JP4702712B2 (en) * 2001-07-27 2011-06-15 東海カーボン株式会社 Tubular SiC molded body and method for producing the same

Similar Documents

Publication Publication Date Title
US8211244B2 (en) Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
JPH0134925B2 (en)
JPS6112844B2 (en)
US8202621B2 (en) Opaque low resistivity silicon carbide
JPS61253366A (en) Production of reaction sintering sic
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS62176981A (en) Boron nitride-coated crucible
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
JPH0649640B2 (en) Method for manufacturing aluminum nitride Isca
JPS63117906A (en) Member for production apparatus of polycrystalline silicon
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH072508A (en) Method for forming graphite thin film
JPH0146454B2 (en)
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH03187998A (en) Production of aluminum nitride whisker
KR910000293B1 (en) Process for production of graphite coated silicon carbide
JPH01252519A (en) Bulk body consisting of boron, carbon and nitrogen and production thereof
JP2000169298A (en) Silicon carbide molded article
JPS5939704A (en) Method for synthesizing silicon nitride
JPS6250466A (en) Production of article having silicon nitride film
JPS62297292A (en) Production of silicon nitride parts for making silicon single crystal
JP2633620B2 (en) Method for producing silicon carbide whiskers