JPS5939704A - Method for synthesizing silicon nitride - Google Patents

Method for synthesizing silicon nitride

Info

Publication number
JPS5939704A
JPS5939704A JP14681582A JP14681582A JPS5939704A JP S5939704 A JPS5939704 A JP S5939704A JP 14681582 A JP14681582 A JP 14681582A JP 14681582 A JP14681582 A JP 14681582A JP S5939704 A JPS5939704 A JP S5939704A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
plate
crystals
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14681582A
Other languages
Japanese (ja)
Other versions
JPH0348122B2 (en
Inventor
Hitoshi Komuta
雉子牟田 等
Yukinori Ota
大田 幸則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP14681582A priority Critical patent/JPS5939704A/en
Publication of JPS5939704A publication Critical patent/JPS5939704A/en
Publication of JPH0348122B2 publication Critical patent/JPH0348122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture alpha-type silicon nitride crystals as a starting material for a sintered body while preventing conversion into beta-type crystals due to hot spots by providing specified physical properties to amorphous silicon nitride powder and heat treating the powder under specified conditions. CONSTITUTION:Amorphous silicon nitride powder having 0.1-0.5 bulk specific gravity is filled on a tray-shaped calcining plate by 2-10kg/m<2> basing on the area of the available heating surface of the plate and 10-40kg/m<2> basing on the area of a projected plane of the plate, and the powder is calcined at 1,450- 1,750 deg.C temp. of the heating surface of 0.1-4hr in a nonoxidizing atmosphere. The amount of fine powder to be treated is increased without increasing the size of the apparatus, hot spots which are liable to cause conversion into beta-type crystals are not formed, and alpha-type silicon nitride crystals as a starting material for a sintered body are obtd. The hot spot phenomenon is easily avoided by making the vertical section of the calcining plate uneven.

Description

【発明の詳細な説明】 本発明は窒化珪素の合成法、特に非晶質の珪素の窒化物
を焼成して窒化珪素を得る際の前記焼成方法に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing silicon nitride, and particularly to the firing method for obtaining silicon nitride by firing an amorphous silicon nitride.

窒化珪素の焼結体は、最近各種の耐熱材料として各方面
から注目を集め、又、耐食性も高いことからその用途が
広く拓けつつある。
Silicon nitride sintered bodies have recently attracted attention from various quarters as a variety of heat-resistant materials, and their high corrosion resistance has led to a wide range of uses.

これら用途のうちでも、ガスタービン用のブレードや、
高温炉におけるラジアントチューブ等には優れた性質を
有するが故に特に有用とされている。
Among these uses, blades for gas turbines,
It is said to be particularly useful for radiant tubes in high-temperature furnaces because of its excellent properties.

窒化珪素の製造法としては、種々の方法が提案されてい
るが、これらのうちでも四塩化珪素とアンモニアとを気
相反応せしめる手段は最もポピユラーな方法として知ら
れている。この方法は、一般的には反応に必要量の四塩
化珪素とアンモニアとを、酸素の不在下に590〜15
00℃において気相反応せしめ、一段で窒化珪素のα晶
を合成せしめ、かかる合成品を直ちに焼結体原料とする
ものである。
Various methods have been proposed for producing silicon nitride, but among these, the method of causing a gas phase reaction between silicon tetrachloride and ammonia is known as the most popular method. In this method, silicon tetrachloride and ammonia are generally added in the amount necessary for the reaction in the absence of oxygen at a concentration of 590 to 15
A gas phase reaction is carried out at 00° C. to synthesize alpha crystals of silicon nitride in one step, and this synthesized product is immediately used as a raw material for a sintered body.

しかしながら、本発明者の検討によると、この様な一段
による合成法では、焼結原料として好ましいとされてい
るα晶窒化珪素への転化率が低く、かなシの量の無定形
な珪素の全化物が混入しており、これが焼結性を阻害し
ていることが見出された。
However, according to studies conducted by the present inventors, such a one-stage synthesis method has a low conversion rate to α-crystalline silicon nitride, which is considered to be preferable as a sintering raw material. It was found that compounds were mixed in, which inhibited sinterability.

本発明者は、かかる点に鑑み、合成反応を2段に分け、
前段として四塩化珪素とアンモニアとを特定比率におい
て特定時間、特定温度で反応せしめ、無定形な珪素の?
化物を積極的に合成せしめ、次いでこれを後段の反応と
して窒素若しくはアンモニア気流中において特定時間、
特定温度に保持せしめることにより、焼結性のよいα晶
の窒化珪素が高収率で得られることを見出し、特願昭5
3−4’1712号として提案した。
In view of this, the present inventor divided the synthesis reaction into two stages,
As a first step, silicon tetrachloride and ammonia are reacted at a specific ratio for a specific time and at a specific temperature to form amorphous silicon.
The compound is actively synthesized, and then as a subsequent reaction, it is subjected to a specific period of time in a nitrogen or ammonia stream.
It was discovered that α-crystalline silicon nitride with good sintering properties could be obtained in high yield by maintaining it at a specific temperature, and a patent application was filed in 1973.
It was proposed as No. 3-4'1712.

しかしながら、この一連の方法においては、特に後段の
反応の実施手段によっては一部焼結体用原料粉末として
は望ましくない結晶形であるβ晶が生成する逮れがある
。即ち、窒化珪素原料粉末の小規模生産においては、反
応形式も比較的多種類の中から任意に選択出来、しかも
β晶の生成の抑制も比較的容易に行ない得る。
However, in this series of methods, there is a problem in which β crystals, which are a crystal form undesirable as a raw material powder for a sintered body, are formed in part, depending on the means of carrying out the reaction in the latter stage. That is, in small-scale production of silicon nitride raw material powder, the reaction format can be arbitrarily selected from a relatively wide variety, and the formation of β crystals can be suppressed relatively easily.

しかし、生産規模が犬になるにつれ、熱エネルギーや操
作性、設備費等の点から反応形式は制約を受け、β晶生
成の抑制も困難となる。
However, as the scale of production increases, the reaction format is constrained by thermal energy, operability, equipment costs, etc., and it becomes difficult to suppress the production of β crystals.

大規模な生産手段としての後段反応形式は、一般に得ら
れた珪素の窒化物音、反応′容器中に充填し、容器外部
よシ加熱することにより、α晶化する手段が採られる。
In the latter stage reaction as a large-scale production method, generally the obtained silicon nitride is charged into a reaction vessel and heated from the outside of the vessel to α-crystallize it.

処で、焼結原料としての窒化珪素は、焼結体の焼結性を
高める為、出来る限り微粉状であることが望ましい。こ
の為、前段で得られる珪素の窒化物も微粉状であること
が望ましい。しかし々から、前段で得られた珪素の窒化
物が微粉状であると、嵩比重が小となり、断熱性を有す
ると共に、α晶へ転移する際にけかなシの発熱を伴なう
。この為、微粉末は容器に充填された層のほぼ中層部付
近が著しい高温となる所謂ホットスポット現象が生じ、
この部分がβ晶化する傾向にある。
Here, silicon nitride as a sintering raw material is desirably as finely powdered as possible in order to improve the sinterability of the sintered body. For this reason, it is desirable that the silicon nitride obtained in the first stage is also in the form of fine powder. However, if the silicon nitride obtained in the previous step is in the form of a fine powder, the bulk specific gravity will be small and it will have heat insulating properties and will also generate a large amount of heat when it transforms into α crystals. For this reason, the so-called hot spot phenomenon occurs in which the fine powder becomes extremely hot near the middle layer of the layer filled in the container.
This part tends to become β crystallized.

本発明者は、これらの点に鑑み、出来る限り装置を大き
くせず、しかも処理し得る微粉量を多くシ、シかもホッ
トスポットの生じないような前記後段の処理手段を見出
すことを目的として種々研究、検討した結果、被処理粉
体に特定物性を持たせ、かかる粉体を特定条件下に熱処
理せしめることによシ、前記目的を達成し得ることを見
出した。
In view of these points, the present inventor has developed various methods for the purpose of finding a processing means for the latter stage that can increase the amount of fine powder that can be processed without increasing the size of the device as much as possible, and that does not cause hot spots. As a result of research and consideration, it has been found that the above object can be achieved by imparting specific physical properties to the powder to be treated and heat-treating the powder under specific conditions.

かくして本発明は、嵩比重0.1〜0.5を有する非晶
質の珪素の窒化物粉末を棚板状焼成板上に、該板の実伝
熱面積に対し、2〜10Ky/iで、且該棚板面の投影
面積に対し、10〜40Kq/m′充填し、伝熱面の温
度1450〜1750℃において01〜4時間非酸化性
雰囲気下で焼成せしめる事を特徴とする窒化珪素の合成
法を提供するにある。
Thus, in the present invention, amorphous silicon nitride powder having a bulk specific gravity of 0.1 to 0.5 is placed on a shelf-shaped fired plate at a rate of 2 to 10 Ky/i with respect to the actual heat transfer area of the plate. , and silicon nitride, which is filled with 10 to 40 Kq/m' to the projected area of the shelf surface and fired in a non-oxidizing atmosphere at a heat transfer surface temperature of 1450 to 1750°C for 01 to 4 hours. To provide a method for the synthesis of

本発明において、棚板状焼成板は、単なる平板ではなく
、その垂直断面形状は種々の凹凸形状が採用される。例
えば形状が 工日J、l畠f、へへF 、]畳F。
In the present invention, the shelf-shaped fired plate is not just a flat plate, but its vertical cross-sectional shape has various uneven shapes. For example, the shapes are Koji J, l Hatake f, Hehe F, ] Tatami F.

υv、W、娼へ!、ソ塙− 等その他適宜な凹凸形状及びこれを組合せた形状を採用
し得る。これらの形状を採る理由は、一つの凹部に対し
、成る一定量以上の被焼成窒化物粉末を充填しない為で
あシ、かくすることによシ、ホットスポット現象を回避
する為である。即ち、本発明においては、棚板の全投影
面積が成る大きさに定められると、それに応じてホット
スポットを生じせしめない為、前記の如き断面形状中か
ら適宜な形状を選ぶことになる。
υv, W, to the whore! It is possible to employ other appropriate uneven shapes such as ridges, ridges, etc., and combinations thereof. The reason for adopting these shapes is to prevent more than a certain amount of the nitride powder to be fired to be filled into one recess, thereby avoiding the hot spot phenomenon. That is, in the present invention, if the total projected area of the shelf board is determined to be a size, an appropriate shape is selected from among the above-mentioned cross-sectional shapes in order to prevent the generation of hot spots.

本発明において、棚板面はいかなる凹凸形状が採られて
も全て伝熱面を構成し、被焼成窒化物粉末が直接接触し
ている棚板面は、本発明に言う実伝熱面積となる。通常
かかる実伝熱面積は凹部が採られる。
In the present invention, the shelf board surface constitutes a heat transfer surface no matter what uneven shape it has, and the shelf board surface that is in direct contact with the nitride powder to be fired is the actual heat transfer area according to the present invention. . Usually, the actual heat transfer area is a recess.

本発明において、焼成に供される非晶質の珪素の窒化物
粉末は、嵩比重がo、 i〜o5を有することが必要で
ある。嵩比重が前記範囲に満たない場合には、工業的に
生産効率が悪くなシ、逆に前記範囲を超える場合にはα
晶への転移に際し、単位容積当りの発熱量が大きくなり
すぎ、ホットスポットが生じやすくなるので何れも不適
当である。
In the present invention, the amorphous silicon nitride powder to be fired must have a bulk specific gravity of o, i to o5. If the bulk specific gravity is less than the above range, industrial production efficiency will be poor, and conversely if it exceeds the above range, α
Both are unsuitable because the amount of heat generated per unit volume during the transition to crystals becomes too large and hot spots are likely to occur.

又、該粉末の棚板実伝熱面に供給される量は、2〜10
に9/7が必要である。量が前記範囲に満たない場合に
は、工業的に生産効率が悪くなり、逆に前記範囲を超え
る場合には、α晶転移による発熱の除熱が不十分となシ
ホットスポットを生じやすくなるので何れも不適当であ
る。
Further, the amount of the powder supplied to the actual heat transfer surface of the shelf plate is 2 to 10
9/7 is required. If the amount is less than the above range, industrial production efficiency will be poor, and if it exceeds the above range, hot spots are likely to occur due to insufficient heat removal due to α crystal transition. Therefore, both are inappropriate.

更に本発明においては、棚板面の投影面積に対し、前記
粉末を10〜40 Kg / m’充填することが必要
である。充填量が前記範囲に満たない場合には、工業的
々生産効率が低くなシ、逆に前記範囲を超える場合には
、棚板の形状や焼成条件をいかに特定化しようとも実質
的にホットスポットが生じ、本発明の目的を達成し得々
いので何れも不適当である。
Furthermore, in the present invention, it is necessary to fill the powder at 10 to 40 kg/m' with respect to the projected area of the shelf surface. If the filling amount is less than the above range, industrial production efficiency will be low, and conversely, if it exceeds the above range, no matter how specific the shape of the shelf board and firing conditions are, it will essentially become a hot spot. Both of these methods are unsuitable, since the object of the present invention cannot be achieved.

かくして本発明において、該粉末は、棚板伝熱面の温度
1450〜1750℃、非酸化性雰囲気下で01〜4時
間焼成することにより、焼結体原料となるα晶の粉末が
得られる。なお、一般に棚板への被焼成粉末の充填量が
少ない程焼成時間は短かくkる傾向にある。
Thus, in the present invention, the powder is fired for 01 to 4 hours in a non-oxidizing atmosphere at a temperature of the heat transfer surface of the shelf plate of 1450 to 1750° C., thereby obtaining an α-crystal powder serving as a raw material for the sintered body. Note that, in general, the smaller the amount of powder to be fired packed into the shelf board, the shorter the firing time tends to be.

本発明において用いられる棚板の材質としては、例えば
グラファイト、炭化珪素焼結体、窒化珪素焼結体、アル
ミナ等を適宜採用することが出来る。
As the material of the shelf board used in the present invention, graphite, silicon carbide sintered body, silicon nitride sintered body, alumina, etc. can be appropriately adopted, for example.

なお、非酸化性雰囲気としては、窒素、水素、アルゴン
、ヘリウム等の雰囲気を適宜採用することができる。
Note that as the non-oxidizing atmosphere, an atmosphere of nitrogen, hydrogen, argon, helium, etc. can be appropriately employed.

次に本発明を実施例によシ説明する。Next, the present invention will be explained using examples.

実施例1 内径70膿、長さ1.5mのムシイト質空塔反応管から
々る外熱式流通型反応器を用いて、51014とNHa
奮1000℃で反応させ(供給ガスモル比NH3/ 5
il14= 1.2、反応時間15θθC)、粒径0.
5〜2μ、嵩比重0.25の非晶質の珪素の窒化物粉末
を得た。次に、投影面積が0.408m2(80crn
×51crn)、垂直断面として、幅3cn+。
Example 1 51014 and NHa were reacted using an externally heated flow-through reactor consisting of a musciitic empty column reaction tube with an inner diameter of 70 mm and a length of 1.5 m.
The reaction was carried out at 1000℃ (supplied gas molar ratio NH3/5
il14=1.2, reaction time 15θθC), particle size 0.
An amorphous silicon nitride powder having a bulk density of 5 to 2 μm and a bulk specific gravity of 0.25 was obtained. Next, the projected area is 0.408 m2 (80 crn
x51crn), width 3cn+ as a vertical section.

高さ]0cInの溝8本を有する実伝熱面積1.664
−のグラファイト製棚板に、上記の粉末6.7に+7を
棚板上にほぼ均等に充填しく板の投影面積に対し15.
4Kq/m、実伝熱面積に対し3. s K9/−)窒
素雰囲気下で、1550℃×2も焼成(電気加熱)し、
結晶化された窒化珪素粉末を得た。
Height] Actual heat transfer area 1.664 with 8 grooves of 0 cIn
- Fill a graphite shelf board with the above powder 6.7 to +7 almost evenly on the shelf board, and make 15% of the projected area of the board.
4Kq/m, 3 for the actual heat transfer area. s K9/-) Baked at 1550°C x 2 (electrically heated) in a nitrogen atmosphere,
Crystallized silicon nitride powder was obtained.

得られた粉末は、粒径0.3〜2μであシ、α晶含有率
(=” 、a、J’シa x 1o o )は90チで
あつた。
The obtained powder had a particle size of 0.3 to 2 μm and an α crystal content (=”, a, J′ x 1o o ) of 90 μm.

実施例 2〜4 実施例1と同一の反応器及び焼成炉を用いて、実施例1
と同様な処理を行なった結果、得られたものの物性を表
1に示しだ。
Examples 2 to 4 Using the same reactor and firing furnace as in Example 1, Example 1
Table 1 shows the physical properties of the product obtained as a result of the same treatment.

比較例 実施例1と同じ、非晶質の珪素の輩化物粉末を、寸法8
0m×5’1mX厚さ4 C1nのグラファイト製棚板
(溝なしの平板)に、上記の粉末6.3に9を、はぼ均
等に充填しく板の投影面積に対し15.4 Kg / 
rr?、実伝熱面積に対しても15.4Ky / m 
) 、窒素雰囲気下で、1550℃xz&焼成(電気加
熱)し、結晶化された窒化珪素粉末を得た。得られた粉
末は、粒径0.4〜2μであシ、α晶含有率は56%で
あった。
Comparative Example The same amorphous silicon compound powder as in Example 1 was prepared with a size of 8.
0m x 5'1m x thickness 4C1n graphite shelf board (flat plate without grooves) was filled with the above powders 6.3 and 9 evenly so that the projected area of the board was 15.4 kg /
rr? , the actual heat transfer area is also 15.4 Ky/m
), 1550° C. xz & firing (electrical heating) was performed in a nitrogen atmosphere to obtain crystallized silicon nitride powder. The obtained powder had a particle size of 0.4 to 2 μm and an α crystal content of 56%.

比較例 実施例1と同じ、非晶質の珪素の望化物粉末を、寸法8
0crn×51crn×厚さ4cInのグラファイト製
棚板(溝なしの平板)に、上記の粉末6.3Kgを、は
ぼ均等に充填しく板の投影面積に対し15.4 Kg 
/ m”、実伝熱面積に対しても15.4Kg/’ m
 ) 、窒素雰囲気下で、1550℃×2飢焼成(電気
加熱)し、結晶化された窒化珪素粉末を得た。得られた
粉末は、粒径04〜2μであり、α晶含有率は56%で
あった。
Comparative Example The same amorphous silicon desalination powder as in Example 1 was prepared with a size of 8.
A graphite shelf board (flat plate without grooves) measuring 0 crn x 51 crn x 4 cIn thickness was filled with 6.3 kg of the above powder evenly, and the projected area of the board was 15.4 kg.
/ m", 15.4Kg/'m for the actual heat transfer area
), and fired (electrically heated) at 1550° C. twice in a nitrogen atmosphere to obtain crystallized silicon nitride powder. The obtained powder had a particle size of 04 to 2 μm and an α crystal content of 56%.

Claims (1)

【特許請求の範囲】[Claims] (1)  嵩比重0.1〜0.5を有する非晶質の珪素
の窒化物粉末を棚板状焼成板上に、該板の実伝熱面積に
対し、2〜10 Kg / m’で、且該棚板面の投影
面積に対し、10〜40 Kg/ n?充填し、伝熱面
の温度1450〜1750℃において0.1〜4時間非
酸化性雰囲気下で焼成せしめることを特徴とする窒化珪
素の合成法。
(1) Amorphous silicon nitride powder having a bulk specific gravity of 0.1 to 0.5 is placed on a shelf-shaped fired plate at a rate of 2 to 10 kg/m' relative to the actual heat transfer area of the plate. , and 10 to 40 Kg/n? with respect to the projected area of the shelf surface. 1. A method for synthesizing silicon nitride, which comprises filling the silicon nitride and firing it in a non-oxidizing atmosphere at a heat transfer surface temperature of 1450 to 1750° C. for 0.1 to 4 hours.
JP14681582A 1982-08-26 1982-08-26 Method for synthesizing silicon nitride Granted JPS5939704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14681582A JPS5939704A (en) 1982-08-26 1982-08-26 Method for synthesizing silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14681582A JPS5939704A (en) 1982-08-26 1982-08-26 Method for synthesizing silicon nitride

Publications (2)

Publication Number Publication Date
JPS5939704A true JPS5939704A (en) 1984-03-05
JPH0348122B2 JPH0348122B2 (en) 1991-07-23

Family

ID=15416151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14681582A Granted JPS5939704A (en) 1982-08-26 1982-08-26 Method for synthesizing silicon nitride

Country Status (1)

Country Link
JP (1) JPS5939704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855316A (en) * 1981-09-24 1983-04-01 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855316A (en) * 1981-09-24 1983-04-01 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders

Also Published As

Publication number Publication date
JPH0348122B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US4145224A (en) Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
JPS6112844B2 (en)
US4499193A (en) Process for producing beta&#39;-silicon aluminum oxynitride (B&#39;-SiAlON) using discrete particles
JPH0134925B2 (en)
US4619905A (en) Process for the synthesis of silicon nitride
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US4208215A (en) Method for enhancing the crystallization rate of high purity amorphous Si3 N2 powder by intimate contact with a titanium containing material
JPH0280318A (en) Synthesis of refractory metal boride having predetermined particle dimension
JPS5939704A (en) Method for synthesizing silicon nitride
EP0188038A1 (en) Process for producing silicon aluminum oxynitride
JPH01119505A (en) Production of powdery silicon nitride
JPS6111886B2 (en)
JPH0329023B2 (en)
JPH0216270B2 (en)
JPS61266356A (en) Plasma arc sintering for silicon carbide
JPS6111885B2 (en)
CA1235710A (en) PROCESS FOR PRODUCING .beta.&#39;-SILICON ALUMINUM OXYNITRIDE (.beta.&#39;-SIALON)
JPS5823327B2 (en) Method for producing β-type silicon carbide powder
JP2633620B2 (en) Method for producing silicon carbide whiskers
JPS5891058A (en) Manufacture of mixture of silicon nitride and silicon carbide
JPH03187998A (en) Production of aluminum nitride whisker
JPS5916968A (en) Synthesis of metal carbide or carbonitride
JPS58176109A (en) Production of alpha-type silicon nitride
JPS6146403B2 (en)
JPS6183605A (en) Production of chromium nitride