JPS61252627A - Container for vaporizing liquid material - Google Patents

Container for vaporizing liquid material

Info

Publication number
JPS61252627A
JPS61252627A JP9410885A JP9410885A JPS61252627A JP S61252627 A JPS61252627 A JP S61252627A JP 9410885 A JP9410885 A JP 9410885A JP 9410885 A JP9410885 A JP 9410885A JP S61252627 A JPS61252627 A JP S61252627A
Authority
JP
Japan
Prior art keywords
raw material
liquid raw
liquid material
carrier gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9410885A
Other languages
Japanese (ja)
Inventor
Naoyuki Ito
直行 伊藤
Teruyuki Mizumoto
照之 水本
Norihisa Okamoto
岡本 則久
Takashi Shimobayashi
隆 下林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9410885A priority Critical patent/JPS61252627A/en
Publication of JPS61252627A publication Critical patent/JPS61252627A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material

Abstract

PURPOSE:To enable accurate control of the quantity of the liquid material to be vaporized with the set temperature of the liquid material and the flow rate of the carrier gas to be introduced, by inserting a tube into the liquid material, which tube has a sufficient length for the temperature of the introduced gas to become equal to the temperature of the liquid material. CONSTITUTION:A liquid material 3 is enclosed in a sealed cylinder 2 having a gas outlet valve 1. Inserted into the liquid material 3 is a dip tube 5 having a gas inlet valve 4. The dip tube 5 is folded several times below the liquid surface 6 of the liquid material. The temperature of the carrier gas introduced into the dip tube becomes equal to the set temperature of the liquid material during the passage through the portion below the liquid surface 6, and then the carrier gas is discharged into the liquid material. For more positive heat exchange between the carrier gas and the liquid material, it is only needed to provide the dip tube with a sufficient length and a thin radial thickness. The design for these may be decided in dependence on the set temperature of the liquid material and the quantity of the carrier gas to be introduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCV D ((::hemical Vapo
ur Deposi−tion)  などにおいて、液
体原料をキャリアーガスのバブリングにより気化させて
供給する際に用いられる液体原料気化容器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to CVD ((::chemical vapor
The present invention relates to a liquid raw material vaporization container used for vaporizing and supplying a liquid raw material by bubbling a carrier gas in ur Deposition and the like.

〔発明の概要〕[Summary of the invention]

本発明はCVDなどに用いられる、一定温度に保たれた
液体原料中に挿入したチューブにキャリアーガスを導入
し液体原料をバブリングすることによって該液体原料を
気化させる液体原料気化容器において、導入したガスが
前記チュニプの先端より出る時に、ガスの温度が該液体
原料の温度と等しくなるのに充分な長さのチューブを液
体原料中に挿入することにより、気化する液体原料の量
をバブリングするガスの流量と液体原料の設定温度によ
って正確に制御できる様にしたものである。
The present invention is used in a liquid raw material vaporization vessel used in CVD, etc., which vaporizes the liquid raw material by introducing a carrier gas into a tube inserted into the liquid raw material maintained at a constant temperature and bubbling the liquid raw material. The amount of liquid material to be vaporized is controlled by bubbling gas by inserting a tube of sufficient length into the liquid material so that the temperature of the gas becomes equal to the temperature of the liquid material when it exits the tip of the tube. It is possible to accurately control the flow rate and the set temperature of the liquid raw material.

〔従来技術〕[Prior art]

第5図には従来用いられている液体原料気化容器の概略
図を示す。ガス出口用バルブOを有する密閉したシリン
ダー〇の中に社液体原料@が封入しである。液体原料0
にはガス入口用バルブ[株]を有するディップチューブ
Oが挿入されている。ガス入口用バルブ[株]とデイツ
ブテユープOを経て導入されたキャリアーガスはシリン
ダー■の底部で液体原料@中に放出される。放出された
キャリア−ガスは気泡となって液体原料[相]の中を上
昇して8行きつつ、液体原料を気化させる。液体原料の
蒸気を含むキャリアーガスはガス出口用パルプOを経て
反応炉へと導かれていく。この時、液体原料中へ放出さ
れたキャリアーガスによって気化する液体原料の量は理
想的には液体原料の温度によって決まる飽和蒸気圧に等
しい。実際に第3図に示した液体原料気化容器を用いる
際には、容器全体を恒温槽内にセットすることにより、
液体原料を所定の温度に設定する。この時、液体原料の
温度と導入するキャリアーガスの体積によって気化する
液体原料の量が制御できる。
FIG. 5 shows a schematic diagram of a conventionally used liquid raw material vaporization container. The liquid raw material @ is enclosed in a sealed cylinder 〇 which has a gas outlet valve 〇. Liquid raw material 0
A dip tube O having a gas inlet valve is inserted into the tube. The carrier gas introduced through the gas inlet valve [Co., Ltd.] and the date valve O is discharged into the liquid raw material @ at the bottom of the cylinder (■). The released carrier gas becomes bubbles and rises in the liquid raw material [phase], vaporizing the liquid raw material. The carrier gas containing the vapor of the liquid raw material is guided to the reactor via the gas outlet pulp O. At this time, the amount of the liquid raw material vaporized by the carrier gas released into the liquid raw material is ideally equal to the saturated vapor pressure determined by the temperature of the liquid raw material. When actually using the liquid raw material vaporization container shown in Figure 3, by setting the entire container in a constant temperature bath,
Set the liquid raw material to a predetermined temperature. At this time, the amount of the liquid raw material to be vaporized can be controlled by the temperature of the liquid raw material and the volume of the carrier gas introduced.

〔発明が解決しようとする問題点及び目的〕原料ガスの
供給量によって形成される薄膜の成長速度が決定される
CVDプロセスに前述の従来技術を用いた場合、次の様
な問題点を生ずる。
[Problems and Objectives to be Solved by the Invention] When the above-mentioned conventional technique is used in a CVD process in which the growth rate of a thin film formed is determined by the supply amount of raw material gas, the following problems occur.

1、 液体原料の温度即ち液体原料気化容器をセットす
る恒温槽の温度を一定にした時、薄膜の成長速度は容器
に導入するキャリアーガスの体積に比例するはずである
が、キャリアーガスの体積が大きくなると、この比例関
係が成立しなくなり、薄膜の成長速度は、液体原料の設
定温度が室温より低い場合には、キャリアーガスの流量
から推定される値より大きくなり、又設定温度が室温よ
り高い場合にはこの逆の傾向を示す。
1. When the temperature of the liquid raw material, that is, the temperature of the constant temperature bath in which the liquid raw material vaporization container is set, is held constant, the growth rate of the thin film should be proportional to the volume of the carrier gas introduced into the container. When the temperature increases, this proportional relationship no longer holds, and the growth rate of the thin film becomes greater than the value estimated from the flow rate of the carrier gas when the set temperature of the liquid source is lower than room temperature, and when the set temperature is higher than room temperature. In some cases, the opposite trend is observed.

Z 所望の液体原料を気化させるための液体原料の温度
T(℃)とキャリアーガス・導入量N(yd / mi
n )の組み合せは液体原料の飽和蒸気圧がTによって
変化するために、無数にある。この時’pH< Tzの
時Nt > Nsとなるが、′ 得られる成長速度はs
 T! # Nsの組み合せの方が大きくなシ、特に、
液体原料の設定温度と室温との差が大きい程又、導入す
るキャリアーガスの量が多い程この傾向は顕著である。
Z Temperature T (°C) of liquid raw material and carrier gas introduction amount N (yd/mi) for vaporizing the desired liquid raw material
There are an infinite number of combinations of n) because the saturated vapor pressure of the liquid raw material changes depending on T. At this time, when pH < Tz, Nt > Ns, but the growth rate obtained is s
T! # The combination of Ns is larger, especially
This tendency becomes more pronounced as the difference between the set temperature of the liquid raw material and room temperature increases, and as the amount of carrier gas introduced increases.

上記の問題を生ずる原因は以下の通シである。The causes of the above problem are as follows.

例えば、液体原料の設定温度が室温に比べて低いときを
考えると、容器に導入されるキャリアーガスの温度が室
温であるため、ディップチューブOのうち液体原料の液
面0を過ぎて先端から放出される間に液体原料によって
冷却される。従って液体原料の設定温度が室温に比べて
低ければ低い程、又導入するキャリアーガスの流量が多
くなる程、ディップチューブを通過するキャリアーガス
の冷却効率が悪くなりディップチューブから放出される
キャリアーガスの温度が液体原料の温iよりも高くなっ
てしまう、従って液体原料は設定温度よりも高い温度の
ガスに蒸発することになり、その結果、液体原料の設定
温度から見積られる量よりも多くの液体原料が気化する
ことになる。このために前述の様な問題が生じて来る。
For example, if we consider a case where the set temperature of the liquid raw material is lower than room temperature, the temperature of the carrier gas introduced into the container is room temperature, so the carrier gas is discharged from the tip of the dip tube O past the liquid level 0 of the liquid raw material. It is cooled by the liquid raw material while it is being heated. Therefore, the lower the set temperature of the liquid raw material is compared to room temperature, and the higher the flow rate of the carrier gas introduced, the lower the cooling efficiency of the carrier gas passing through the dip tube, and the lower the carrier gas discharged from the dip tube. The temperature becomes higher than the temperature i of the liquid raw material, so the liquid raw material will evaporate into gas at a temperature higher than the set temperature, and as a result, the amount of liquid will be larger than the amount estimated from the set temperature of the liquid raw material. The raw material will be vaporized. This causes the problems mentioned above.

液体原料の温度が室温より高い場合も全く同様であり、
導入したキャリアーガスの温度が、液体原料の温度と一
致していないために、前述の様な問題が生じて来る。
The same is true when the temperature of the liquid raw material is higher than room temperature.
The above-mentioned problems arise because the temperature of the introduced carrier gas does not match the temperature of the liquid raw material.

そこで本発明はこの様な問題を解決するものでその目的
とするところは、液体原料の設定温度と導入するキャリ
アーガスの流量により気化する液体原料の量を正確に制
御できる様な液体気化容器を提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a liquid vaporization container that can accurately control the amount of liquid raw material to be vaporized by adjusting the set temperature of the liquid raw material and the flow rate of the carrier gas introduced. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液体原料気化容器一定温度に保たれた液体原料
中に挿入したチューブよりガスを導入し、該液体原料を
バブリングすることによって該液体原料を気化させる液
体原料気化容器において、導入したガスの温度が液体原
料の温度と等しくなるのに充分な長さのチューブが液体
原料中に挿入されていることを特徴とする。
Liquid raw material vaporization container of the present invention In the liquid raw material vaporization container of the present invention, gas is introduced through a tube inserted into the liquid raw material maintained at a constant temperature, and the liquid raw material is vaporized by bubbling the liquid raw material. It is characterized in that a tube of sufficient length is inserted into the liquid source so that its temperature is equal to that of the liquid source.

〔実施例〕〔Example〕

以下実施例に従って本発明に係る液体原料気化容器を説
明する。
The liquid raw material vaporization container according to the present invention will be described below according to Examples.

〔実施例1〕 第1図には本発明に係る液体原料気化容器の一例を示す
。ガス出ロバルプ■を有する密閉したシリンダー〇の中
に液体原料■が封入しである。液体原料■にはガス入口
用パルプ■を有するデツプチューブ0が挿入されている
。このディップチューブ■は液体原料の液面■より低い
位置において幾重にも折)重ねられていることが特徴で
ある。
[Example 1] FIG. 1 shows an example of a liquid raw material vaporization container according to the present invention. A liquid raw material (■) is sealed in a sealed cylinder (○) with a gas outlet (■). A dip tube 0 having a pulp (2) for gas inlet is inserted into the liquid raw material (2). This dip tube (2) is characterized by being folded several times at a position lower than the liquid level (2) of the liquid raw material.

ディップチューブに導入されたキャリアーガスは液面■
より下の部分を通過する間に液体原料の設定温度に等し
くなり、しかる後に液体原料中に放出される。キャリア
ーガスと液体原料の間でおこる熱交換をより確かなもの
とするためには、ディップチューブの長さを充分に長ク
シ、さらにチューブの肉厚を薄くすればよい。これらの
設計は、液体原料の設定温度や導入するキャリアーガス
の量などに応じて決めればよい。
The carrier gas introduced into the dip tube is at the liquid level■
While passing through the lower part, it equalizes the set temperature of the liquid feedstock and is then discharged into the liquid feedstock. In order to ensure more reliable heat exchange between the carrier gas and the liquid raw material, the length of the dip tube should be made sufficiently long and the wall thickness of the tube should be made thinner. These designs may be determined depending on the set temperature of the liquid raw material, the amount of carrier gas to be introduced, etc.

第1図に示した液体気化容器に原料を封入してCVDを
行なわせたところ、従来用いられていた液体気化容器と
の比較において、導入するキャリアーガス流量が数倍に
なっても、薄膜の成長速度とキャリアーガスの流量との
比例関係は保持された。また、液体原料の設定温度Tで
の飽和蒸気圧と導入するキャリアーガスの貴Nから見つ
もられる気化量が同じになる様に選んだ任意のTとNの
組み合せで薄膜の成長を行なったところ、得られた成長
速度はよい一致を示した。本発明に係る液体気化容器に
おいては、液体原料の温度設定と導入するキャリアーガ
スの流量制御により、CvDにおける薄膜の成長速度が
正確に制御できることがわかる。
When CVD was performed by enclosing raw materials in the liquid vaporization container shown in Figure 1, it was found that even though the flow rate of the carrier gas introduced was several times that of the conventional liquid vaporization container, the thin film was The proportional relationship between growth rate and carrier gas flow rate was maintained. In addition, thin films were grown using an arbitrary combination of T and N selected so that the saturated vapor pressure at the set temperature T of the liquid raw material and the amount of vaporization observed from the noble N of the introduced carrier gas were the same. , the obtained growth rates showed good agreement. It can be seen that in the liquid vaporization container according to the present invention, the growth rate of a thin film in CvD can be accurately controlled by setting the temperature of the liquid raw material and controlling the flow rate of the introduced carrier gas.

〔実施例2〕 第2図には本発明に係る液体原料気化容器の一例を示す
。基本構造は〔実施例1〕と同じであるが、液体原料■
の液面■より下部において、ディップチューブ0からせ
ん構造をとっていることが特徴である。らせん部分の径
や長さは液体原料の設定温度と導入するキャリアーガス
の流量に応じて決めればよい。
[Example 2] FIG. 2 shows an example of a liquid raw material vaporization container according to the present invention. The basic structure is the same as [Example 1], but the liquid raw material
The dip tube is characterized by a helical structure below the liquid level (■). The diameter and length of the spiral portion may be determined depending on the set temperature of the liquid raw material and the flow rate of the carrier gas introduced.

第2図に示した気化容器をCVDプロセスに用いた時、
〔実施例1〕の場合と同程度の効果が得られた。
When the vaporization vessel shown in Fig. 2 is used in the CVD process,
Effects comparable to those of [Example 1] were obtained.

〔実施例3〕 〔実施例1,2〕において、ディップチューブのうち液
体原料に接する部分を肉薄の蛇腹チューブとした。これ
により、キャリアーガスと液体態量の間で進行する熱交
換に有効な面積が増加する。
[Example 3] In [Examples 1 and 2], the portion of the dip tube that comes into contact with the liquid raw material was made into a thin bellows tube. This increases the area available for heat exchange to proceed between the carrier gas and the liquid mass.

本実施例の気化容器は特に液体原料の設定温度が室温と
大きく異なる高温文は低温において有効であり、得られ
るCVD薄膜成長速度のバラツキは〔実施例1,2〕に
示す気化容器の約半分であった。又〔実施例1,2〕と
同じバブリング条件のとき蛇腹チューブを用いることに
よりディップチューブの長さを約1/2にできるため、
シリンダーに封入する液体原料の量を増やすことも可能
である。
The vaporization vessel of this example is particularly effective at low temperatures, where the set temperature of the liquid raw material is significantly different from room temperature, and the variation in the CVD thin film growth rate obtained is approximately half that of the vaporization vessels shown in [Examples 1 and 2]. Met. Furthermore, when using the same bubbling conditions as [Examples 1 and 2], the length of the dip tube can be reduced to about 1/2 by using a bellows tube.
It is also possible to increase the amount of liquid raw material enclosed in the cylinder.

本発明に係る液体原料気化容器は、上述の実施例のみな
らず、導入したキャリアーガスの温度が液体原料の設定
温度と一致するのに充分な長さと形状を有するディップ
チューブを含む液体原料気化容器のすべてが本発明の範
−に入るものである。
The liquid raw material vaporization container according to the present invention includes not only the above embodiments but also a dip tube having a sufficient length and shape so that the temperature of the introduced carrier gas matches the set temperature of the liquid raw material. All of these fall within the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、一定温度に保たれた
液体原料中に挿入したチューブよりキャリアーガスを導
入し液体原料をバブリングすることによって該液体原料
を気化させ−る液体原料気化容器において、導入したガ
スが前記チューブより液体原料中に放出されるまでに、
ガスの温度が液体原料の温度と等しくなるのに充分な長
さのチューブを液体原料中に挿入することにより、気化
する液体原料の量が、液体原料の設定温度と、該液体原
料をバブリングするキャリアーガスの流量により正確に
制御できる様になった。
As described above, according to the present invention, in a liquid raw material vaporization vessel that vaporizes the liquid raw material by introducing a carrier gas through a tube inserted into the liquid raw material maintained at a constant temperature and bubbling the liquid raw material. , until the introduced gas is released from the tube into the liquid raw material,
By inserting a tube of sufficient length into the liquid raw material so that the temperature of the gas becomes equal to the temperature of the liquid raw material, the amount of liquid raw material to be vaporized is equal to the set temperature of the liquid raw material and the liquid raw material is bubbled. It is now possible to accurately control the flow rate of carrier gas.

本発明が、薄膜成長速度の精密制御が必要とされるCV
Dプロセスにおいて寄与するところ極めて大きいと確信
する。
The present invention is applicable to CV applications where precise control of thin film growth rate is required.
I am convinced that it will make an extremely large contribution to the D process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る液体気化容器の一実施例を示す断
面概略図 1、 ガス出ロバルプ  Z シリンダー& 液体原料
     4. ガス入口バルブ& ディイブチューブ
 & 液体原料の液面第2図は本発明に係る液体気化容
器の一実施例を示す断面概略図 Z ガス出ロパルブ  a シリンダー乳 液体原料 
   1α ガス入口バルブ11、  ディップチュー
ブ 12、液体原料の液面 第3図は従来用いられている液体原料気化容器の断面概
略図 1己 ガス出ロバルプ  14.  シリンダー15 
液体原料  1& ガス入口バルブ17、  ディップ
チューブ 1a 液体原料の液面 19、  バブリングしたキャリアーガス以上
FIG. 1 is a schematic cross-sectional view 1 showing an embodiment of a liquid vaporization container according to the present invention. Gas inlet valve & dive tube & liquid level of liquid raw material Figure 2 is a cross-sectional schematic diagram showing an embodiment of the liquid vaporization container according to the present invention.
1α Gas inlet valve 11, dip tube 12, liquid level of liquid raw material Figure 3 is a schematic cross-sectional view of a conventionally used liquid raw material vaporization container. cylinder 15
Liquid raw material 1 & gas inlet valve 17, dip tube 1a, liquid level 19 of liquid raw material, above bubbled carrier gas

Claims (1)

【特許請求の範囲】[Claims]  一定温度に保たれた液体原料中に挿入されたチューブ
よりガスを導入し、該液体原料をバブリングすることに
よつて該液体原料を気化させる液体原料気化容器におい
て、導入したガスの温度が液体原料の温度と等しくなる
のに充分な長さのチューブが液体原料中に挿入されてい
ることを特徴とする液体原料気化容器。
In a liquid raw material vaporization vessel, gas is introduced through a tube inserted into a liquid raw material maintained at a constant temperature, and the liquid raw material is vaporized by bubbling the liquid raw material. A liquid raw material vaporizing vessel characterized in that a tube of sufficient length is inserted into the liquid raw material to equalize the temperature of the liquid raw material.
JP9410885A 1985-05-01 1985-05-01 Container for vaporizing liquid material Pending JPS61252627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9410885A JPS61252627A (en) 1985-05-01 1985-05-01 Container for vaporizing liquid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9410885A JPS61252627A (en) 1985-05-01 1985-05-01 Container for vaporizing liquid material

Publications (1)

Publication Number Publication Date
JPS61252627A true JPS61252627A (en) 1986-11-10

Family

ID=14101240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9410885A Pending JPS61252627A (en) 1985-05-01 1985-05-01 Container for vaporizing liquid material

Country Status (1)

Country Link
JP (1) JPS61252627A (en)

Similar Documents

Publication Publication Date Title
JP6230431B2 (en) Evaporator delivery ampoule
JPH06132226A (en) Vaporizer supplier for liquid raw material
JPS61252627A (en) Container for vaporizing liquid material
JPS58126973A (en) Supplying device of source for thin film formation
JP2003013233A (en) Device for vaporizing/feeding liquid raw material
JPH06316765A (en) Vaporizer for liquid material
JPH05117864A (en) Cvd device
JPS6023290Y2 (en) Raw material gas supply device
JPS62104022A (en) Raw liquid vaporizer
JPS637620A (en) Apparatus for vaporizing volatile material
JPH10130845A (en) Vapor generating device for chemical vapor deposition
JPS61205629A (en) Raw material feeder
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPS6135562Y2 (en)
KR20020067317A (en) Chemical vapor deposition apparatus
JPH06306613A (en) Bubbling vessel
JPH0574758A (en) Chemical vapor deposition apparatus
JPH0445837A (en) Bubbling mechanism and surface-treating device including the mechanism
JPH06349743A (en) Chemical vapor deposition device
JPH02198622A (en) Device for vaporizing liquid glass material
JPH0360493A (en) Bubbler and its temperature control method
JPS63107111A (en) Semiconductor manufacturing apparatus using vapor growth method
JPH05283340A (en) Liquid raw material gasification supply device
JPH04164325A (en) Vaporizer
JPS6171832A (en) Stock material supply apparatus