JPS63107111A - Semiconductor manufacturing apparatus using vapor growth method - Google Patents

Semiconductor manufacturing apparatus using vapor growth method

Info

Publication number
JPS63107111A
JPS63107111A JP25416886A JP25416886A JPS63107111A JP S63107111 A JPS63107111 A JP S63107111A JP 25416886 A JP25416886 A JP 25416886A JP 25416886 A JP25416886 A JP 25416886A JP S63107111 A JPS63107111 A JP S63107111A
Authority
JP
Japan
Prior art keywords
bubbler
containers
raw material
temperature
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25416886A
Other languages
Japanese (ja)
Other versions
JPH069191B2 (en
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25416886A priority Critical patent/JPH069191B2/en
Publication of JPS63107111A publication Critical patent/JPS63107111A/en
Publication of JPH069191B2 publication Critical patent/JPH069191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the fluctuation of the flow ratio of raw material gases, which are supplied from bubbler containers, by containing raw materials in a plurality of the bubbler containers, and simultaneously controlling the temperatures of a plurality of the bubbler containers with the same temperature control means. CONSTITUTION:A semiconductor substrate is put in a growing furnace 11. organic metal compounds are accommodated in containers 20a and 20b of a bubbler 20 and a bubbler 15. Thereafter, carrier gases such as H2 are made to flow into said organic metal compounds through raw-material feeding pipes 2a, 3a and 4a, and the organic metal compounds are vaporized. The vapors are supplied into the growing furnace 11 through three-way valves 8, 9 and 10. The temperatures of the containers 20a and 20b of the bubbler 20, which supply the raw material gases, are simultaneously controlled with a single temperature regulating device 16. Therefore, even if the temperature of the containers 20a and 20b of the bubbler 20 are fluctuated with respect to a preset temperature, the fluctuation of the flow ratio of the raw material gases, which are supplied from the containers 20a and 20b of the bubbler 20, is suppressed to the minimum degree.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は気相成長法による半導体製造装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor manufacturing apparatus using a vapor phase growth method.

[従来の技術] 最近、半導体薄膜デバイスの製造技術として、例えばO
MVPE法や塩化物VPE法の気相成長法(VPE法)
を利用する試みがなされている。
[Prior art] Recently, as a manufacturing technology for semiconductor thin film devices, for example, O
Vapor phase growth method (VPE method) of MVPE method and chloride VPE method
Attempts are being made to use the .

OMVPE法は、通常液体や固体の状態でバブラーの中
に納められた有機金属化合物をH2などのキャリアガス
で蒸気化し、この有機金属化合物の蒸気を水素化物等と
同時に成長炉に導入し、熱、プラズマあるいは光のエネ
ルギーを用いて化学反応を励起し、化合物半導体を成長
させる気相成長法1あり、有機金属としてG a(CI
−13)+とIn(CH3)3、水素化物としてA s
 H3を用いてInGaΔSをInP基板上に成長させ
ろ例等がある。
In the OMVPE method, an organometallic compound, which is usually stored in a bubbler in a liquid or solid state, is vaporized using a carrier gas such as H2, and the vapor of this organometallic compound is introduced into a growth furnace together with hydrides, etc., and heated. There is a vapor phase growth method 1 in which compound semiconductors are grown by exciting a chemical reaction using plasma or light energy.
-13)+ and In(CH3)3, As hydride
There are examples of growing InGaΔS on InP substrates using H3.

一方、塩化物VPE法は、通常液体の状態でバブラーの
中に納められたV族元素の塩化物をHzなどのキャリア
ガスでバブリングして塩化物の蒸気とし、これを成長炉
に導入し、あらかじめ成長炉に納められた■族金属と熱
的に化学反応させ、化合物半導体を成長させる気相成長
法であり、塩化物としてASC(23とPC123を用
い、金属としてInとGaを用いて、1nGaAsPを
InP基板上に成長させる例等がある。
On the other hand, in the chloride VPE method, the chloride of a group V element, which is normally stored in a bubbler in a liquid state, is bubbled with a carrier gas such as Hz to form a chloride vapor, which is then introduced into a growth reactor. This is a vapor phase growth method in which compound semiconductors are grown by thermally chemically reacting with group III metals placed in a growth furnace in advance. There is an example in which 1nGaAsP is grown on an InP substrate.

ところで、このようなOMVPE法や塩化物VPE法に
おいてバブラーから原料ガスを供給する場合は、バブラ
ー内に納められた液体あるいは固体原料の飽和蒸気圧が
バブラーの温度によって変化するため、原料ガスの流量
を精密に制御するためにはバブラーの温度を精度良く制
御することが不可欠となる。
By the way, when supplying raw material gas from a bubbler in such OMVPE method or chloride VPE method, the flow rate of raw material gas is In order to precisely control the bubbler temperature, it is essential to precisely control the temperature of the bubbler.

このような要求から、従来は第8図に示すように、バブ
ラー13ないし15の各々に温度調節器16ないし!8
を設け、各バブラー13ないし15の温度を独立に制御
する。
In response to such requirements, conventionally, as shown in FIG. 8
is provided to independently control the temperature of each bubbler 13 to 15.

第8図において、■は原料ガス供給管であり、原料ガス
供給管lが三方バルブ7の一接続口に連結され、また、
キャリアガス供給管2a、3a及び4aがそれぞれ、温
度調節器16ないし18で温度調節されたバブラー13
.14及び15の円筒容器内に収容された上記液体又は
固体原料の内部に挿入されている。該バブラー13.1
4及び15の各容器上部に原料ガス供給管2b、3b及
び4bの一端が該容器と通気可能に連結され、原料ガス
供給管2b、3b及び4bの他端は三方バルブ8゜9及
びIOの各−接続口に連結される。
In FIG. 8, ■ is a raw material gas supply pipe, the raw material gas supply pipe 1 is connected to one connection port of the three-way valve 7, and
A bubbler 13 whose carrier gas supply pipes 2a, 3a and 4a are each temperature-controlled by temperature regulators 16 to 18.
.. It is inserted into the liquid or solid raw material contained in cylindrical containers 14 and 15. The bubbler 13.1
One end of the raw material gas supply pipes 2b, 3b and 4b is connected to the upper part of each of the containers 4 and 15 in a ventilable manner, and the other ends of the raw material gas supply pipes 2b, 3b and 4b are connected to a three-way valve 8°9 and an IO valve. Each - connected to the connection port.

また、三方バルブ7.8.9及び10の他の2個の接続
口はそれぞれキャリアガスを流す成長炉導入管5、並び
に排気装置12に原料ガスを排気するための排気管6に
連結される。該成長炉導入管5はさらに成長炉11に連
結され、該成長炉llて使用された原料ガスが排気装置
12によって排気される。
Further, the other two connection ports of the three-way valves 7, 8, 9 and 10 are respectively connected to the growth furnace introduction pipe 5 through which the carrier gas flows, and the exhaust pipe 6 through which the raw material gas is exhausted to the exhaust device 12. . The growth furnace introduction pipe 5 is further connected to a growth furnace 11, and the raw material gas used in the growth furnace is exhausted by an exhaust device 12.

第9図は第8図のバブラー13.14及び15の一部破
断斜視図である。第9図において、バブラー13.14
及び15は円筒形状の容器で構成され、該容器内に上述
の液体又は固体原料が収容されるとともに、該バブラー
13.14及び15の円筒の上表面部にそれぞれ、キャ
リアガス供給管と原料ガス供給管2aと2b、3aと3
b、4aと4bが挿入され、そのうちキャリアガス供給
管2a。
FIG. 9 is a partially cut away perspective view of the bubblers 13, 14 and 15 of FIG. In Figure 9, bubbler 13.14
and 15 are cylindrical containers in which the above-mentioned liquid or solid raw material is accommodated, and carrier gas supply pipes and raw material gas Supply pipes 2a and 2b, 3a and 3
b, 4a and 4b are inserted, among which carrier gas supply pipe 2a.

3a及び4aがバブラー13.14及び15の容器内に
収容された上記液体又は固体原料30の中に挿入される
ように設けられている。
3a and 4a are provided to be inserted into the liquid or solid material 30 contained in the containers of bubblers 13, 14 and 15.

[発明が解決しようとする問題点コ ところで、温度調節器16.17及びI8によってバブ
ラー13.14及び15の温度を制御する場合でも設定
温度に対する変動は不可避であり、各バブラー13.1
4及び15毎に独立して設けた各温度調節器16.17
及び18によって各バブラー13.14及び15の温度
制御を行う従来法では、各バブラー13.14及び15
の温度変動に伴う各バブラー13.14及び15内に納
められた原料の飽和蒸気圧の変動が各バブラー13゜1
4及び15間で時間的に不規則であるため、複数のバブ
ラー13.14及び15から成長時に同時に成長炉11
へ導入される各原料ガスの流量比が変動するという問題
点があった。
[Problems to be Solved by the Invention] By the way, even when the temperature of the bubblers 13.14 and 15 is controlled by the temperature controllers 16.17 and I8, fluctuations with respect to the set temperature are unavoidable, and each bubbler 13.1
Each temperature regulator 16.17 provided independently for each 4 and 15
In the conventional method, the temperature of each bubbler 13, 14 and 15 is controlled by
Fluctuations in the saturated vapor pressure of the raw materials stored in each bubbler 13, 14 and 15 due to temperature fluctuations in each bubbler 13°1
Since the time between 4 and 15 is irregular, a plurality of bubblers 13, 14 and 15 are simultaneously connected to the growth furnace 11 during growth.
There was a problem in that the flow rate ratio of each raw material gas introduced into the reactor fluctuated.

本発明の目的は以上の問題点を解決し、複数のバブラー
から成長時に同時に成長炉へ原料ガスを導入する際の各
バブラーの温度変動による各原料ガス流量比の変動を抑
制し得る気相成長法によるる半導体製造装置を提供する
ことにある。
An object of the present invention is to solve the above problems and to provide a vapor phase growth method that can suppress fluctuations in the flow rate ratio of each raw material gas due to temperature fluctuations of each bubbler when raw material gases are simultaneously introduced into a growth furnace from multiple bubblers during growth. The objective is to provide semiconductor manufacturing equipment according to the law.

[問題点を解決するための手段] 本発明は、内部に収容された液体又は固体原料の内部に
キャリアガスを流入することによって上記原料を蒸気化
するバブラーと、上記バブラーに連結され上記原料ガス
により半導体の結晶を気相成長させる成長炉とを備えた
気相成長法による半導体製造装置において、上記バブラ
ーが互いに隔離され上記原料を収容するための複数の容
器を備え、上記バブラーの複数の容器を共通に温度制御
する温度制御手段を備えたことを特徴とする。
[Means for Solving the Problems] The present invention provides a bubbler that vaporizes a liquid or solid raw material contained therein by flowing a carrier gas into the raw material, and a bubbler that vaporizes the raw material by flowing a carrier gas into the liquid or solid raw material contained therein; In a semiconductor manufacturing apparatus using a vapor phase growth method, the bubbler includes a plurality of containers separated from each other and for accommodating the raw material, and a plurality of containers of the bubbler are provided with a growth furnace for growing semiconductor crystals in a vapor phase. The invention is characterized in that it includes temperature control means for controlling the temperature in common.

[作用] 以上のように構成することにより、バブラーの複数の容
器内に上記原料が収容され、上記バブラーの複数の容器
が上記温度制御手段によって同時に温度制御される。従
って、上記バブラーの複数の各容器の温度が設定温度に
対して変動しても、この温度変動に伴う上記バブラーの
各容器内の各原料の飽和蒸気圧の変動における圧力増減
方向及び時間的変化が同一であり、上記バブラーの各容
器から供給される各原料ガスの流量比の変動が最小限に
抑制される。
[Operation] With the above configuration, the raw material is contained in the plurality of containers of the bubbler, and the temperature of the plurality of containers of the bubbler is simultaneously controlled by the temperature control means. Therefore, even if the temperature of each of the plurality of containers of the bubbler fluctuates with respect to the set temperature, the pressure increase/decrease direction and temporal change in the saturated vapor pressure of each raw material in each container of the bubbler accompanying this temperature fluctuation are the same, and variations in the flow rate ratio of each source gas supplied from each container of the bubbler are suppressed to a minimum.

[実施例コ 第1図は本発明の一実施例である気相成長法による半導
体製造装置のブロック図であり、第1図において第8図
と同一のものについては、同一の符号を付している。第
1図の半導体製造装置が第8図の従来例の装置と異なる
のは、2個のバブラー13及び14が、該バブラー13
及び14に対応する2個の容器20a及び20bを備え
る1個のバブラー20に、置き換えられていることであ
る。
[Example 1] Fig. 1 is a block diagram of a semiconductor manufacturing apparatus using a vapor phase growth method, which is an embodiment of the present invention. Components in Fig. 1 that are the same as in Fig. 8 are given the same reference numerals. ing. The semiconductor manufacturing apparatus shown in FIG. 1 is different from the conventional apparatus shown in FIG. 8 because the two bubblers 13 and 14 are
and 14 is replaced by one bubbler 20 comprising two containers 20a and 20b corresponding to 14.

第2図は第1図のバブラー20の一部破断斜視図であり
、第3図は第2図のA−A’線における横断面図である
。以下、第1図ないし第3図を参照して本発明に係る気
相成長法による半導体製造装置について説明する。
2 is a partially cutaway perspective view of the bubbler 20 shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line AA' in FIG. 2. DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor manufacturing apparatus using a vapor phase growth method according to the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、原料ガス供給管lが三方バルブ7の一
接続口に連結される。また、バブラー20は外径約10
cx1長さ約15caの円筒形状であってステンレス鋼
にてなり、キャリアガス供給管2a及び3aがそれぞれ
、第2図に示すように、バブラー20の互いに隔離され
た容器20a及び20b内に収容されている上述の有機
金属化合物又はV族元素の塩化物の液体又は固体原料3
0(以下、気相成長用原料という。)内に挿入されるよ
うにバブラー20に連結される。この原料ガス供給管2
b及び3bの一端かバブラー20の容器20a及び20
bの上表面部に、該容器20a及び20bの内部と通気
可能に連結され、一方、該原料ガス供給管2b及び3b
の他端が三方バルブ8及び9の各−接続口に連結される
。また、キャリアガス供給管4aが、従来例と同様にバ
ブラー15内に収容されている気相成長用原料30の内
部に挿入されるようにバブラー15に連結される。原料
ガス供給管4bの一端がバブラー15の上表面部に該バ
ブラー15の内部と通気可能に連結され、一方、該原料
ガス供給管4bの他端が三方バルブlOの一接続口に連
結される。ここで、バブラー20及び15は、それぞれ
温度調節器I6及び17によって温度調節される。また
、三方バルブ7.8.9及び10の他の2個の接続口は
、それぞれキャリアガスを流す成長炉導入管5、並びに
排気装置12に原料ガスを排気するための排気管6に連
結され、該成長炉導入管5はさらに成長炉11に連結さ
れ、該成長炉11で使用された原料ガスが排気装置12
によって排気される。
In FIG. 1, a raw material gas supply pipe 1 is connected to one connection port of a three-way valve 7. As shown in FIG. Also, the bubbler 20 has an outer diameter of approximately 10
cx1 has a cylindrical shape with a length of about 15 ca and is made of stainless steel, and carrier gas supply pipes 2a and 3a are housed in mutually isolated containers 20a and 20b of the bubbler 20, respectively, as shown in FIG. Liquid or solid raw materials of the above-mentioned organometallic compounds or chlorides of Group V elements 3
0 (hereinafter referred to as a raw material for vapor phase growth). This raw material gas supply pipe 2
One end of b and 3b or containers 20a and 20 of bubbler 20
b is connected to the inside of the containers 20a and 20b so as to be ventilable, while the raw material gas supply pipes 2b and 3b
The other end is connected to each connection port of three-way valves 8 and 9. Further, the carrier gas supply pipe 4a is connected to the bubbler 15 so as to be inserted into the inside of the vapor phase growth raw material 30 housed in the bubbler 15, as in the conventional example. One end of the raw material gas supply pipe 4b is connected to the upper surface of the bubbler 15 to allow ventilation with the inside of the bubbler 15, while the other end of the raw material gas supply pipe 4b is connected to one connection port of the three-way valve IO. . Here, the temperature of bubblers 20 and 15 is controlled by temperature regulators I6 and 17, respectively. Further, the other two connection ports of the three-way valves 7, 8, 9 and 10 are connected to the growth furnace introduction pipe 5 through which the carrier gas flows, and the exhaust pipe 6 through which the raw material gas is exhausted to the exhaust device 12, respectively. , the growth furnace introduction pipe 5 is further connected to the growth furnace 11, and the raw material gas used in the growth furnace 11 is passed through the exhaust device 12.
Exhausted by.

以上のように構成された半導体製造装置において、例え
ばOMVPE法によって所定の半導体基板上に結晶軸を
そろえて所望の結晶を成長させる場合、成長炉II内に
上記半導体基板を置き、バブラー20の容器20a及び
20b1並びにバブラー15内に有機金属化合物を収容
する。その後、1−I 、等のキャリアガスを原料ガス
供給管2a、 3a及び4aを介して上記有機金属化合
物内に流入することによって該有機金属化合物を蒸気化
させ、該有機金属化合物のガスを三方バルブ8,9及び
10を介して成長炉11に供給する。さらに、別途、熱
、プラズマ又は光のエネルギーを用いて化学反応を励起
して、化合物半導体の結晶を上記半導体基板上に成長さ
せることができる。また、塩化物VPE法による場合も
従来例と同様に化合物半導体を基板上に成長させること
ができる。
In the semiconductor manufacturing apparatus configured as described above, when a desired crystal is grown on a predetermined semiconductor substrate by aligning the crystal axes using the OMVPE method, for example, the semiconductor substrate is placed in the growth furnace II and the container of the bubbler 20 is grown. Organometallic compounds are contained in 20a and 20b1 and the bubbler 15. Thereafter, the organometallic compound is vaporized by flowing a carrier gas such as 1-I into the organometallic compound through the raw material gas supply pipes 2a, 3a, and 4a, and the organometallic compound gas is distributed in three directions. It is supplied to the growth furnace 11 via valves 8, 9 and 10. Furthermore, a compound semiconductor crystal can be grown on the semiconductor substrate by separately exciting a chemical reaction using heat, plasma, or light energy. Also, when using the chloride VPE method, a compound semiconductor can be grown on the substrate as in the conventional example.

以上の本発明の装置によれば、成長時に同時に成長炉1
1へ導入される原料ガスを供給するバブラー20の容器
20a及び20bを単一の温度調節器16によって同時
に温度制御するため、バブラー20の容器20a及び2
0bの温度が設定温度に対して変動しても、この温度変
動に伴う容器20a及び20b内の各原料の飽和蒸気圧
の変動における圧力増減方向及び時間的変化が同一であ
り、従って、バブラー20の容器20a及び20bから
供給される各原料ガスの流量比の変動が最小限に抑制さ
れる。
According to the above-described apparatus of the present invention, the growth furnace 1
In order to simultaneously control the temperature of the containers 20a and 20b of the bubbler 20 that supply the raw material gas introduced into the bubbler 20 by a single temperature controller 16, the containers 20a and 20b of the bubbler
Even if the temperature of the bubbler 0b fluctuates with respect to the set temperature, the pressure increase/decrease direction and temporal change in the fluctuation of the saturated vapor pressure of each raw material in the containers 20a and 20b due to this temperature fluctuation are the same. Fluctuations in the flow rate ratio of each raw material gas supplied from the containers 20a and 20b are suppressed to a minimum.

第4図は第2図のバブラー20の第2の実施例であるバ
ブラー21の一部破断斜視図であり、第5図は第4図の
A−A’線についての横断面図である。このバブラー2
1はバブラー20とバブラー15の機能をともに備え、
3個の容器21a。
4 is a partially cutaway perspective view of a bubbler 21, which is a second embodiment of the bubbler 20 in FIG. 2, and FIG. 5 is a cross-sectional view taken along line AA' in FIG. 4. This bubbler 2
1 has both the functions of bubbler 20 and bubbler 15,
Three containers 21a.

21b及び21cを備えている。バブラー21は外径的
10cm、長さ約15cIl+の円筒形状であってステ
ンレス鋼にてなり、第5図に示すように、円筒断面にお
いて120度ずつの領域に分割され互いに隔離された3
個の容器21a、21b及び21cを備えている。各容
器21a、21b及び21c内には気相成長用原料30
が収容され、各キャリアガス供給管2a、3a及び4a
が各容器21a、21b及び21c内の気相成長用原料
30の内部に挿入されるようにバブラー21に連結され
る。また、原料ガス供給管2b、3b及び4bがそれぞ
れ、バブラー21の上表面部に該バブラー21の各容器
21a、21b及び21cの内部と通気可能に連結され
る。さらに、バブラー21は温度調節器16によって温
度調節される。以上のように構成することによって、バ
ブラー21はバブラー20と同様の効果を有する。
21b and 21c. The bubbler 21 has a cylindrical shape with an outer diameter of 10 cm and a length of about 15 cIl+, and is made of stainless steel.As shown in FIG.
It is equipped with three containers 21a, 21b and 21c. Inside each container 21a, 21b, and 21c is a raw material 30 for vapor phase growth.
are accommodated, and each carrier gas supply pipe 2a, 3a and 4a
is connected to the bubbler 21 so as to be inserted into the vapor phase growth raw material 30 in each container 21a, 21b, and 21c. Further, the raw material gas supply pipes 2b, 3b, and 4b are connected to the upper surface of the bubbler 21 so as to be able to ventilate the inside of each container 21a, 21b, and 21c of the bubbler 21, respectively. Furthermore, the temperature of the bubbler 21 is controlled by a temperature regulator 16. By configuring as described above, the bubbler 21 has the same effects as the bubbler 20.

第6図は第2図のバブラー20の第3の実施例であるバ
ブラー22の一部破断斜視図であり、第7図は第6図の
A−A’線についての横断面図である。第6図のバブラ
ー22が第4図のバブラー21と異なるのは、3個の各
容器22a、22b及び22cをそれぞれ分離させるこ
とができることであり、その他の構造はバブラー21と
同様である。このバブラー22は、第7図に示すように
円筒断面において120度ずつの領域に分割され、互い
に隔離されて形成された3個の容器22a。
6 is a partially cutaway perspective view of a bubbler 22 which is a third embodiment of the bubbler 20 in FIG. 2, and FIG. 7 is a cross-sectional view taken along line AA' in FIG. 6. The bubbler 22 shown in FIG. 6 is different from the bubbler 21 shown in FIG. 4 in that the three containers 22a, 22b, and 22c can be separated from each other, and the other structures are the same as the bubbler 21. As shown in FIG. 7, the bubbler 22 has three containers 22a separated from each other and divided into 120-degree areas in a cylindrical cross section.

22b及び22cを備え、ここで、第4図のバブラー2
1と同一形状である1個の円筒形状のバブラー22を構
成している。
22b and 22c, where the bubbler 2 of FIG.
A single cylindrical bubbler 22 having the same shape as the bubbler 1 is constituted.

以上のように構成することによって、バブラー22はバ
ブラー20及び21と同様の効果を有するとともに、各
容器22a、22b及び22cを分離することができる
ので、各容器22a、22b及び22cに収容される複
数の原料を別々に取り替えることができ、柔軟性のある
運用を行うことができる。
By configuring as described above, the bubbler 22 has the same effect as the bubblers 20 and 21, and the containers 22a, 22b, and 22c can be separated, so that the bubbler 22 can be accommodated in each container 22a, 22b, and 22c. Multiple raw materials can be replaced separately, allowing for flexible operation.

[発明の効果] 以上詳述したように本発明によれば、内部に収容された
液体又は固体原料の内部にキャリアガスを流入すること
によって上記原料を蒸気化するバブラーが互いに隔離さ
れ、上記原料を収容するための複数の容器を備えたので
、上記バブラーの複数の容器が上記温度制御手段によっ
て温度制御され、従って、上記バブラーの複数の各容器
の温度が設定温度に対して変動しても、この温度変動に
伴う上記バブラーの各容器内の各原料の飽和蒸気圧の変
動における圧力増減方向及び時間的変化が同一であり、
上記バブラーの各容器から供給される各原料ガスの流量
比の変動が最小限に抑制される。その結果、例えばOM
VP E法や塩化物VPE法による混晶半導体成長の制
御及び再現性を従来例に比較し改善することができると
いう利点がある。
[Effects of the Invention] As detailed above, according to the present invention, the bubblers that vaporize the raw material by flowing carrier gas into the liquid or solid raw material contained therein are isolated from each other, and the bubbler vaporizes the raw material. Since the bubbler includes a plurality of containers for accommodating the bubbler, the temperature of the plurality of containers of the bubbler is controlled by the temperature control means, so that even if the temperature of each of the plurality of containers of the bubbler varies with respect to the set temperature, , the pressure increase/decrease direction and temporal change in the fluctuation of the saturated vapor pressure of each raw material in each container of the bubbler due to this temperature fluctuation are the same,
Fluctuations in the flow rate ratio of each source gas supplied from each container of the bubbler are suppressed to a minimum. As a result, e.g.
There is an advantage that the control and reproducibility of mixed crystal semiconductor growth by the VPE method or the chloride VPE method can be improved compared to conventional examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である気相成長法による半導
体製造装置のブロック図、 第2図は第1図のバブラーの第1の実施例の一部破断斜
視図、 第3図は第2図のバブラーのA−A’線についての横断
面図、 第4図は第1図のバブラーの第2の実施例の一部破断斜
視図、 第5図は第4図のバブラーのA−A’線についての横断
面図、 第6図は第1図のバブラーの第3の実施例の一部破断斜
視図、 第7図は第6図のバブラーのA−A’線についての横断
面図、 第8図は従来例の気相成長法による半導体製造装置のブ
ロック図、 第9図は第8図のバブラーの一部破断斜視図である。 1.2b、3b、4b・・・原料ガス供給管、2a、 
3a、 4a・・・キャリアガス供給管、5・・・成長
炉導入管、   6・・・排気管、7.8,9.10・
・・三方バルブ、 11・・・成長炉、     12・・・排気装置、+
5.20,21.22・・・バブラー、20a、 20
b、 21a、 21b、 21c、 22a。 22b、22c・・・バブラーの容器、30・・・気相
成長用原料。
FIG. 1 is a block diagram of a semiconductor manufacturing apparatus using a vapor phase growth method which is an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view of a first embodiment of the bubbler shown in FIG. 1, and FIG. 2. FIG. 4 is a partially cutaway perspective view of the second embodiment of the bubbler in FIG. 1. FIG. 5 is a cross-sectional view of the bubbler in FIG. - A cross-sectional view taken along line A'; FIG. 6 is a partially cutaway perspective view of the third embodiment of the bubbler shown in FIG. 1; FIG. 7 is a cross-sectional view taken along line A-A' of the bubbler shown in FIG. 6. 8 is a block diagram of a conventional semiconductor manufacturing apparatus using a vapor phase growth method, and FIG. 9 is a partially cutaway perspective view of the bubbler shown in FIG. 8. 1.2b, 3b, 4b... Raw material gas supply pipe, 2a,
3a, 4a...Carrier gas supply pipe, 5...Growth furnace introduction pipe, 6...Exhaust pipe, 7.8, 9.10.
...Three-way valve, 11...Growth reactor, 12...Exhaust device, +
5.20, 21.22...bubbler, 20a, 20
b, 21a, 21b, 21c, 22a. 22b, 22c... Bubbler container, 30... Raw material for vapor phase growth.

Claims (2)

【特許請求の範囲】[Claims] (1)内部に収容された液体又は固体原料の内部にキャ
リアガスを流入することによって上記原料を蒸気化する
バブラーと、 上記バブラーに連結され、上記原料ガスにより半導体の
結晶を気相成長させる成長炉とを備えた気相成長法によ
る半導体製造装置において、上記バブラーが互いに隔離
され上記原料を収容するための複数の容器を備え、上記
バブラーの複数の容器を共通に温度制御する温度制御手
段を備えたことを特徴とする気相成長法による半導体製
造装置。
(1) A bubbler that vaporizes the raw material by flowing a carrier gas into the liquid or solid raw material contained therein; and a bubbler that is connected to the bubbler and grows semiconductor crystals in a vapor phase using the raw material gas. In a semiconductor manufacturing apparatus using a vapor phase growth method, the bubbler is isolated from each other and includes a plurality of containers for accommodating the raw material, and a temperature control means for commonly controlling the temperature of the plurality of containers of the bubbler is provided. A semiconductor manufacturing device using a vapor phase growth method, characterized by the following:
(2)上記バブラーの複数の容器が分離可能に構成され
ることを特徴とする特許請求の範囲第1項記載の気相成
長法による半導体製造装置。
(2) A semiconductor manufacturing apparatus using a vapor phase growth method according to claim 1, wherein the plurality of containers of the bubbler are configured to be separable.
JP25416886A 1986-10-24 1986-10-24 Semiconductor manufacturing equipment by vapor phase growth method Expired - Fee Related JPH069191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25416886A JPH069191B2 (en) 1986-10-24 1986-10-24 Semiconductor manufacturing equipment by vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25416886A JPH069191B2 (en) 1986-10-24 1986-10-24 Semiconductor manufacturing equipment by vapor phase growth method

Publications (2)

Publication Number Publication Date
JPS63107111A true JPS63107111A (en) 1988-05-12
JPH069191B2 JPH069191B2 (en) 1994-02-02

Family

ID=17261177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25416886A Expired - Fee Related JPH069191B2 (en) 1986-10-24 1986-10-24 Semiconductor manufacturing equipment by vapor phase growth method

Country Status (1)

Country Link
JP (1) JPH069191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
US20100303675A1 (en) * 2003-03-24 2010-12-02 Osamu Suekane Method and apparatus for high-efficiency synthesis of carbon nanostructure, and carbon nanostructure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
US20100303675A1 (en) * 2003-03-24 2010-12-02 Osamu Suekane Method and apparatus for high-efficiency synthesis of carbon nanostructure, and carbon nanostructure
US8505478B2 (en) * 2003-03-24 2013-08-13 Taiyo Nippon Sanso Corporation Apparatus for high-efficiency synthesis of carbon nanostructure

Also Published As

Publication number Publication date
JPH069191B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP6788067B2 (en) Steam delivery device, its manufacturing method and its usage
US5916369A (en) Gas inlets for wafer processing chamber
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
KR101178030B1 (en) Vapor delivery system, vaporizer, vaporizer unit and method for delivering a vaporized source material
US6500734B2 (en) Gas inlets for wafer processing chamber
JPH02150040A (en) Vapor growth apparatus
JP2002069651A (en) Ald thin-film vapor deposition apparatus and vapor deposition method
US3701682A (en) Thin film deposition system
JPS61254242A (en) Apparatus for supplying stock material
JP2009533843A (en) Gas manifold for use during epitaxial film formation
JPS63107111A (en) Semiconductor manufacturing apparatus using vapor growth method
CN105463577B (en) The manufacturing method and manufacturing device of group III-nitride crystal
JPH0963965A (en) Organic metal feeding device and organic metal vapor growth device
KR20140018148A (en) Method and apparatus of forming compound semiconductor film
JP2006089811A (en) Vapor phase crystal creation apparatus
JPS61263119A (en) Producing equipment of semiconductor by vapor growth
JPS59159980A (en) Vapor growth device
JPS637620A (en) Apparatus for vaporizing volatile material
JPS63128622A (en) Method and apparatus for chemical evaporation
KR101146547B1 (en) Apparatus for manufacturing quartz film
JPS63278224A (en) Method of introducing reactive gas in vapor growth
JPS61187230A (en) Semiconductor manufacturing equipment by vapor growth
JPS62275100A (en) Vapor growth method and apparatus
JPS61229321A (en) Vapor growth method
CN205188435U (en) Chemical vapor deposition device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees