JPS61250162A - Production of amorphous alloy magnetic core - Google Patents

Production of amorphous alloy magnetic core

Info

Publication number
JPS61250162A
JPS61250162A JP60088838A JP8883885A JPS61250162A JP S61250162 A JPS61250162 A JP S61250162A JP 60088838 A JP60088838 A JP 60088838A JP 8883885 A JP8883885 A JP 8883885A JP S61250162 A JPS61250162 A JP S61250162A
Authority
JP
Japan
Prior art keywords
magnetic core
amorphous alloy
heat treatment
iron loss
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60088838A
Other languages
Japanese (ja)
Other versions
JPH079057B2 (en
Inventor
Michio Hasegawa
長谷川 迪雄
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60088838A priority Critical patent/JPH079057B2/en
Publication of JPS61250162A publication Critical patent/JPS61250162A/en
Publication of JPH079057B2 publication Critical patent/JPH079057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To produce an amorphous alloy magnetic core having a low iron loss in a high-frequency region by winding or laminating a thin amorphous ferrous alloy strip and forming an oxide film layer on the surface thereof to an adequate thickness during the stress relief heat treatment thereof. CONSTITUTION:After the thin amorphous ferrous alloy strip is wound or laminated, the oxide film layer is formed over the entire surface of the above-mentioned strip to >=200Angstrom and <=3,000Angstrom thickness during the stress relief heat treatment thereof, by which the high-frequency magnetic core having the low iron loss is obtd. The above-mentioned heat treatment is preferably executed in a mixed atmosphere composed of an inert gas and oxygen while said atmosphere is forcibly supplied. The above-mentioned atmosphere is adequately formed by setting the mixing molar ratio of the inert gas and oxygen, designated as (100-C):C, at 0.01<=C<=10. The above-mentioned alloy has preferably the positive satd. magnetorestriction expressed by the general formula (Fe1-aMa)100-bXb (M; >=1 kinds among Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, Hf, Ta and W, X; >=1 kinds among Si, B, P, C and Ge, 0<=a<=0.15, 12<=b<=30).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質合金磁心の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing an amorphous alloy magnetic core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、電磁気装置の磁心として用いられているものに、
パーマロイ、フェライト等の結晶質の材料がある。しか
しながらパーマロイは比抵抗が小さいので、高周波領域
での鉄損が大きくなる。又フェライトは高周波領域での
鉄損は小さいものの飽和磁束密度が5000G程度と小
さいという欠点がある。
Conventionally, what is used as the magnetic core of electromagnetic equipment is
There are crystalline materials such as permalloy and ferrite. However, since permalloy has a low resistivity, iron loss in the high frequency range increases. Further, although ferrite has a small iron loss in a high frequency region, it has a drawback that its saturation magnetic flux density is as small as about 5000G.

これに対し、F e * COI N l * t−基
本としP、C。
On the other hand, F e * COI N l * t - base P, C.

B、St、A7.Ge等を含有し、結晶性をもたない非
晶質合金は、優れた軟磁気特性を有し、その研究が盛ん
である。
B, St, A7. Amorphous alloys containing Ge and the like and having no crystallinity have excellent soft magnetic properties, and are being actively researched.

非晶質合金の製造にあたっては磁気特性の向上、鉄損の
減少等の磁気特性改善の為に熱処理を行なうことが一般
的である。このような熱処理はキエリ一温度以上かつ結
晶化温度以下の範囲で、その雰囲気条件として、通常減
圧下(真空中)窒素中で行なわれておシ、これにより鉄
損の減少等、ある種度磁気特性は改善される。また、大
気中熱処理では、上記の条件に比べ鉄損は劣っているこ
とが報告されている。
When manufacturing amorphous alloys, it is common to perform heat treatment to improve magnetic properties such as improving magnetic properties and reducing iron loss. Such heat treatment is carried out at a temperature above the Chieri temperature and below the crystallization temperature, and is usually carried out in nitrogen under reduced pressure (vacuum). Magnetic properties are improved. Furthermore, it has been reported that iron loss is inferior in air heat treatment compared to the above conditions.

〔発明の目的〕[Purpose of the invention]

本発明は、非晶質合金磁心の鉄損をよシ低減させること
のできる非晶質合金磁心の製造方法を提供することを目
的とする。
An object of the present invention is to provide a method for manufacturing an amorphous alloy magnetic core that can significantly reduce iron loss of an amorphous alloy magnetic core.

〔発明の概要〕[Summary of the invention]

本発明は、鉄基非晶質合金薄帯を巻回もしくはIIを形
成することを特徴とした非晶質合金磁心の製造方法であ
る。
The present invention is a method for manufacturing an amorphous alloy magnetic core characterized by winding or forming an iron-based amorphous alloy ribbon.

ここで、用いられる非晶質合金は各種磁性合金が用いら
れるが。
Here, various magnetic alloys are used as the amorphous alloy.

(Fe 、IIMB ) Woo−b X bM:Ti
、V、Cr、Mn、Co、Ni 、Zr、Nb。
(Fe, IIMB) Woo-b X bM:Ti
, V, Cr, Mn, Co, Ni, Zr, Nb.

Mo、Hf、Ta、Wのうち少なくとも一種X:8i、
B、P、C,Geよ、pil!ばれる1種以上0≦a≦
0.15 12≦b≦30 で表わされる、正の飽和磁歪を有するFe基非晶質合金
が好ましい。
At least one of Mo, Hf, Ta, W: 8i,
B, P, C, Ge, pil! One or more types revealed 0≦a≦
An Fe-based amorphous alloy having positive saturation magnetostriction expressed by 0.15 12≦b≦30 is preferred.

Mの添加により、高周波領域における鉄損の低下及び結
晶化温度の上昇の効果を得、る、微量の添加で効果があ
られれるが、実用上は、a≧0.01であることが好ま
しい、またa)0.15  だとTcが低くな〕すぎ%
実用土好ましくない。
By adding M, the effect of reducing iron loss in the high frequency region and increasing the crystallization temperature can be obtained.Although the addition of a small amount can be effective, it is preferable for practical use that a≧0.01. Also, a) If it is 0.15, Tc is too low.%
Practical soil is not preferred.

またXは非晶質化に必須の元素であり、実用上熱安定性
を考慮すると、StとBの組合せが好ましい、またb<
12詔よびb〉28では、非晶質化が困難となるため、
12≦b≦28が好ましく。
In addition, X is an essential element for amorphization, and considering practical thermal stability, a combination of St and B is preferable, and b<
In Edict 12 and b>28, it is difficult to make it amorphous, so
12≦b≦28 is preferable.

さらに15≦b≦25が好ましい、Siは2〜13慢、
好ましくは2〜89bが良好である。
Furthermore, 15≦b≦25 is preferable, Si is 2 to 13,
Preferably 2 to 89b are good.

熱処理中に酸化皮膜を形成する方法としては。As a method of forming an oxide film during heat treatment.

窒素等の不活性ガスと酸素を混合して気体中で行なうこ
とが好ましく、さらに該気体を一巻回あるいは積層した
磁心の層間に強制的に供給することによシ、より−1の
低鉄損を実現することができる。
It is preferable to mix an inert gas such as nitrogen with oxygen to conduct the process in a gaseous atmosphere, and furthermore, by forcibly supplying the gas between the layers of a single turn or a laminated magnetic core, it is possible to obtain a lower iron of -1. losses can be realized.

雰囲気条件である不活性ガスと酸素の比率はモル比で(
100−C):Cとすると0.01≦C≦10が好まし
い。C<0.01では鉄損の著しい低減は得られず、ま
たC)10ではむしろ特性が劣化してしまう。好ましく
は0.01≦C≦5である。
The ratio of inert gas and oxygen, which is the atmospheric condition, is expressed as a molar ratio (
100-C): C is preferably 0.01≦C≦10. If C<0.01, a significant reduction in iron loss cannot be obtained, and if C)10, the characteristics will rather deteriorate. Preferably 0.01≦C≦5.

さらに、熱処理中に強制的に磁心の1間に前記雰囲気を
供給することが好ましい。これは磁心を形成している非
晶質合金の薄帯表面全体に酸化皮膜を形成するためであ
り、通常のほとんど対流のない条件では磁心の外局部分
しか均一な酸化皮膜は形成されず、磁心内部の薄帯表面
は、その薄帯の両端ζこわずかに見られるのみであシ、
低鉄損が得られにくいからである。雰囲気供給方法とし
ては、1ズル状の吹き出し口から雰囲気を吹きつける方
法、コアを減圧することによ〕雰囲気を吸収する方法等
が挙げられる。
Furthermore, it is preferable to forcibly supply the atmosphere between one of the magnetic cores during the heat treatment. This is because an oxide film is formed on the entire ribbon surface of the amorphous alloy that forms the magnetic core, and under normal conditions with almost no convection, a uniform oxide film is formed only on the outer part of the magnetic core. The surface of the ribbon inside the magnetic core is only slightly visible at both ends of the ribbon.
This is because it is difficult to obtain low iron loss. Examples of the atmosphere supply method include a method of blowing the atmosphere from a nozzle-shaped outlet, and a method of absorbing the atmosphere by reducing the pressure in the core.

非晶質合金の酸化皮膜の厚さに関しては、酸化皮膜の厚
さが200A以下の場合には鉄損の低減化において効果
は小さく、3000A以上ではかえ下の範囲の厚さの酸
化皮膜が形成される場合においてである。
Regarding the thickness of the oxide film on amorphous alloys, if the thickness of the oxide film is 200A or less, the effect in reducing iron loss is small, and if it is 3000A or more, an oxide film with a thickness within the range of burrs is formed. This is in case it is done.

の酸化皮1111が形成されると、室温まで温度管下げ
た時に薄帯への圧縮応力が生じ、それと磁歪との相互作
用により、誘導磁気異方性が発生し、磁壁の動きを妨げ
、結果として全鉄損の大部分を占める渦電流損を低下さ
せるためと考えられる。なお好ましくは200〜200
 OAである。
When the oxide skin 1111 is formed, compressive stress is generated on the ribbon when the temperature tube is lowered to room temperature, and its interaction with magnetostriction causes induced magnetic anisotropy, which impedes the movement of the domain wall. This is thought to be because it reduces eddy current loss, which accounts for most of the total iron loss. Furthermore, preferably 200 to 200
It is OA.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

(実施例1) 単ロール法により、作製した幅I Q mm 、平均厚
さ20amの(Pe6.g5Nb o、os) sa 
8 i 5B12非晶質合金薄帯を巻回し、外径1 g
 mm 、内径12mmのトロイダル状磁心を得た。該
磁心を460℃で30分、窒素:酸素−99:1の割合
の雰囲気中で該気体を強制的に磁心に吹き付けながら熱
処理を施し高周波鉄損をU門数計を用いて測定した。比
較として、窒素中、大気中でも同様の熱処理条件で行ま
った。第1図には、f■5QKHzの条件での鉄損特性
を示す。、ここで実施例は実線で比較例の窒素中熱処理
は、破線で、大気中熱処理は一点鎖線で表わしている。
(Example 1) (Pe6.g5Nb o, os) sa with a width I Q mm and an average thickness of 20 am manufactured by a single roll method
8 i 5B12 amorphous alloy ribbon wound, outer diameter 1 g
A toroidal magnetic core with an inner diameter of 12 mm and an inner diameter of 12 mm was obtained. The magnetic core was heat-treated at 460° C. for 30 minutes in an atmosphere having a ratio of nitrogen:oxygen of 99:1 while forcibly blowing the gas onto the magnetic core, and the high-frequency iron loss was measured using a U gate counter. For comparison, heat treatment was performed under similar conditions in nitrogen and air. FIG. 1 shows the iron loss characteristics under the condition of f 5 QKHz. Here, the examples are represented by solid lines, the comparative examples heat-treated in nitrogen by broken lines, and the heat-treated in air by dashed lines.

同図には非晶質合金薄帯の表面に形成した酸化皮膜層の
厚さを付記しである。なお、酸化皮膜層の厚さはオージ
ェ分析法によシ求めた値である。
In the figure, the thickness of the oxide film layer formed on the surface of the amorphous alloy ribbon is added. Note that the thickness of the oxide film layer is a value determined by Auger analysis.

第1図より明らかなように窒素と酸素の混合気体中で熱
処理を施した場合において該合金薄帯の表面に適当な酸
化皮膜1が形成されて鉄損は低下することが分る。なお
酸化皮膜層の厚みは薄すぎても厚すぎても鉄損低減下へ
の効果は少ないことが分る。
As is clear from FIG. 1, when heat treatment is performed in a mixed gas of nitrogen and oxygen, an appropriate oxide film 1 is formed on the surface of the alloy ribbon, and the iron loss is reduced. It can be seen that whether the thickness of the oxide film layer is too thin or too thick, the effect on reducing iron loss is small.

(実施例2) 実施例1と同様にして、数種の組成のFe基非晶質合金
を作製し、同一磁心形状にして種々の雰囲気中で熱処理
を行った。なお熱処理条件は各合金の最適条件を選んで
ある。これらの結果を第1表にまとめであるが鉄損値は
f−50KHz、Bm−3KG  の条件のものを示し
ている。μ千f、担第  1  表 れる酸化皮膜層の厚さが200A以上3000A以下の
範囲にある時低鉄損が得られていることが分る。
(Example 2) In the same manner as in Example 1, Fe-based amorphous alloys having several types of compositions were produced, and heat-treated in various atmospheres with the same magnetic core shape. The heat treatment conditions were selected to be optimal for each alloy. These results are summarized in Table 1, and the iron loss values are shown under the conditions of f-50 KHz and Bm-3 KG. It can be seen that low iron loss is obtained when the thickness of the oxide film layer that appears is in the range of 200A or more and 3000A or less.

〔発明の効果〕〔Effect of the invention〕

本発明によル低鉄損を有する高周波磁心が提供されるた
めその工業的価値は大である。
The present invention provides a high frequency magnetic core with low core loss, and therefore has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのf−50KHz
の鉄損特性曲線図。
Figure 1 shows f-50KHz for detailed explanation of the present invention.
Iron loss characteristic curve diagram.

Claims (5)

【特許請求の範囲】[Claims] (1)鉄基非晶質合金薄帯を巻回もしくは積層した後、
歪取り熱処理中に前記合金薄帯表面全体に厚さ200Å
以上3000Å以下の酸化皮膜層を形成することを特徴
とした非晶質合金磁心の製造方法。
(1) After winding or laminating the iron-based amorphous alloy ribbon,
During strain relief heat treatment, a thickness of 200 Å was applied to the entire surface of the alloy ribbon.
A method of manufacturing an amorphous alloy magnetic core characterized by forming an oxide film layer of 3000 Å or less.
(2)前記熱処理を不活性ガスと酸素との混合雰囲気中
で行なうことを特徴とした特許請求の範囲第1項記載の
非晶質合金磁心の製造方法。
(2) The method for manufacturing an amorphous alloy magnetic core according to claim 1, wherein the heat treatment is performed in a mixed atmosphere of an inert gas and oxygen.
(3)前記熱処理中に強制的に前記混合雰囲気を供給す
ることを特徴とする特許請求の範囲第2項記載の非晶質
合金磁心の製造方法。
(3) The method for manufacturing an amorphous alloy magnetic core according to claim 2, characterized in that the mixed atmosphere is forcibly supplied during the heat treatment.
(4)前記混合雰囲気は不活性ガスと酸素との混合モル
比を(100−C):Cと表わしたとき、0.01≦C
≦10を満たすことを特徴とする特許請求の範囲第2項
記載の非晶質合金磁心の製造方法。
(4) The mixed atmosphere is 0.01≦C when the mixed molar ratio of inert gas and oxygen is expressed as (100-C):C.
The method for manufacturing an amorphous alloy magnetic core according to claim 2, characterized in that ≦10 is satisfied.
(5)前記鉄基非晶質合金は、一般式 (Fe_1_−_aM_a)_1_0_0_−_bX_
bM:Ti、V、Cr、Mn、Co、Ni、Zr、Nb
、Mo、Hf、Ta、Wのうち少なくとも一種X:Si
、B、P、C、Geのうち少なくとも一種 0≦a≦0.15 12≦b≦30 で示されることを特徴とする特許請求の範囲第1項記載
の非晶質合金磁心の製造方法。
(5) The iron-based amorphous alloy has the general formula (Fe_1_-_aM_a)_1_0_0_-_bX_
bM: Ti, V, Cr, Mn, Co, Ni, Zr, Nb
, Mo, Hf, Ta, W at least one type X:Si
, B, P, C, and Ge, as follows: 0≦a≦0.15 12≦b≦30 The method for manufacturing an amorphous alloy magnetic core according to claim 1 .
JP60088838A 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method Expired - Lifetime JPH079057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088838A JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088838A JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Publications (2)

Publication Number Publication Date
JPS61250162A true JPS61250162A (en) 1986-11-07
JPH079057B2 JPH079057B2 (en) 1995-02-01

Family

ID=13954092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088838A Expired - Lifetime JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Country Status (1)

Country Link
JP (1) JPH079057B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029111A (en) * 1988-06-28 1990-01-12 Tamura Seisakusho Co Ltd Manufacture of toroidal iron core using iron system amorphous alloy
EP0451812A2 (en) * 1990-04-10 1991-10-16 Knogo Corporation Electromagnetic sensor element and method for making same
JPH05243054A (en) * 1992-02-28 1993-09-21 Toshiba Corp Magnetic core
US5304983A (en) * 1991-12-04 1994-04-19 Knogo Corporation Multiple pulse responder and detection system and method of making and using same
JPH06346219A (en) * 1993-06-15 1994-12-20 Matsushita Electric Works Ltd Magnetic material using amorphous magnetic alloy, method for producing the same and device therefor
JPH0855736A (en) * 1995-08-21 1996-02-27 Toshiba Corp Magnetic core for high frequency
JPH10256019A (en) * 1997-03-13 1998-09-25 Nkk Corp Wound core with excellent core loss
JPH11300450A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Fe base amorphous alloy thin band having extremely thin oxidized layer
WO2000072334A1 (en) * 1999-05-20 2000-11-30 National-Arnold Magnetics Magnetic core insulation
EP1111082A1 (en) * 1999-11-18 2001-06-27 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
US6420042B1 (en) 1999-09-24 2002-07-16 Nippon Steel Corporation Fe-based amorphous alloy thin strip with ultrathin oxide layer
JP2004176167A (en) * 2002-11-29 2004-06-24 Toshiba Corp Thin amorphous alloy strip and magnetic core using it
JPWO2005116301A1 (en) * 2004-05-28 2008-04-03 日本碍子株式会社 Surface coloring method for zirconium-based metallic glass parts
JP2016197720A (en) * 2015-04-02 2016-11-24 日立金属株式会社 Magnetic core and manufacturing method therefor, and on-vehicle component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179756A (en) * 1983-03-16 1984-10-12 アライド・コ−ポレ−シヨン Amorphous alloy for electromagnetic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179756A (en) * 1983-03-16 1984-10-12 アライド・コ−ポレ−シヨン Amorphous alloy for electromagnetic device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029111A (en) * 1988-06-28 1990-01-12 Tamura Seisakusho Co Ltd Manufacture of toroidal iron core using iron system amorphous alloy
EP0451812A2 (en) * 1990-04-10 1991-10-16 Knogo Corporation Electromagnetic sensor element and method for making same
EP0701235A3 (en) * 1990-04-10 1996-11-13 Knogo Corp Electromagnetic sensor element and methods and apparatus for making and using same
US5304983A (en) * 1991-12-04 1994-04-19 Knogo Corporation Multiple pulse responder and detection system and method of making and using same
JPH05243054A (en) * 1992-02-28 1993-09-21 Toshiba Corp Magnetic core
JPH06346219A (en) * 1993-06-15 1994-12-20 Matsushita Electric Works Ltd Magnetic material using amorphous magnetic alloy, method for producing the same and device therefor
JPH0855736A (en) * 1995-08-21 1996-02-27 Toshiba Corp Magnetic core for high frequency
JPH10256019A (en) * 1997-03-13 1998-09-25 Nkk Corp Wound core with excellent core loss
JPH11300450A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Fe base amorphous alloy thin band having extremely thin oxidized layer
WO2000072334A1 (en) * 1999-05-20 2000-11-30 National-Arnold Magnetics Magnetic core insulation
US6420042B1 (en) 1999-09-24 2002-07-16 Nippon Steel Corporation Fe-based amorphous alloy thin strip with ultrathin oxide layer
EP1111082A1 (en) * 1999-11-18 2001-06-27 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
US6530998B1 (en) 1999-11-18 2003-03-11 Ykk Corporation Formed article of amorphous alloy having hardened surface and method for production thereof
JP2004176167A (en) * 2002-11-29 2004-06-24 Toshiba Corp Thin amorphous alloy strip and magnetic core using it
JPWO2005116301A1 (en) * 2004-05-28 2008-04-03 日本碍子株式会社 Surface coloring method for zirconium-based metallic glass parts
JP4482558B2 (en) * 2004-05-28 2010-06-16 日本碍子株式会社 Surface coloring method for zirconium-based metallic glass parts
JP2016197720A (en) * 2015-04-02 2016-11-24 日立金属株式会社 Magnetic core and manufacturing method therefor, and on-vehicle component

Also Published As

Publication number Publication date
JPH079057B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JPS5933183B2 (en) Low loss amorphous alloy
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPS61250162A (en) Production of amorphous alloy magnetic core
US9177706B2 (en) Method of producing an amorphous transformer for electric power supply
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JPS58139408A (en) Wound iron core
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JPS6332244B2 (en)
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPS61183454A (en) Manufacture of magnetic core of amorphous alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2693059B2 (en) Trance
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JPS61295601A (en) Amorphous core for common mode choke
JPS60128211A (en) Production of low iron loss amorphous alloy
JPH03271346A (en) Soft magnetic alloy
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0257683B2 (en)
JPH0480523B2 (en)
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons
JPH03180425A (en) Method for improving magnetic permeability characteristic