JPH079057B2 - Amorphous alloy magnetic core manufacturing method - Google Patents

Amorphous alloy magnetic core manufacturing method

Info

Publication number
JPH079057B2
JPH079057B2 JP60088838A JP8883885A JPH079057B2 JP H079057 B2 JPH079057 B2 JP H079057B2 JP 60088838 A JP60088838 A JP 60088838A JP 8883885 A JP8883885 A JP 8883885A JP H079057 B2 JPH079057 B2 JP H079057B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
magnetic core
heat treatment
alloy magnetic
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60088838A
Other languages
Japanese (ja)
Other versions
JPS61250162A (en
Inventor
迪雄 長谷川
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60088838A priority Critical patent/JPH079057B2/en
Publication of JPS61250162A publication Critical patent/JPS61250162A/en
Publication of JPH079057B2 publication Critical patent/JPH079057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質合金磁心の製造方法に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing an amorphous alloy magnetic core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、電磁気装置の磁心として用いられているものに、
パーマロイ,フェライト等の結晶質の材料がある。しか
しながらパーマロイは比抵抗が小さいので、高周波領域
での鉄損が大きくなる。又フエライトは高周波領域での
鉄損は小さいものの飽和磁束密度が5000G程度と小さい
という欠点がある。
Conventionally used as a magnetic core of an electromagnetic device,
There are crystalline materials such as permalloy and ferrite. However, since permalloy has a small specific resistance, iron loss in the high frequency region becomes large. Further, although ferrite has a small iron loss in the high frequency region, it has a drawback that the saturation magnetic flux density is as small as about 5000G.

これに対し、Fe,Co,Ni等を基本としP,C,B,Si,Al,Ge等を
含有し、結晶性をもたない非晶質合金は、優れた軟磁気
特性を有し、その研究が盛んである。
On the other hand, an amorphous alloy containing P, C, B, Si, Al, Ge, etc. based on Fe, Co, Ni, etc. and having no crystallinity has excellent soft magnetic properties, The research is active.

非晶質合金の製造にあたつては磁気特性の向上、鉄損の
減少等の磁気特性改善の為に熱処理を行なうことが一般
的である。このような熱処理はキュリー温度以上かつ結
晶化温度以下の範囲で、その雰囲気条件として、通常減
圧下(真空中)窒素中で行なわれており、これにより鉄
損の減少等、ある程度磁気特性は改善される。また、大
気中熱処理では、上記の条件に比べ鉄損は劣っているこ
とが報告されている。
In the production of amorphous alloys, it is common to perform heat treatment to improve magnetic properties and to improve magnetic properties such as reduction of iron loss. Such heat treatment is carried out in a range of the Curie temperature or higher and the crystallization temperature or lower as the atmospheric conditions, usually under reduced pressure (in vacuum) in nitrogen, which improves magnetic properties to some extent, such as reduction of iron loss. To be done. Further, it has been reported that the iron loss in the heat treatment in the air is inferior to the above conditions.

〔発明の目的〕[Object of the Invention]

本発明は、非晶質合金磁心の鉄損をより低減させること
のできる非晶質合金磁心の製造方法を提供することを目
的とする。
An object of the present invention is to provide a method for manufacturing an amorphous alloy magnetic core, which can further reduce the iron loss of the amorphous alloy magnetic core.

〔発明の概要〕[Outline of Invention]

本発明は、正の飽和磁歪を有する鉄基非晶質合金薄帯を
巻回もしくは積層した後、歪取り熱処理中に前記合金薄
帯表面全体に厚さ200Å以上3000Å以下の酸化皮膜層を
形成することを特徴とした非晶質合金磁心の製造方法で
ある。
The present invention, after winding or laminating an iron-based amorphous alloy ribbon having a positive saturation magnetostriction, forms an oxide film layer having a thickness of 200 Å or more and 3000 Å or less on the entire surface of the alloy ribbon during strain relief heat treatment. This is a method for producing an amorphous alloy magnetic core.

ここで、用いられる非晶質合金は各種磁性合金が用いら
れるが、 (Fe1-aMa)100-bXb M:Ti,V,Cr,Mn,Co,Ni,Zr,Nb,Mo,Hf,Ta,Wのうち少なくと
も一種 X:Si,B,P,C,Geのうち少なくとも一種以上 0≦a≦0.15 12≦b≦30 で表わされる、正の飽和磁歪を有するFe基非晶質合金が
好ましい。
Here, various magnetic alloys are used as the amorphous alloy, and (Fe 1- aMa) 100- bXb M: Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, Hf, Ta , At least one of W: at least one of Si, B, P, C, Ge 0 ≦ a ≦ 0.15 12 ≦ b ≦ 30, Fe-based amorphous alloy having a positive saturated magnetostriction is preferable. .

Mの添加により、高周波領域における鉄損の低下及び結
晶化温度の上昇の効果を得る。微量の添加で効果があら
われるが、実用上は、a≧0.01であることが好ましい。
またa>0.15だとTcが低くなりすぎ、実用上好ましくな
い。
The addition of M has the effect of reducing iron loss and increasing the crystallization temperature in the high frequency region. The effect appears even if added in a small amount, but in practice, it is preferable that a ≧ 0.01.
If a> 0.15, Tc becomes too low, which is not preferable in practice.

またXは非晶質化に必須の元素であり、実用上熱安定性
を考慮すると、SiとBの組合せが好ましい。またb<12
およびb>28では、非晶質化が困難となるため、12≦b
≦28が好ましく、さらに15≦b≦25が好ましい。Siは2
〜13%、好ましくは2〜8%が良好である。
Further, X is an element essential for amorphization, and in consideration of thermal stability in practical use, a combination of Si and B is preferable. B <12
And b> 28, it becomes difficult to amorphize, so 12 ≦ b
≦ 28 is preferable, and 15 ≦ b ≦ 25 is more preferable. Si is 2
-13%, preferably 2-8% is good.

熱処理中に酸化皮膜を形成する方法としては、窒素等の
不活性ガスと酸素を混合して気体中で行なうことが好ま
しく、さらに該気体を巻回あるいは積層した磁心の層間
に強制的に供給することにより、より一層の低鉄損を実
現することができる。
As a method for forming an oxide film during the heat treatment, it is preferable to mix it with an inert gas such as nitrogen and oxygen in a gas, and further forcibly supply the gas between the layers of the wound or laminated magnetic core. As a result, a further lower iron loss can be realized.

雰囲気条件である不活性ガスと酸素の比率はモル比で
(100−C):Cとすると0.01≦C≦10が好ましい。C<
0.01では鉄損の著しい低減は得られず、またC>10では
むしろ特性が劣化してしまう。好ましくは0.01≦C≦5
である。
When the ratio of the inert gas to oxygen, which is an atmospheric condition, is (100-C): C in molar ratio, 0.01≤C≤10 is preferable. C <
A core loss of 0.01 does not result in a marked reduction, and a C> 10 deteriorates the characteristics. Preferably 0.01 ≦ C ≦ 5
Is.

さらに、熱処理中に強制的に磁心の層間に前記雰囲気を
供給することが好ましい。これは磁心を形成している非
晶質合金の薄帯表面全体に酸化皮膜を形成するためであ
り、通常のほとんど対流のない条件では磁心の外周部分
しか均一な酸化皮膜は形成されず、磁心内部の薄帯表面
は、その薄帯の両端にわずかに見られるのみであり、低
鉄損が得られにくいからである。雰囲気供給方法として
は、ノズル状の吹き出し口から雰囲気を吹きつける方
法、コアを減圧することにより雰囲気を吸収する方法等
が挙げられる。
Further, it is preferable to forcibly supply the atmosphere between the layers of the magnetic core during the heat treatment. This is because an oxide film is formed on the entire surface of the ribbon of the amorphous alloy forming the magnetic core, and under normal conditions with almost no convection, a uniform oxide film is formed only on the outer periphery of the magnetic core. This is because the surface of the inner ribbon is only slightly seen at both ends of the ribbon, and it is difficult to obtain low iron loss. Examples of the atmosphere supply method include a method of blowing the atmosphere from a nozzle-shaped outlet, a method of absorbing the atmosphere by reducing the pressure of the core, and the like.

非晶質合金の酸化皮膜の厚さに関しては、酸化皮膜の厚
さが200Å未満の場合には鉄損の低減化において効果は
小さく、3000Åを越えるとかえって鉄損は増加する。鉄
損の低減化において著しい効果が得られるのは200Å以
上、3000Å以下の範囲の厚さの酸化皮膜が形成される場
合においてである。
Regarding the thickness of the oxide film of the amorphous alloy, when the thickness of the oxide film is less than 200Å, the effect of reducing iron loss is small, and when it exceeds 3000Å, the iron loss increases rather. A significant effect in reducing iron loss is obtained when an oxide film having a thickness in the range of 200 Å or more and 3000 Å or less is formed.

なお、この原因は熱処理中において非晶質合金薄帯の表
面に200Å以上,3000Å以下の厚みの酸化皮膜層が形成さ
れると、室温まで温度を下げた時に薄帯の面内方向に圧
縮応力が生じ、それと鉄基非晶質合金が有する正の磁歪
との相互作用により、薄帯の厚み方向に誘導磁気異方性
が発生して磁壁の動きを妨げ、結果として金鉄損の大部
分を占める渦電流損を低下させるためと考えられる。な
お好ましくは200〜2000Åである。
The reason for this is that if an oxide film layer with a thickness of 200 Å or more and 3000 Å or less is formed on the surface of the amorphous alloy ribbon during heat treatment, compressive stress is applied in the in-plane direction of the ribbon when the temperature is lowered to room temperature. Occurs, and the interaction between it and the positive magnetostriction of the iron-based amorphous alloy causes induced magnetic anisotropy in the thickness direction of the ribbon, which hinders the movement of the magnetic domain wall. This is considered to reduce the eddy current loss that occupies It is preferably 200 to 2000Å.

〔発明の実施例〕Example of Invention

以下本発明を実施例に基づき説明する。 The present invention will be described below based on examples.

(実施例1) 単ロール法により、作製した幅10mm、平均厚さ20μmの
(Fe0.95Nb0.0583Si5B12非晶質合金薄帯を巻回し、外
径18mm、内径12mmのトロイダル状磁心を得た。該磁心を
460℃で30分、窒素:酸素=99:1の割合の雰囲気中で該
気体を強制的に磁心に吹き付けながら熱処理を施し高周
波鉄損をU関数計を用いて測定した。比較として、窒素
中、大気中でも同様の熱処理条件で行なった。第1図に
は、f=50KHzの条件での鉄損特性を示す。ここで実施
例は実線で比較例の窒素中熱処理は、破線で、大気中熱
処理は一点鎖線で表わしている。
Example 1 A (Fe 0.95 Nb 0.05 ) 83 Si 5 B 12 amorphous alloy ribbon having a width of 10 mm and an average thickness of 20 μm produced by a single roll method is wound, and a toroidal shape having an outer diameter of 18 mm and an inner diameter of 12 mm is wound. Got a magnetic core. The magnetic core
Heat treatment was performed for 30 minutes at 460 ° C. in an atmosphere of nitrogen: oxygen = 99: 1 while forcibly blowing the gas onto the magnetic core, and the high frequency iron loss was measured using a U function meter. For comparison, the same heat treatment was performed in nitrogen and air. FIG. 1 shows the iron loss characteristics under the condition of f = 50 KHz. Here, the examples are represented by solid lines, the heat treatment in nitrogen of the comparative examples is represented by a broken line, and the heat treatment in the atmosphere is represented by a chain line.

同図には非晶質合金薄帯の表面に形成した酸化皮膜層の
厚さを付記してある。なお、酸化皮膜層の厚さはオージ
エ分析法により求めた値である。
In the same figure, the thickness of the oxide film layer formed on the surface of the amorphous alloy ribbon is additionally shown. The thickness of the oxide film layer is a value obtained by the Auger analysis method.

第1図より明らかなように窒素と酸素の混合気体中で熱
処理を施した場合において該合金薄帯の表面に適当な酸
化皮膜層が形成されて鉄損は低下することが分る。なお
酸化皮膜層の厚みは薄すぎても厚すぎても鉄損低減化の
効果は少ないことが分る。
As is clear from FIG. 1, when heat treatment is performed in a mixed gas of nitrogen and oxygen, an appropriate oxide film layer is formed on the surface of the alloy ribbon, and iron loss is reduced. It is understood that the effect of reducing iron loss is small if the thickness of the oxide film layer is too thin or too thick.

(実施例2) 実施例1と同様にして、数種の組成のFe基非晶質合金を
作製し、同一磁心形状にして種々の雰囲気中で熱処理を
行った。なお熱処理条件は各合金の最適条件を選んであ
る。これらの結果を第1表にまとめてあるが鉄損値はf
=50KHz,Bm=3KGの条件のものを示している。
(Example 2) In the same manner as in Example 1, Fe-based amorphous alloys having several kinds of compositions were produced, formed into the same magnetic core shape, and heat-treated in various atmospheres. The heat treatment conditions are the optimum conditions for each alloy. These results are summarized in Table 1, but the iron loss value is f
= 50KHz, Bm = 3KG.

この表より熱処理中に非晶質合金の表面に形成される酸
化皮膜層の厚さが200Å以上3000Å以下の範囲にある時
低鉄損が得られていることが分る。
From this table, it can be seen that low iron loss is obtained when the thickness of the oxide film layer formed on the surface of the amorphous alloy during the heat treatment is in the range of 200 Å or more and 3000 Å or less.

〔発明の効果〕〔The invention's effect〕

本発明により低鉄損を有する高周波磁心が提供されるた
めその工業的価値は大である。
INDUSTRIAL APPLICABILITY The present invention provides a high frequency magnetic core having a low iron loss, and thus has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の効果を説明するためのf=50KHzの鉄
損特性曲線図。
FIG. 1 is an iron loss characteristic curve diagram of f = 50 KHz for explaining the effect of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正の飽和磁歪を有する鉄基非晶質合金薄帯
を巻回もしくは積層した後、歪取り熱処理中に前記合金
薄帯表面全体に厚さ200Å以上3000Å以下の酸化皮膜層
を形成することを特徴とした非晶質合金磁心の製造方
法。
1. An iron-based amorphous alloy ribbon having a positive saturation magnetostriction is wound or laminated, and an oxide film layer having a thickness of 200 Å or more and 3000 Å or less is formed on the entire surface of the alloy ribbon during heat treatment for strain relief. A method for manufacturing an amorphous alloy magnetic core, which is characterized by forming the core.
【請求項2】前記熱処理を不活性ガスと酸素との混合雰
囲気中で行なうことを特徴とした特許請求の範囲第1項
記載の非晶質合金磁心の製造方法。
2. The method for producing an amorphous alloy magnetic core according to claim 1, wherein the heat treatment is performed in a mixed atmosphere of an inert gas and oxygen.
【請求項3】前記熱処理中に強制的に前記混合雰囲気を
供給することを特徴とした特許請求の範囲第2項記載の
非晶質合金磁心の製造方法。
3. The method for producing an amorphous alloy magnetic core according to claim 2, wherein the mixed atmosphere is forcibly supplied during the heat treatment.
【請求項4】前記混合雰囲気は不活性ガスと酸素との混
合モル比を(100−C):Cと表わした時、0.01≦C≦10
を満たすことを特徴とした特許請求の範囲第2項記載の
非晶質合金磁心の製造方法。
4. The mixed atmosphere is 0.01≤C≤10 when the mixed molar ratio of inert gas and oxygen is expressed as (100-C): C.
The method for producing an amorphous alloy magnetic core according to claim 2, characterized in that:
【請求項5】前記鉄基非晶質合金は、一般式 (Fe1-aMa)100-bXb M:Ti,V,Cr,Mn,Co,Ni,Zr,Nb,Mo,Hf,Ta,Wのうち少なくと
も一種 X:Si,B,P,C,Geのうち少なくとも一種 0≦a≦0.15 12≦b≦30 で示されること特徴とした特許請求の範囲第1項記載の
非晶質合金磁心の製造方法。
5. The iron-based amorphous alloy has the general formula (Fe 1- aMa) 100- bXb M: Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, Hf, Ta, W. At least one of X: Si, B, P, C, Ge is at least one of 0 ≦ a ≦ 0.15 12 ≦ b ≦ 30. The amorphous alloy magnetic core according to claim 1. Manufacturing method.
JP60088838A 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method Expired - Lifetime JPH079057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088838A JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088838A JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Publications (2)

Publication Number Publication Date
JPS61250162A JPS61250162A (en) 1986-11-07
JPH079057B2 true JPH079057B2 (en) 1995-02-01

Family

ID=13954092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088838A Expired - Lifetime JPH079057B2 (en) 1985-04-26 1985-04-26 Amorphous alloy magnetic core manufacturing method

Country Status (1)

Country Link
JP (1) JPH079057B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029111A (en) * 1988-06-28 1990-01-12 Tamura Seisakusho Co Ltd Manufacture of toroidal iron core using iron system amorphous alloy
US5029291A (en) * 1990-04-10 1991-07-02 Knogo Corporation Electromagnetic sensor element and methods and apparatus for making and using same
US5304983A (en) * 1991-12-04 1994-04-19 Knogo Corporation Multiple pulse responder and detection system and method of making and using same
JPH05243054A (en) * 1992-02-28 1993-09-21 Toshiba Corp Magnetic core
JP3210776B2 (en) * 1993-06-15 2001-09-17 松下電工株式会社 Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JP2772265B2 (en) * 1995-08-21 1998-07-02 株式会社東芝 Manufacturing method of magnetic core for high frequency
JPH10256019A (en) * 1997-03-13 1998-09-25 Nkk Corp Wound core with excellent core loss
JP3500062B2 (en) * 1998-04-17 2004-02-23 新日本製鐵株式会社 Fe-based amorphous alloy ribbon with ultra-thin oxide layer
JP2003500850A (en) * 1999-05-20 2003-01-07 ナショナル−アーノルド マグネティックス Magnetic core insulation
US6420042B1 (en) 1999-09-24 2002-07-16 Nippon Steel Corporation Fe-based amorphous alloy thin strip with ultrathin oxide layer
JP3745177B2 (en) * 1999-11-18 2006-02-15 Ykk株式会社 Surface-cured amorphous alloy molded article and method for producing the same
JP4445195B2 (en) * 2002-11-29 2010-04-07 株式会社東芝 Amorphous alloy ribbon and magnetic core using it
EP1772535B1 (en) * 2004-05-28 2013-05-22 NGK Insulators, Ltd. Method for coloring surface of zirconium-based metallic glass component
JP6786841B2 (en) * 2015-04-02 2020-11-18 日立金属株式会社 Magnetic core and its manufacturing method, and in-vehicle parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473413A (en) * 1983-03-16 1984-09-25 Allied Corporation Amorphous alloys for electromagnetic devices

Also Published As

Publication number Publication date
JPS61250162A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
KR930012182B1 (en) Magnetic grains and method of producing same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JPH079057B2 (en) Amorphous alloy magnetic core manufacturing method
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP2008231534A5 (en)
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JPS58139408A (en) Wound iron core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPS6332244B2 (en)
JPH07103453B2 (en) Alloy with excellent permeability and method for producing the same
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH11186020A (en) Zero-phase current transformer
JPS61183454A (en) Manufacture of magnetic core of amorphous alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0549742B2 (en)
JP2995991B2 (en) Manufacture of magnetic core
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0257683B2 (en)
JPS60128211A (en) Production of low iron loss amorphous alloy