JPS61244087A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS61244087A
JPS61244087A JP60085832A JP8583285A JPS61244087A JP S61244087 A JPS61244087 A JP S61244087A JP 60085832 A JP60085832 A JP 60085832A JP 8583285 A JP8583285 A JP 8583285A JP S61244087 A JPS61244087 A JP S61244087A
Authority
JP
Japan
Prior art keywords
layer
guide layer
guide
etching
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60085832A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60085832A priority Critical patent/JPS61244087A/en
Publication of JPS61244087A publication Critical patent/JPS61244087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Abstract

PURPOSE:To stabilize modulation operation and reduce a magnitude of frequency chirping by a method wherein the first guide layer is formed in series (to the direction of the light propagation) with an activation layer and the second guide layer is formed closely above or below the first guide layer and a P-N junction is formed in one of the guide layers. CONSTITUTION:A diffraction grating 6 is formed on the part of a semiconductor substrate 5 and a guide layer 7, an activation layer 8 and a P-type InP layer 9 are successively laminated on the substrate. Then the laminated layers are removed by etching as far as the guide layer 7 except the parts above the diffraction grating 6 and then the non-doped first guide layer 3, a P-type InP layer 9, the P-type second guide layer 4 and a P-type InP layer 9 are successively laminated. Moreover, after mesa-etching and burying growth, a groove 10 is formed at a part of the center by etching and an etching end surface 12 is formed. Finally, an electrode 11 and an AR coating film 13 are formed on the respective output end surfaces. With this constitution, a light output intensity can be modulated by varying the coupling condition of the lightwave in accordance with the variation of an applied current to the side of a modulator so that the operation at the time of modulation can be stabilized and the magnitude of frequency chirping can be reduced.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は変調器あるいはスイッチング素子を内蔵した集
積蓋の単一軸モード半導体レーザに関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an integrated lid single-axis mode semiconductor laser with a built-in modulator or switching element.

(従来技術とその問題点) 高速変調時にも安定に単一軸モード発振する分布帰還型
(DFB)半導体レーザ、分布ブラッグ反射@(DBR
)半導体レーザは長距離・大容量の光フアイバ通信用光
源として有望視されている。これらの単一軸モード半導
体レーザを用いた光フアイバ伝送の実験が重ねられ、例
えば2Gb/1gで1o。
(Prior art and its problems) Distributed feedback (DFB) semiconductor laser that stably oscillates in a single axis mode even during high-speed modulation, distributed Bragg reflection @ (DBR)
) Semiconductor lasers are seen as promising light sources for long-distance, high-capacity optical fiber communications. Experiments have been carried out on optical fiber transmission using these single-axis mode semiconductor lasers, for example, 2Gb/1g.

−以上の伝送が実現できるようになってきた。しかしな
がら、さらに伝送距離を延ばし、大容量化をはかろうと
する場合、半導体レーザの変調時のスペクトル幅(チャ
ーピング)が問題となってくる。これは半導体レーザを
変調する際のキャリアの変動によるもので、それKよっ
て屈折率が変化し、時間的に発振波長がゆらぐために生
ずるものである。例えば石英系光ファイバの伝送損失が
最小となる1、55μm帯においては18pa/km*
nm程度の分散がア夛、これによって伝送帯域が大きく
制限されてしまうので光源のチャーピングは小さいほど
望ましい。通常のDFB−LDあるいはDBR−LDに
おいてはIGb/s程度の速度で直接変調すると、IA
程度のチャーピングを生じてしまう。
-It has become possible to realize the above transmissions. However, when trying to further extend the transmission distance and increase the capacity, the spectrum width (chirping) during modulation of the semiconductor laser becomes a problem. This is caused by carrier fluctuations when modulating the semiconductor laser, which causes the refractive index to change and the oscillation wavelength to fluctuate over time. For example, in the 1.55 μm band where the transmission loss of silica-based optical fiber is the minimum, it is 18 pa/km*
Dispersion on the order of nanometers increases, which greatly limits the transmission band, so it is desirable that the chirping of the light source be as small as possible. In a normal DFB-LD or DBR-LD, when directly modulated at a speed of about IGb/s, the IA
This results in some degree of chirping.

このような光源のチャーピングを低減するためにロス変
調器を内蔵したDFB−LDを用いることが効果的であ
る。山口氏らはS59秋電子通信学会光・電波部門全国
大会272に報告しているようなロス変調器付きのDF
B−LDを開発した。その構造模式図を第2rI4IC
示す。活性層8の上に部分的に回折格子6を有するガイ
ド層7を形成し、回折格子を有する部分をDFB−LD
I、平担なガイド層70部分を変調器2として動作させ
ている。
In order to reduce such chirping of the light source, it is effective to use a DFB-LD with a built-in loss modulator. A DF with a loss modulator as reported by Mr. Yamaguchi et al. at the S59 Autumn National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers 272.
Developed B-LD. The structural schematic diagram of the second rI4IC
show. A guide layer 7 partially having a diffraction grating 6 is formed on the active layer 8, and the part having the diffraction grating is formed into a DFB-LD.
I. The flat guide layer 70 is operated as the modulator 2.

変調器2の側の端面にはARコーティング模13を形成
し、DFB−LDIK電流注入してレーザ発振させ、そ
こにDCバイアス電流を流したまま変調電流を変調器2
に印加することによシ光を損失を変化させることが可能
となシ、シたがってレーザ光の強度変調が可能となる。
An AR coating pattern 13 is formed on the end face of the modulator 2, and a DFB-LDIK current is injected to cause laser oscillation, and the modulation current is transferred to the modulator 2 while the DC bias current is flowing there.
It is possible to change the loss of the laser beam by applying it to the laser beam, thereby making it possible to modulate the intensity of the laser beam.

しかしながらこの方法では変調電流の変化によって変調
器2の端面からの反射によってDFB−LDIに対する
反射光の位相条件が変化してしまい、1〜2人程シロず
かに発振波長が変化することがあった。2つの領域間の
電気的絶縁を良好KL、かっARコート端面を完全な無
反射とすればそのような波長のふらつきは無くすことが
できるものと考えられるが、通常ARコート端面の反射
率は2チ程度にしか抑えることが困難であり、上述の波
長の不安定性を完全に妨ぐことか難かしかった。
However, with this method, the phase condition of the reflected light to the DFB-LDI changes due to reflection from the end face of the modulator 2 due to changes in the modulation current, and the oscillation wavelength may change slightly by one or two people. Ta. It is thought that such wavelength fluctuations can be eliminated if the electrical insulation between the two regions is good and the AR coat end face is completely non-reflective, but normally the reflectance of the AR coat end face is 2. It has been difficult to suppress the above-mentioned wavelength instability to only a small degree, and it has been difficult to completely prevent the above-mentioned wavelength instability.

(問題点を解決する具体的手段) 本発明は、上述の観点にたって変調の動作が安定し、か
つ周波数チャーピング量の小さな集積蓋単一軸モード半
導体レーザを提供することを目的として、少なくとも活
性層と回折格子を有する積層構造を半導体基板上に備え
、さらに前記積層構造において前記活性層に直列(光の
伝播方向に対して。)K第1のガイド層を形成し、前記
第1のガイド層の上方あるいは下方に近接して少なくと
も第2のガイド層を形成し、前記ガイド層のうち少なく
ともひとつにp −n接合が形成した構造とした。
(Specific Means for Solving the Problems) From the above-mentioned viewpoint, the present invention aims to provide an integrated lid single-axis mode semiconductor laser in which the modulation operation is stable and the amount of frequency chirping is small. A laminated structure having a layer and a diffraction grating is provided on a semiconductor substrate, and a first guide layer K is formed in series with the active layer (with respect to the propagation direction of light) in the laminated structure, and the first guide layer is formed in series with the active layer in the laminated structure. At least a second guide layer is formed above or below the layers, and a pn junction is formed in at least one of the guide layers.

(発明の作用1原理) 以下実施例を示す図面を用いて本発明をよシ詳細に説明
する。変調時のチャーピングを抑制するには例えば、活
性層部分には一定のバイアス電流を流しておいて、その
光を変調器を用いて変調する方法が考えられる。−例と
して第1図に示すようにDFB−LDIに直列に結合導
波路形の変調器2を形成するとよい。図に示した例では
変調器2は第1および第2のガイド層3,4を有し、そ
の一方にp −n接合が形成されている。したがって変
調器2に電流を流すこと忙よってその屈接率を変化させ
ることができ、2つのガイド層3,4に結合した光波の
出力を上下のガイド眉間で変化させることができる。端
面においては上下のガイド層のどちらかにレーザ光が出
力されるが、図のよりにガイド層の一方の端面を斜めに
エツチングして形成すれば、下側のガイド層端面に出力
されるような結合状態となったときのみ外部にレーザ光
が取シ出せる。比較的小さ表層折率変化によって結合状
態を急激に変化させることができるので、DFB−LD
Iを直流駆動して発振させておき、変調器側に流す変調
電流の変化量は小さくでき、したがって周波数チャーピ
ングの量を直接変調する場合と比べて小さくすることが
可能となる。
(First principle of operation of the invention) The present invention will be explained in detail below using drawings showing embodiments. To suppress chirping during modulation, for example, a method can be considered in which a constant bias current is passed through the active layer portion and the light is modulated using a modulator. - For example, as shown in FIG. 1, it is preferable to form a coupled waveguide type modulator 2 in series with the DFB-LDI. In the example shown in the figure, the modulator 2 has first and second guide layers 3, 4, one of which has a p-n junction formed therein. Therefore, by passing current through the modulator 2, its refractive index can be changed, and the output of the light wave coupled to the two guide layers 3, 4 can be changed between the upper and lower guide eyebrows. At the end face, the laser beam is output to either the upper or lower guide layer, but if one end face of the guide layer is etched diagonally as shown in the figure, the laser light will be output to the lower guide layer end face. Laser light can be extracted to the outside only when a proper coupling state is achieved. DFB-LD
I is driven with direct current to oscillate, and the amount of change in the modulation current flowing to the modulator side can be made small, and therefore the amount of frequency chirping can be made smaller than in the case of direct modulation.

(実施例) 第1図に本発明による集積蓋DFB−LDの一実施例を
示す。このような素子を得るにはまずn−InP基板5
上に部分的に回折格子6を形成し、そのうえに発光波長
1.3μmに相当するn−In。。−〇aoas A8
o4t PaJeガイド層7、発光波長1.554mに
相当するノンドーグInox* GAa4r ASaa
b pHJ6活性層8、P−InP層9を順次積層する
。回折格活性層8はいずれも0.1μm程度の厚さとし
た。次に回折格子6以外の部分をガイド層7までエツチ
ングして除去し、ノンドープの第1のガイド層3、p−
InP層9、P型の第2のガイド層4、p−InP層9
を順次積層した。2つのガイド層3,4はいずれも発光
波長1.3μm相当の結晶組成とした。2つのガイド層
の中間のp−InP層9は1.5μmの厚さとした。さ
らに通常のプロセスでメサエッチング、埋め込み成長を
行なった後中央部分の一部にエッチン゛グによる溝10
を形成し、エツチング端面12を形成する。最後に電極
11形成、ARコート膜13を出力端面に形成して所望
の集積蓋DFB−LDを得る。以上のようにして作製し
た集積蓋DFB−LDにおいて、DFB−LDIの長さ
を150μm、変調器2の長さを400μmに切シ出し
、特性を評価した。その結果室温cw動作時の発振しま
い値電流20mA、微分量子効率25%、最大40mW
、最高100℃以上までの安定な単一軸モード発振を示
す素子がきわめて再現性よく得られた。
(Embodiment) FIG. 1 shows an embodiment of the integrated lid DFB-LD according to the present invention. To obtain such an element, first an n-InP substrate 5 is prepared.
A diffraction grating 6 is partially formed thereon, and n-In whose emission wavelength corresponds to 1.3 μm is further formed. . -〇aoas A8
o4t PaJe guide layer 7, non-dawg Inox* GAa4r ASaa corresponding to emission wavelength 1.554 m
b. A pHJ6 active layer 8 and a P-InP layer 9 are sequentially stacked. The thickness of the diffraction grating active layer 8 was approximately 0.1 μm. Next, the portion other than the diffraction grating 6 is etched and removed up to the guide layer 7, and the non-doped first guide layer 3, p-
InP layer 9, P-type second guide layer 4, p-InP layer 9
were sequentially stacked. Both of the two guide layers 3 and 4 had a crystal composition corresponding to an emission wavelength of 1.3 μm. The p-InP layer 9 between the two guide layers had a thickness of 1.5 μm. Furthermore, after performing mesa etching and buried growth using a normal process, a groove 10 is etched in a part of the central part.
, and an etched end surface 12 is formed. Finally, the electrode 11 is formed and the AR coating film 13 is formed on the output end face to obtain the desired integrated lid DFB-LD. In the integrated lid DFB-LD produced as described above, the length of the DFB-LDI was cut out to 150 μm and the length of the modulator 2 was cut out to 400 μm, and the characteristics were evaluated. As a result, the oscillation end current at room temperature cw operation is 20 mA, the differential quantum efficiency is 25%, and the maximum is 40 mW.
, a device exhibiting stable single-axis mode oscillation up to a maximum temperature of 100° C. or higher was obtained with extremely good reproducibility.

また素子をダイヤモンドヒートシンクにマウントし、2
Gb/sのNRZランダムパルス変調を行なったところ
、そのときの周波数チャーピング量は03Xs度と、従
来の直接変調の方法と比べて1/a 〜1/4に低減し
た。
In addition, the element was mounted on a diamond heat sink, and
When Gb/s NRZ random pulse modulation was performed, the amount of frequency chirping at that time was 0.3Xs degrees, which was reduced to 1/a to 1/4 compared to the conventional direct modulation method.

なお本発明の実施例には光源としてDFB−LDlを用
いたが、光源としてはもちろんDBR−LDを用いても
さしつかえない。変調器2側のガイド層は2つの構成の
ものを示し九が、もちろん3つ以上のガイド層から構成
されるようにしてもさしつかえない。もちろん光源には
発振波長が可変な単一軸モードLDを用いてさしつかえ
表い。用いる材料も実施例においてはInPを基板、I
nGaAapを活性層とするものを示したが、これに限
らず、GaAjAs/G aAs系、I nGaA s
/ I nAJAa系等他の半導体材料を用いて何ら差
しつかえない。
Although DFB-LDl was used as a light source in the embodiment of the present invention, it is of course possible to use DBR-LD as a light source. The guide layer on the modulator 2 side is shown as having two configurations; however, it is of course possible to configure it with three or more guide layers. Of course, a single-axis mode LD with variable oscillation wavelength should be used as the light source. In the examples, the materials used are InP for the substrate and I
Although the active layer is made of nGaAap, the active layer is not limited to this.
There is no problem in using other semiconductor materials such as / I nAJAa series.

(発明の効果) 本発明の特徴は回折格子を有する単一軸モード半導体レ
ーザに直列に複数のガイド層を有する変調器ないし、ス
イッチ素子を形成したことである。
(Effects of the Invention) A feature of the present invention is that a modulator or a switch element having a plurality of guide layers is formed in series with a single-axis mode semiconductor laser having a diffraction grating.

これによって変調器側への注入電流変化によって光波の
結合状態を変えて光出力強度を変調することが可能とな
シ、従来例と比べて変調時の動作が安定でかつ周波数チ
ャーピング量の小さな集積蓋半導体レーザを実現するこ
とができた。
As a result, it is possible to modulate the optical output intensity by changing the coupling state of light waves by changing the current injected into the modulator side, and compared to the conventional example, the operation during modulation is stable and the amount of frequency chirping is small. We were able to realize an integrated lid semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である集積蓋DFB−LDの
断面模式図を示す。第2図は従来の半導体レーザの模式
図を示す。図中lはDFB−LD、 2は変調器、3は
第1のガイド層、4は第2のガイド層、5はn−1np
基板、6は回折格子、7はガイド層、8は活性層、9は
p−InP層、10は溝、11は電極、12はエツチン
グ端面、13はARコート膜、をそれぞれあられす。 亭  1  図 4、亭2.ウク7′イド1
FIG. 1 shows a schematic cross-sectional view of an integrated lid DFB-LD, which is an embodiment of the present invention. FIG. 2 shows a schematic diagram of a conventional semiconductor laser. In the figure, l is the DFB-LD, 2 is the modulator, 3 is the first guide layer, 4 is the second guide layer, and 5 is n-1np.
A substrate, 6 a diffraction grating, 7 a guide layer, 8 an active layer, 9 a p-InP layer, 10 a groove, 11 an electrode, 12 an etched end surface, and 13 an AR coat film are respectively shown. Pavilion 1 Figure 4, Pavilion 2. Uku 7'id 1

Claims (1)

【特許請求の範囲】[Claims] 少なくとも活性層と回折格子を有する積層構を半導体基
板上に備えている集積蓋の半導体レーザにおいて、前記
活性層に直列(光の伝播方向に対して。)に第1のガイ
ド層が形成され、前記第1のガイド層の上方あるいは下
方に少なくとも第2のガイド層が形成され、前記ガイド
層のうち少なくともひとつにp−n接合が形成されてい
ることを特徴とする集積型半導体レーザ。
In a semiconductor laser with an integrated lid including a laminated structure having at least an active layer and a diffraction grating on a semiconductor substrate, a first guide layer is formed in series with the active layer (with respect to the propagation direction of light), An integrated semiconductor laser characterized in that at least a second guide layer is formed above or below the first guide layer, and a pn junction is formed in at least one of the guide layers.
JP60085832A 1985-04-22 1985-04-22 Integrated semiconductor laser Pending JPS61244087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085832A JPS61244087A (en) 1985-04-22 1985-04-22 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085832A JPS61244087A (en) 1985-04-22 1985-04-22 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61244087A true JPS61244087A (en) 1986-10-30

Family

ID=13869823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085832A Pending JPS61244087A (en) 1985-04-22 1985-04-22 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61244087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257290A (en) * 1987-03-30 1988-10-25 シーメンス、アクチエンゲゼルシヤフト Integrated optical device for bidirectional optical communication or signal transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257290A (en) * 1987-03-30 1988-10-25 シーメンス、アクチエンゲゼルシヤフト Integrated optical device for bidirectional optical communication or signal transmission

Similar Documents

Publication Publication Date Title
JP5858997B2 (en) Loss-modulated silicon evanescent laser
US7342950B1 (en) Tunable laser source with integrated optical modulator
JPS6154690A (en) Semiconductor laser device
JPH0256837B2 (en)
Lee et al. Wavelength-tunable and single-frequency semiconductor lasers for photonic communications networks
JP6425631B2 (en) Semiconductor laser and optical integrated light source having the same
US4743087A (en) Optical external modulation semiconductor element
CN112467516B (en) Distributed feedback laser for surface emission operation, administration and maintenance (OAM) light beam and modulation method thereof
JP2001320124A (en) Modulator integrated light source and module for optical communication
JP3141854B2 (en) Method for manufacturing optical semiconductor device
JPS61168980A (en) Semiconductor light-emitting element
JPH01319986A (en) Semiconductor laser device
US4747107A (en) Single mode injection laser
JPS61244087A (en) Integrated semiconductor laser
JP2751558B2 (en) Integrated optical semiconductor device and driving method thereof
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JPH0680857B2 (en) Integrated distributed Bragg reflector semiconductor laser
JPS6170779A (en) Optical transmitter
US20230035055A1 (en) Electroabsorption Modulated Laser
JPS61107781A (en) Single axial-mode semiconductor laser device
Aihara et al. Si waveguide integrated membrane buried heterostructure DFB laser using SiN multiple-phase-shift surface grating
JPH0656904B2 (en) Integrated distributed feedback semiconductor laser
JPS61164289A (en) Integrated semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JP3450573B2 (en) Semiconductor laser device, driving method thereof, and optical communication system using the same