JPS6124214A - Manufacture of co-o thin film type vertical magnetic recording medium - Google Patents

Manufacture of co-o thin film type vertical magnetic recording medium

Info

Publication number
JPS6124214A
JPS6124214A JP14503884A JP14503884A JPS6124214A JP S6124214 A JPS6124214 A JP S6124214A JP 14503884 A JP14503884 A JP 14503884A JP 14503884 A JP14503884 A JP 14503884A JP S6124214 A JPS6124214 A JP S6124214A
Authority
JP
Japan
Prior art keywords
magnetic recording
evaporation
oxygen gas
recording medium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14503884A
Other languages
Japanese (ja)
Other versions
JPH0560248B2 (en
Inventor
Tetsuo Tatsuno
龍野 哲男
Setsu Arikawa
有川 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP14503884A priority Critical patent/JPS6124214A/en
Publication of JPS6124214A publication Critical patent/JPS6124214A/en
Publication of JPH0560248B2 publication Critical patent/JPH0560248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a magnetic film of excellent and stabilized quality while a chamber is maintained in an oxygen atmosphere of high degree of vacuum by a method wherein oxygen gas is inoized in the space partitioned from the chamber containing a source of evaporation and an electron gun with which the source of evaporation is heated up and eveporated, and said inoized oxygen gas is made to irradiate on a substrate. CONSTITUTION:The cobalt vapor emitted from a source of evaporation is made incident on a substrate 2 almost vertically. At this time, the interior of a chamber 6 containing the source of evaporation 1 and an electronic gun 3 is not brought into a low vacuum state, but it is maintained in a high vacuum state of 10<-4>Torr or above which is suitable for emission of an electron beam from the electron gun 5. Oxygen gas is introduced into a cell 7, it is ionized by the impact of the thermion emitted from a filament 8, and the ion is made to irradiate on a substrate 2 by the accelerating voltage impressed between the filament 8 and the substrate 2. Through these procedures, the vapor of cobalt emittef from the source of evaporation 1 is reacted with the oxygen ions emitted from the ion gas 3 and deposited to the subsrate 2, thereby enabling to form a Co-O vertical magnetic film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基材表面の垂直方向に磁気特性を有する垂
直磁気記録媒体にあって、コバルトと酸素ガスとの反応
性真空蒸着法により磁性膜が作製されたCo−0光薄膜
型磁気記録媒体の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a perpendicular magnetic recording medium having magnetic properties in the direction perpendicular to the surface of a base material. The present invention relates to a method of manufacturing a Co-0 optical thin film magnetic recording medium in which a film is manufactured.

〔従来の技術〕[Conventional technology]

短波長記録特性に優れた高密度記録方式として垂直磁気
記録方式の利用が検討されている。
The use of perpendicular magnetic recording is being considered as a high-density recording method with excellent short wavelength recording characteristics.

この方式では9強磁性体の蒸気を基材上に垂直に入射さ
せて磁性膜が作製された薄膜型垂直磁気記録媒体が使用
される。
In this method, a thin-film perpendicular magnetic recording medium is used in which a magnetic film is produced by vertically injecting vapor of a ferromagnetic material onto a base material.

この種の磁気記録媒体では、これまで主に研究されてき
たCo −Cr系磁気記録媒体に代わり。
This type of magnetic recording medium replaces Co-Cr magnetic recording media, which have been mainly studied up to now.

Co−0光薄膜型磁気記録媒体が提案されている(例え
ば、第30回応用物理学会予稿集419頁)。
A Co-0 optical thin film magnetic recording medium has been proposed (for example, p. 419 of the proceedings of the 30th Japan Society of Applied Physics).

この記録媒体は、垂直磁気記録媒体に必要とされる多く
の条件を満たすもので、今後の実用化が期待されている
This recording medium satisfies many conditions required for perpendicular magnetic recording media, and is expected to be put into practical use in the future.

これまで、上記Co−0系磁性膜は、コバルトの蒸気を
基材上に垂直に入射させながら、これをチャンバ内の酸
素と反応させる。いわゆる反応性蒸着法により作ること
が提案されている。この方法では、チャンバ内を比較的
低真空度の酸素雰囲気に維持しておく必要があり9例え
ば40人/Sの成膜速度で磁性膜を作製する場合に2X
 10’ Torr以下の低真空で酸素雰囲気が必要と
されている。
Conventionally, the Co-0 based magnetic film is produced by vertically injecting cobalt vapor onto a substrate and reacting it with oxygen in a chamber. It has been proposed to use a so-called reactive vapor deposition method. In this method, it is necessary to maintain the inside of the chamber in an oxygen atmosphere with a relatively low degree of vacuum9.
A low vacuum of 10' Torr or less and an oxygen atmosphere are required.

一般にコバルト等の高融点材料を真空蒸着する場合は、
蒸発源に電子線を照射することによってこれを加熱、蒸
発させる電子衝撃法が使用される。ところが電子線の発
射については、その安定性等の観点から+ 10−’ 
Torr以上の真空度が必要であり、望ましくは10’
 Torr以上の真空度が必要とされている。従ってC
o−0系磁性膜を作製するのに必要とされる上記酸素雰
囲気の真空度との間に大きな差があり、このため、従来
は、上記電子線を発射させる電子銃を狭い空間の中に収
め、同空間を蒸発源や基材を含むチャンバとは別に、必
要とされる真空度まで減圧するという、いわゆる差動排
気方式を採用する必要があった。
Generally, when vacuum evaporating high melting point materials such as cobalt,
An electron impact method is used in which the evaporation source is heated and evaporated by irradiating it with an electron beam. However, when emitting an electron beam, from the viewpoint of stability etc., +10-'
A degree of vacuum of Torr or higher is required, preferably 10'
A degree of vacuum of Torr or higher is required. Therefore C
There is a large difference between the degree of vacuum of the oxygen atmosphere and the degree of vacuum required to fabricate an o-0 magnetic film. It was necessary to adopt a so-called differential pumping method, in which the chamber containing the evaporation source and substrate is depressurized to the required degree of vacuum separately from the chamber containing the evaporation source and substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この差動排気方式を採用した場合。 However, if this differential exhaust system is adopted.

装置やその操作が複雑になると共に、電子線の照射径路
が制約を受ける等、生産性の高い装置を構成するのに大
きな障害となる。
In addition to complicating the device and its operation, this also imposes restrictions on the electron beam irradiation path, which poses a major obstacle to constructing a highly productive device.

さらに、チャンバを低い真空度の酸素雰囲気に維持する
と、蒸発源から蒸発したコバルトの蒸気が同チャンバの
内壁等に凝着した瞬間に周りの酸素を収着するいわゆる
ゲッタ作用が顕著となり、特に蒸発開始時の真空槽内の
真空度の変動が大きくなる。この真空度の変動は9作製
される磁性膜の状態に大きな変化をもたらし。
Furthermore, if the chamber is maintained in an oxygen atmosphere with a low degree of vacuum, the so-called getter effect, in which the cobalt vapor evaporated from the evaporation source condenses on the inner walls of the chamber, adsorbs surrounding oxygen, becomes noticeable, especially when the evaporation occurs. Fluctuations in the degree of vacuum inside the vacuum chamber at the start become large. This variation in the degree of vacuum brings about a major change in the state of the magnetic film that is produced.

磁気記録媒体の品質の均一性を損なう原因となる。This causes loss of uniformity in the quality of the magnetic recording medium.

この発明は、従来のCo−0系薄膜型垂直磁気記録媒体
の製造方法における上記の問題を解決すべくなされたも
のであって、チャンバを高真空度の酸素雰囲気に維持し
たま\、良好かつ安定した品質の磁性膜が得られる特殊
な磁気記録媒体の製造方法を提供し、もって同記録媒体
の生産性の向上と品質の安定化を図ることを目的とした
ものである。
This invention was made to solve the above-mentioned problems in the conventional method for manufacturing a Co-0 based thin film perpendicular magnetic recording medium. The purpose of this invention is to provide a method for manufacturing a special magnetic recording medium that can obtain a magnetic film of stable quality, thereby improving productivity and stabilizing the quality of the recording medium.

〔発明の効果〕〔Effect of the invention〕

以下、この発明の構成を第1図に示した装置の構成と共
に説明する。
Hereinafter, the configuration of the present invention will be explained together with the configuration of the apparatus shown in FIG.

チャンバ6の中に水平に基材2が設置され。The base material 2 is installed horizontally in the chamber 6.

この下方にコバルトからなる蒸発源1が配置されている
。この蒸発源1の側方に電子銃5が配置され、これから
発射した電子線が電磁偏向手段等(図示せず)によって
上記蒸発源1に照射されるようになっている。
An evaporation source 1 made of cobalt is arranged below this. An electron gun 5 is disposed on the side of the evaporation source 1, and electron beams emitted from the gun are irradiated onto the evaporation source 1 by electromagnetic deflection means (not shown).

他方、チャンバ6内には、イオンガン3が配置されてい
る。このイオンガン3は、酸素ガスをイオン化するため
の上記チャンバ6に対して仕切られた空間、即ち図示の
場合はセルフを有しており、同セルフには、バルブ4を
介して酸素ガスが供給されるようになっている。なお。
On the other hand, the ion gun 3 is arranged within the chamber 6. The ion gun 3 has a space partitioned off from the chamber 6 for ionizing oxygen gas, that is, a self in the illustrated case, and oxygen gas is supplied to the self through a valve 4. It has become so. In addition.

図示の装置では、イオンガン3としていわゆるカウフマ
ン型のイオンガンが示されているが。
In the illustrated apparatus, the ion gun 3 is a so-called Kaufmann type ion gun.

上記セルフと同様の機能を有するものであれば高周波放
電型イオンガン等、他のイオン化手段を使用することも
できる。− この発明では、上記のような装置を使用し。
Other ionization means, such as a high frequency discharge type ion gun, can also be used as long as they have the same function as the above-mentioned self. - In this invention, a device as described above is used.

蒸発源1から発射されたコバルトの蒸気を基材2に略垂
直に入射させる。このとき、蒸発源1や電子銃5を含む
チャンバ6内を低真空状態とせず、電子銃5から電子線
を発射させるのに適当な10’ Torr以上の高真空
状態に維持する。そしてセルフ内に酸素ガスを導入し、
これをフィラメント8から放出された熱電子の衝撃によ
ってイオン化し、同イオンを上記フィラメント8と基材
2の間に印加した加速電圧によって同基材2に照射する
Cobalt vapor emitted from an evaporation source 1 is made to enter a base material 2 approximately perpendicularly. At this time, the chamber 6 containing the evaporation source 1 and the electron gun 5 is not brought into a low vacuum state, but is maintained at a high vacuum state of 10' Torr or higher, which is suitable for emitting an electron beam from the electron gun 5. Then, introduce oxygen gas into the self,
This is ionized by the impact of thermionic electrons emitted from the filament 8, and the base material 2 is irradiated with the ions by an accelerating voltage applied between the filament 8 and the base material 2.

〔作 用〕[For production]

蒸発源1から発射されたコバルトの蒸気は。 The cobalt vapor emitted from evaporation source 1 is.

イオンガン3から発射された酸素イオンと反応し、基材
2の上に凝着するため、 Co−0系の垂直磁性膜が作
製される。
Since it reacts with the oxygen ions emitted from the ion gun 3 and adheres to the base material 2, a Co-0 based perpendicular magnetic film is produced.

このとき、コバルトの蒸着速度r (人/S)と酸素イ
オンの電流密度j (μA /Cd)の比j/rの値が
磁気記録媒体の磁気特性に大きな影響を与える。即ち、
このj/rの値が小さくなると、垂直方向の残留磁化M
r□が面内方向の残留磁化M r4に比べて小さくなる
傾向がある。また、垂直方向の保持力I(clは、j/
rが25μA・87人・d付近で最大となる。さらに飽
和磁化Msは、j/rが小さくなるに従って低干する傾
向を有する。これらの点を考慮すると、j/rは20〜
30μA−s/人・−の範囲が最も適当である。
At this time, the value of the ratio j/r between the cobalt deposition rate r (person/S) and the oxygen ion current density j (μA /Cd) has a great influence on the magnetic properties of the magnetic recording medium. That is,
As the value of j/r becomes smaller, the residual magnetization M in the perpendicular direction
There is a tendency for r□ to be smaller than the residual magnetization M r4 in the in-plane direction. In addition, the vertical holding force I (cl is j/
r becomes maximum around 25 μA/87 people/d. Furthermore, the saturation magnetization Ms tends to decrease as j/r becomes smaller. Considering these points, j/r is 20~
A range of 30 μA-s/person is most appropriate.

〔実施例〕〔Example〕

次ぎにこの発明の実施例について説明する。 Next, embodiments of the present invention will be described.

純度99.9%のコバルトを蒸発源1とし、これに電子
線を照射して水平に設置した35in角のガラス製基材
2にコバルトの蒸気を略垂直に入射させた。これと同時
に、イオンガン3のセルフに毎分1scc以下の酸素ガ
スを導入しながらこれをイオン化し、上記基材2に入射
させ、約3000人の厚さのCo−0系磁性膜を作製し
た。
Cobalt with a purity of 99.9% was used as an evaporation source 1, and an electron beam was irradiated onto the evaporation source 1, so that the cobalt vapor was made to almost perpendicularly enter a 35-inch square glass substrate 2 placed horizontally. At the same time, oxygen gas was introduced into the self of the ion gun 3 at a rate of 1 scc or less to ionize it, and the ionized gas was made to enter the base material 2 to produce a Co-0 magnetic film with a thickness of approximately 3000 mm.

なお、この場合、蒸発源1からの蒸発速度rを10〜5
0人/ s 、酸素ガスのイオン電流密度を0.1〜0
.4mA/cJの範囲でそれぞれ変えることにより、j
/rを10〜35μA−3/人・c+(の範囲で変えて
実施した。また、チャンバ6の圧力を当初10’ To
rrとして蒸着を開始したが、蒸着中の圧力は、  3
 X 1O−5Torrとなった。
In this case, the evaporation rate r from the evaporation source 1 is set to 10 to 5.
0 person/s, oxygen gas ion current density from 0.1 to 0
.. By changing each within the range of 4mA/cJ, j
/r was varied in the range of 10 to 35 μA-3/person・c+ (.In addition, the pressure in chamber 6 was initially set to 10' To
Vapor deposition was started as rr, but the pressure during vapor deposition was 3
X 10-5 Torr.

次いでこのようにして作製された磁性膜について、試料
振動型磁力計により面内方向及び垂直方向のM−H特性
を測定し、飽和磁化、残留磁化、保持力を求めた。また
、光干渉膜厚計により、磁性膜の膜厚を測定した。この
結果から一部の磁気特性をコバルトの蒸発速度r (人
/S)と酸素イオンの電流密度j (μA/e11りの
比j/rとの関係で示したのが第2図のグラフである。
Next, the M-H characteristics of the thus produced magnetic film in the in-plane direction and the perpendicular direction were measured using a sample vibrating magnetometer, and the saturation magnetization, residual magnetization, and coercive force were determined. Furthermore, the thickness of the magnetic film was measured using an optical interference film thickness meter. From this result, the graph in Figure 2 shows some of the magnetic properties in terms of the relationship between the cobalt evaporation rate r (person/S) and the oxygen ion current density j (μA/e11 ratio j/r). be.

なお、垂直方向の残留磁化Mr、が面内方向の残留磁化
Ml−,?に比べて大きくなったのは。
Note that the residual magnetization Mr in the perpendicular direction is the residual magnetization Ml-,? in the in-plane direction. It is larger than the .

j/rが約20μA−s/人・0m1以上においてであ
った・ 〔発明の効果〕 以上説明した通り、この発明によれば、従来のようにチ
ャンバ6を10’Torr以上の高真空でCO〜0系の
磁性膜を作製することができ、従って差動排気等の特殊
な手段を採用せずに安定した電子線の照射を行うことが
できる。また、これにより、ゲッタ作用によるチャンバ
6内の圧力変動も生じ難くなり7安定した品質の磁気記
録媒体を高い生産性で製造することが可能となる。
j/r was approximately 20 μA-s/person・0 m1 or more. [Effects of the Invention] As explained above, according to the present invention, the chamber 6 is heated to a high vacuum of 10'Torr or more without CO 0 system magnetic film can be produced, and therefore stable electron beam irradiation can be performed without employing special means such as differential pumping. Moreover, this makes it difficult for pressure fluctuations in the chamber 6 to occur due to the getter action, making it possible to manufacture magnetic recording media of stable quality with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例を示す説明図。 第2図は、同実施例により得られた磁気記録媒体の磁気
特性を示すグラフである。 1−  蒸発源       2−基材3−・−イオン
ガン     5−電子銃6−チャンバ
FIG. 1 is an explanatory diagram showing an embodiment of the invention. FIG. 2 is a graph showing the magnetic properties of the magnetic recording medium obtained in the same example. 1- Evaporation source 2- Base material 3--Ion gun 5- Electron gun 6- Chamber

Claims (1)

【特許請求の範囲】 1、非磁性の基材上にコバルトの蒸気を垂直方向から入
射させると共に、同コバルトに酸素を反応させてCo−
0系薄膜型垂直磁気記録媒体を製造する方法において、
蒸発源及びこれを加熱蒸発させる電子銃を含むチャンバ
に対して仕切られた空間で酸素ガスをイオン化し、これ
を基板上に照射してなることを特徴とするCo−0系薄
膜型垂直磁気記録媒体の製造方法。 2、酸素ガスのイオン化手段がカウフマン型イオンガン
からなる特許請求の範囲第1項記載の磁気記録媒体の製
造方法。 3、コバルトの蒸着速度rと酸素ガスのイオン電流密度
jの比j/rが20〜30μA・s/Åcm^2の範囲
にある特許請求の範囲第1項または第2項に記載の磁気
記録媒体の製造方法。
[Claims] 1. Cobalt vapor is vertically incident on a non-magnetic base material and oxygen is reacted with the cobalt to form
In a method for manufacturing a 0-based thin film perpendicular magnetic recording medium,
Co-0 thin film perpendicular magnetic recording characterized by ionizing oxygen gas in a space partitioned off from a chamber containing an evaporation source and an electron gun for heating and evaporating the evaporation source, and irradiating the ionized oxygen gas onto a substrate. Method of manufacturing media. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the means for ionizing oxygen gas is a Kauffman type ion gun. 3. The magnetic recording according to claim 1 or 2, wherein the ratio j/r of the cobalt deposition rate r and the oxygen gas ion current density j is in the range of 20 to 30 μA·s/Åcm^2. Method of manufacturing media.
JP14503884A 1984-07-12 1984-07-12 Manufacture of co-o thin film type vertical magnetic recording medium Granted JPS6124214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14503884A JPS6124214A (en) 1984-07-12 1984-07-12 Manufacture of co-o thin film type vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503884A JPS6124214A (en) 1984-07-12 1984-07-12 Manufacture of co-o thin film type vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6124214A true JPS6124214A (en) 1986-02-01
JPH0560248B2 JPH0560248B2 (en) 1993-09-01

Family

ID=15375957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503884A Granted JPS6124214A (en) 1984-07-12 1984-07-12 Manufacture of co-o thin film type vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6124214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861750A (en) * 1987-04-20 1989-08-29 Nissin Electric Co., Ltd. Process for producing superconducting thin film
JPH01316455A (en) * 1988-03-26 1989-12-21 Kawasaki Steel Corp Formation of film excellent in uniformity and adhesive strength at high speed
US4951604A (en) * 1989-02-17 1990-08-28 Optical Coating Laboratory, Inc. System and method for vacuum deposition of thin films
JPH0317828A (en) * 1989-06-14 1991-01-25 Matsushita Electric Ind Co Ltd Production of thin metallic film type magnetic recording medium
US4987857A (en) * 1988-06-21 1991-01-29 Anelva Corporation Vacuum deposition apparatus with dust collector electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812317A (en) * 1981-07-15 1983-01-24 Sony Corp Manufacture of thin film magnetic medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812317A (en) * 1981-07-15 1983-01-24 Sony Corp Manufacture of thin film magnetic medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861750A (en) * 1987-04-20 1989-08-29 Nissin Electric Co., Ltd. Process for producing superconducting thin film
JPH01316455A (en) * 1988-03-26 1989-12-21 Kawasaki Steel Corp Formation of film excellent in uniformity and adhesive strength at high speed
US4987857A (en) * 1988-06-21 1991-01-29 Anelva Corporation Vacuum deposition apparatus with dust collector electrode
US4951604A (en) * 1989-02-17 1990-08-28 Optical Coating Laboratory, Inc. System and method for vacuum deposition of thin films
JPH0317828A (en) * 1989-06-14 1991-01-25 Matsushita Electric Ind Co Ltd Production of thin metallic film type magnetic recording medium

Also Published As

Publication number Publication date
JPH0560248B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
US4511594A (en) System of manufacturing magnetic recording media
US4002546A (en) Method for producing a magnetic recording medium
JPS6124214A (en) Manufacture of co-o thin film type vertical magnetic recording medium
US6812164B2 (en) Method and apparatus for ionization film formation
US4990361A (en) Method for producing magnetic recording medium
JPS5812317A (en) Manufacture of thin film magnetic medium
JPH0334619B2 (en)
JP3384654B2 (en) Modification method of metal surface by gas cluster ion beam
JPH054729B2 (en)
JPH0261130B2 (en)
JPS60231924A (en) Production of thin film type magnetic recording medium
JPH0334621B2 (en)
JPS60125933A (en) Production of magnetic medium
JPH035644B2 (en)
JPS61148809A (en) Manufacture of soft magnetic iron thin film
JPS618737A (en) Manufacture of vertical magnetic recording medium
JPH0329770Y2 (en)
JPH043010B2 (en)
JPS63251931A (en) Production of thin film type magnetic recording medium
JPH0722405A (en) Method and device for chemical vapor growth
JPS62200530A (en) Manufacture of vertical magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPH0432212A (en) Method and apparatus for forming oxide magnetic thin film
JPH01127668A (en) Focused charging beam apparatus
JPH0371420A (en) Perpendicular magnetic recording medium and its production