JPH043010B2 - - Google Patents

Info

Publication number
JPH043010B2
JPH043010B2 JP19948787A JP19948787A JPH043010B2 JP H043010 B2 JPH043010 B2 JP H043010B2 JP 19948787 A JP19948787 A JP 19948787A JP 19948787 A JP19948787 A JP 19948787A JP H043010 B2 JPH043010 B2 JP H043010B2
Authority
JP
Japan
Prior art keywords
excited species
magnetic recording
excited
generating means
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19948787A
Other languages
Japanese (ja)
Other versions
JPS6443815A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19948787A priority Critical patent/JPS6443815A/en
Publication of JPS6443815A publication Critical patent/JPS6443815A/en
Publication of JPH043010B2 publication Critical patent/JPH043010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は薄膜型磁気記録媒体、特に鉄を主材料
とした薄膜型磁気記録媒体の製造装置に関する。 [従来の技術] 薄膜型磁気記録媒体は、高密度磁気記録媒体と
して、その実用化が図られている。 従来におけるこの種の磁気記録媒体で、磁気特
性が最も優れている薄膜型磁気記録媒体は、強磁
性材料であるコバルト、またはコバルト合金を高
分子フイルム等の基材上に真空蒸着することによ
り製造されている。しかし、磁性材料としてコバ
ルト系金属を用いることは、第一に、これによつ
て形成された磁性膜は耐蝕性に乏しいこと、第二
に、コバルトは資源に乏しいため供給が不安定で
あり、かつ価格が高いという問題点を伴う。 この様な問題点を解決するものとして、鉄また
は鉄を主成分とする鉄系薄膜型磁気記録媒体及び
その製造方法が提案されている。(特願昭59−
86727号)。特に、この方法では、非磁性の基材上
に鉄または鉄を主成分とする強磁性体を真空蒸着
すると同時に、窒素ガスと酸素ガスの混合ガスを
イオン化し、これを前記基材上に照射することに
よつて磁性膜を形成するものである。 また、高いエネルギを有するイオンを照射して
磁性粒子の核を生成する場合、入射する金属蒸気
の粒子数が少ないときにはむしろ成膜中に磁性膜
にダメージを与えてしまう。このため、高いエネ
ルギを有するイオンに代えて、これよりもエネル
ギが小さい混合ガスの励起された分子(以下、励
起種)を基材上に照射して薄膜型磁気記録媒体を
製造する方法が提案されている。 しかしながら、前記従来技術による製造方法で
は、例えばタングステンフイラメントを加熱し、
熱電子を放出させてグロー放電を発生することに
より励起種を発生させており、これでは、励起種
の発生と共に、前記グロー放電に伴うエレクトロ
ンやイオンの発生が避けられない。このため、励
起種の他に、グロー管中の電界により高エネルギ
とつたこれらエレクトロンやイオンが基材上に照
射され、磁性膜にダメージを与えるという問題が
残される。即ち、グロー放電により励起種を発生
させる従来の方法では、製造された薄膜型磁気記
録媒体の保磁力と角型比は各々Hc=2400O〓e、
Br/Bs=0.93と大きな値を示すが、飽和磁化は
3.9KGとコバルト系金属を用いた薄膜型磁気記録
媒体に比べて小さくなつてしまう。 [発明が解決しようとする問題点] そこで、本発明では、前記の従来技術における
問題点に鑑み、鉄系金属を用いるにもかかわらず
十分な飽和磁化値を示す薄膜型磁気記録媒体を製
造し得る薄膜型磁気記録媒体の製造装置を提供す
ることを目的とする。 [問題点を解決するための手段] 本発明によれば、前記の目的は、非磁性基材の
少なくとも一部をその内部に配置する真空室と、
鉄または鉄を主成分とする強磁性体の蒸気を発生
する蒸気発生源と、窒素と酸素を含む混合ガスの
励起された分子を発生する励起種発生源とを備
え、前記非磁性基板上に、前記蒸気発生源からの
金属蒸気と前記励起種発生源からの励起種を照射
して薄膜型磁気記録媒体を製造する薄膜型磁気記
録媒体の製造装置に於て、前記励起種発生源が混
合ガスを光化学的に活性化するもので構成するこ
とにより達成される。 [作用] 前記の本発明になる薄膜型磁気記録媒体の製造
装置によれば、励起種発生源は光化学過程により
励起種を発生するため、従来のグロー放電による
ものに比較し、反応空間内に電子は存在せず、入
射光のエネルギもせいぜい数eVと低く、混合ガ
スのイオン化がされない。このため、成膜時にダ
メージを与えるエレクトロンやイオンの発生が防
止され、安定して励起種を供給することが可能で
ある。このため、保磁力、角型比とともに飽和磁
化特性にも優れた薄膜型磁気記録媒体を製造する
ことができる。 [実施例] 次に、本発明になる薄膜型磁気記録媒体の製造
装置を以下に詳述する。 まず、第1図には製造装置全体が示されてお
り、図において、35mm角の硝子板からなる非磁性
の基材1は、蒸発源6の上方に配置されている。
これらは、排気ポンプ10によつて10-6Torr以
下の真空状態に調整された真空槽9内に置かれ
る。 前記真空槽9内に設けられた蒸発源6は、例え
ば純度99.9%の鉄等の強磁性体からなり、電子銃
7から電子線aを照射することによつてこれが加
熱、蒸発される。この発生した強磁性体の蒸気b
は前記基材1に放射状に照射され、基材1の表面
に蒸着される。なお、蒸発源6は、前記の様な純
鉄の他、若干のコバルトやニツケル等を含むもの
であつてもよい。また、蒸発速度は、基材1に隣
接し、かつこれと同じ高さに設置した水晶式膜厚
計(XTM)等の膜厚センサ12により測定しな
がら制御される。 前記装置に於て、基材1の表面に入射される金
属蒸気、すなわち鉄の蒸気の入射角は80度に設定
されている。 一方、励起種源8は、酸素ガスと窒素ガスの混
合ガスの励起種を発生するもので、前記励起種を
基材1の表面に照射する。この励起種源8は、図
示の様に、反応管81と光源82とから構成され
ており、この反応管81内には前述した酸素と窒
素の混合ガスがバルブ83を介して導入されてい
る。反応管81の下端部には前記光源82が設け
られており、複数のランプ84を内蔵している。 この光源82は、第2図にも示す様に、後えば
三本の30Wの低圧水銀ランプ84が内部に配置さ
れ、それぞれ独立した電源85に接続されてい
る。これら低圧水銀ランプ84は、1849Åと2537
Åの2つの強い共鳴線を照射する。また、前記光
が反応管81に効率よく取り入れられる様に、反
応管81と光源82との間に設けられる仕切86
が石英板により構成されている。そして、第1図
に示す様に、前記反応管81内で励起された前記
混合ガス分子、電気的に中性な分子、いわゆる励
起種は、反応管81の上端部に設けられたグリツ
ド86を介して基材1上に照射される。この励起
種は図中Cの符号で示される。 前記の様な励起種源8によれば、バルブ83を
介して窒素と酸素の混合ガスを反応管81の内部
に導入し、光源82の低圧水銀ランプ84を点灯
する。反応管81内の混合ガスは光源82からの
光の照射により光化学的に励起され、量子力学系
の定常状態のうち、基底状態より高いエネルギ準
位にある電気的に中性な分子、すなわち励起分子
となる。 この様に、光化学的に励起種を発生する手法で
は、従来のグロー放電を用いる方法に比較して、
反応管内に熱電子が発生または、存在せず、また
入射する光のエネルギせいぜい数eVと低いため
混合ガスのイオン化も生じない。そのため、どん
なに光源82のパワーを上昇し、混合ガス中の励
起種の発生割合を高めたとしても、エネルギの高
いエレクトロンやイオン等の発生を伴わず、エネ
ルギが小さく、かつ電気的中性な励起種を安定し
て確実に供給することができる。このため、励起
種を基材1の表面に照射して成膜する時の膜に与
えるダメージを軽減することが可能となる。 次に、この実施例である製造装置を用いて製造
した薄膜型磁気記録媒体の具体的な試験の結果に
ついて、比較例と対比しながら説明する。まず、
本発明の実施例としては第1図に示した装置を用
い、蒸発源6としては純度99.9%の鉄を用いて実
施した。一方、比較例は従来のグロー放電を用い
て励起種を発生する装置により、同じ蒸発源を用
いて実施した。 なお、実施例と比較例の何れの場合も、真空槽
の真空度を1x10-4Torr、窒素ガスと酸素ガスを
含む混合ガスの導入量を1〜2scc/min、蒸発源
からの蒸発速度は、基材1に隣接しかつこれと同
じ高さに設置した水晶式膜厚計(XTM)の指示
値が20Å/secになる様に制御した。また、本発
明の実施例では、光源として30Wの低圧水銀ラン
プを3本点灯させた。 次に、こうして形成された磁気記録媒体につい
て、試料振動型磁力計を用いて、その磁性膜のM
−H特性を測定し、保磁力、飽和磁化及び角型比
の各々を求め、本発明になる装置によるものと従
来のグロー放電によるものとの特性を比較した。
この比較結果を表1に示す。
[Industrial Field of Application] The present invention relates to a thin film magnetic recording medium, and particularly to an apparatus for manufacturing a thin film magnetic recording medium mainly made of iron. [Prior Art] Thin-film magnetic recording media are being put into practical use as high-density magnetic recording media. Thin-film magnetic recording media, which have the best magnetic properties among conventional magnetic recording media of this type, are manufactured by vacuum-depositing the ferromagnetic material cobalt or cobalt alloy onto a substrate such as a polymer film. has been done. However, the use of cobalt-based metals as magnetic materials has two drawbacks: firstly, the magnetic film formed using this metal has poor corrosion resistance, and secondly, cobalt is a scarce resource and its supply is unstable. Moreover, it is accompanied by the problem of high price. To solve these problems, iron-based thin film magnetic recording media containing iron or iron as a main component and methods for manufacturing the same have been proposed. (Special application 1982-
No. 86727). In particular, in this method, iron or a ferromagnetic material mainly composed of iron is vacuum-deposited on a non-magnetic base material, and at the same time, a mixed gas of nitrogen gas and oxygen gas is ionized and irradiated onto the base material. By doing so, a magnetic film is formed. Furthermore, when ions having high energy are irradiated to generate nuclei of magnetic particles, if the number of incident metal vapor particles is small, the magnetic film may be damaged during film formation. For this reason, a method has been proposed to manufacture thin-film magnetic recording media by irradiating the base material with excited molecules of a mixed gas (hereinafter referred to as "excited species"), which have lower energy than ions, instead of ions with high energy. has been done. However, in the manufacturing method according to the prior art, for example, the tungsten filament is heated,
Excited species are generated by emitting thermoelectrons to generate glow discharge, and in this case, along with the generation of excited species, the generation of electrons and ions accompanying the glow discharge is unavoidable. Therefore, in addition to the excited species, there remains the problem that these electrons and ions, which have high energy due to the electric field in the glow tube, are irradiated onto the base material and damage the magnetic film. That is, in the conventional method of generating excited species by glow discharge, the coercive force and squareness ratio of the manufactured thin-film magnetic recording medium are Hc = 2400O〓e, respectively.
It shows a large value of Br/Bs=0.93, but the saturation magnetization is
At 3.9KG, it is smaller than thin-film magnetic recording media using cobalt-based metals. [Problems to be Solved by the Invention] Therefore, in the present invention, in view of the problems in the prior art described above, a thin film magnetic recording medium that exhibits a sufficient saturation magnetization value despite using an iron-based metal is manufactured. An object of the present invention is to provide an apparatus for manufacturing a thin film magnetic recording medium. [Means for Solving the Problems] According to the present invention, the above object comprises: a vacuum chamber in which at least a portion of the non-magnetic substrate is disposed;
A vapor generation source that generates a vapor of iron or a ferromagnetic material containing iron as a main component, and an excited species generation source that generates excited molecules of a mixed gas containing nitrogen and oxygen, , in a thin film magnetic recording medium manufacturing apparatus that manufactures a thin film magnetic recording medium by irradiating metal vapor from the vapor generation source and excited species from the excited species generation source, the excited species generation source is mixed. This is achieved by composing the gas with something that is photochemically activated. [Function] According to the thin-film magnetic recording medium manufacturing apparatus according to the present invention, the excited species generation source generates excited species through a photochemical process, and therefore, compared to a conventional glow discharge, there is less space in the reaction space. There are no electrons, and the energy of the incident light is low, at most a few eV, so the mixed gas is not ionized. Therefore, generation of electrons and ions that cause damage during film formation is prevented, and excited species can be stably supplied. Therefore, it is possible to manufacture a thin film magnetic recording medium that is excellent in coercive force, squareness ratio, and saturation magnetization characteristics. [Example] Next, an apparatus for manufacturing a thin film magnetic recording medium according to the present invention will be described in detail below. First, FIG. 1 shows the entire manufacturing apparatus, and in the figure, a nonmagnetic base material 1 made of a 35 mm square glass plate is placed above an evaporation source 6.
These are placed in a vacuum chamber 9 which is adjusted to a vacuum state of 10 −6 Torr or less by an exhaust pump 10 . The evaporation source 6 provided in the vacuum chamber 9 is made of a ferromagnetic material such as iron with a purity of 99.9%, and is heated and evaporated by irradiating it with an electron beam a from an electron gun 7. This generated ferromagnetic vapor b
is radially irradiated onto the substrate 1 and deposited on the surface of the substrate 1. The evaporation source 6 may contain a small amount of cobalt, nickel, etc. in addition to pure iron as described above. Further, the evaporation rate is controlled while being measured by a film thickness sensor 12 such as a quartz crystal film thickness meter (XTM) installed adjacent to and at the same height as the base material 1. In the device, the angle of incidence of metal vapor, ie, iron vapor, incident on the surface of the base material 1 is set to 80 degrees. On the other hand, the excited species source 8 generates excited species of a mixed gas of oxygen gas and nitrogen gas, and irradiates the surface of the base material 1 with the excited species. As shown in the figure, this excited species source 8 is composed of a reaction tube 81 and a light source 82, into which the aforementioned mixed gas of oxygen and nitrogen is introduced via a valve 83. . The light source 82 is provided at the lower end of the reaction tube 81, and contains a plurality of lamps 84. As shown in FIG. 2, this light source 82 has three 30W low-pressure mercury lamps 84 disposed inside thereof, each connected to an independent power source 85. These low pressure mercury lamps 84 are 1849Å and 2537Å
irradiate with two strong resonance lines of Å. Furthermore, a partition 86 is provided between the reaction tube 81 and the light source 82 so that the light is efficiently introduced into the reaction tube 81.
is made of quartz plate. As shown in FIG. 1, the mixed gas molecules and electrically neutral molecules, so-called excited species, excited in the reaction tube 81 pass through a grid 86 provided at the upper end of the reaction tube 81. The substrate 1 is irradiated through the beam. This excited species is indicated by the symbol C in the figure. According to the excited species source 8 as described above, a mixed gas of nitrogen and oxygen is introduced into the reaction tube 81 through the valve 83, and the low pressure mercury lamp 84 of the light source 82 is turned on. The mixed gas in the reaction tube 81 is photochemically excited by light irradiation from the light source 82, and electrically neutral molecules at an energy level higher than the ground state in the steady state of the quantum mechanical system, that is, excited It becomes a molecule. In this way, compared to the conventional method using glow discharge, the method of photochemically generating excited species has
Thermionic electrons are not generated or present in the reaction tube, and the energy of the incident light is low, at most a few eV, so ionization of the mixed gas does not occur. Therefore, no matter how much the power of the light source 82 is increased and the generation rate of excited species in the mixed gas is increased, high-energy electrons, ions, etc. are not generated, and the excitation is low-energy and electrically neutral. Seeds can be stably and reliably supplied. Therefore, it is possible to reduce damage to the film when the surface of the base material 1 is irradiated with the excited species to form a film. Next, specific test results of the thin film magnetic recording medium manufactured using the manufacturing apparatus of this example will be explained while comparing with a comparative example. first,
As an example of the present invention, the apparatus shown in FIG. 1 was used, and the evaporation source 6 was iron with a purity of 99.9%. On the other hand, a comparative example was carried out using a conventional device that generates excited species using glow discharge and using the same evaporation source. In both Examples and Comparative Examples, the degree of vacuum in the vacuum chamber was 1x10 -4 Torr, the amount of mixed gas containing nitrogen gas and oxygen gas introduced was 1 to 2 scc/min, and the evaporation rate from the evaporation source was Control was performed so that the indicated value of a crystal film thickness meter (XTM) installed adjacent to and at the same height as the base material 1 was 20 Å/sec. Further, in the example of the present invention, three 30W low-pressure mercury lamps were turned on as light sources. Next, for the magnetic recording medium thus formed, the M of the magnetic film was measured using a sample vibrating magnetometer.
-H characteristics were measured, and the coercive force, saturation magnetization, and squareness ratio were determined, and the characteristics of the device according to the present invention and the conventional glow discharge were compared.
The results of this comparison are shown in Table 1.

【表】 同表からも明らかな様に、本発明の実施例にな
る磁気記録媒体では、保磁力と角型比は従来例と
同等の値を保ちながら、その飽和磁化は、5200
(G)という値を示しており、従来例よりも30%
以上も大きい値の優れた特性値を示している。こ
れは、成膜時の励起種照射による膜へのダメージ
が、本発明による光化学的励起種源を用いること
により、従来のグロー放電により励起種を発生、
照射させる装置に比べて大幅に軽減できることに
よる。 なお、前記の磁気記録媒体を濃度5%の食塩水
中に3ヶ月間浸漬した後取り出し、その磁性膜の
外観及び磁気特性を調べたところ、浸漬前と比較
して変化は見られず、耐食性においても従来のグ
ロー放電により作製したものと同等の性態が得ら
れている。 前記本発明になる製造装置において、反応管8
1中に供給される窒素と酸素の混合ガス中の酸素
ガスの濃度は、10〜30%の範囲が適当であり、特
に20%前後の酸素ガス濃度において最も良好な結
果が得られる。即ち、混合ガスの酸素濃度が低く
なると、形成される磁性膜の角型比が劣化し、ま
た、逆に酸素濃度を高くすると磁性が低下し、約
50%程度で蒸着膜がほぼ非磁性となるからであ
る。 [発明の効果] 以上説明した通り、本発明になる薄膜型磁気記
録装置によれば、光化学的に励起することによ
り、エネルギの大きなエレクトロンやイオンの発
生しない励起種源により励起種を安定、確実に発
生し得、形成した磁性膜にダメージを与えず、も
つて保磁力、角型比共に従来のものと同等或はそ
れ以上の特性値を保ちながら、より飽和磁化の高
い磁性膜を有する薄膜型磁気記録媒体を製造する
ことが可能となる。
[Table] As is clear from the same table, in the magnetic recording medium according to the embodiment of the present invention, while the coercive force and squareness ratio maintain the same values as the conventional example, the saturation magnetization is 5200.
(G), which is 30% higher than the conventional example.
The above values also show excellent characteristic values with large values. This means that damage to the film due to excited species irradiation during film formation can be avoided by generating excited species by conventional glow discharge by using the photochemically excited species source according to the present invention.
This is because it can be significantly reduced compared to devices that irradiate. The above magnetic recording medium was immersed in saline solution with a concentration of 5% for 3 months and then taken out. When the appearance and magnetic properties of the magnetic film were examined, no changes were observed compared to before immersion, and the corrosion resistance was The same properties as those produced by conventional glow discharge were also obtained. In the manufacturing apparatus according to the present invention, the reaction tube 8
The concentration of oxygen gas in the mixed gas of nitrogen and oxygen supplied in 1 is suitably in the range of 10 to 30%, and particularly, the best results are obtained at an oxygen gas concentration of around 20%. That is, when the oxygen concentration of the mixed gas decreases, the squareness ratio of the formed magnetic film deteriorates, and conversely, when the oxygen concentration increases, the magnetism decreases, and approximately
This is because the deposited film becomes almost non-magnetic at about 50%. [Effects of the Invention] As explained above, according to the thin-film magnetic recording device of the present invention, by photochemically excitation, excited species can be stabilized and reliably produced by an excited species source that does not generate high-energy electrons or ions. A thin film that has a magnetic film with higher saturation magnetization, without damaging the formed magnetic film, and while maintaining characteristic values equal to or higher than conventional ones in terms of coercive force and squareness ratio. It becomes possible to manufacture a molded magnetic recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す薄膜型磁気記録
媒体の製造装置の概念図、第2図は第1図の励起
種源の光源部の詳細を示す図である。 1……基材、6……蒸発源、8……励起種、8
1……反応管、82……光源、83……バルブ。
FIG. 1 is a conceptual diagram of a thin-film magnetic recording medium manufacturing apparatus showing an embodiment of the present invention, and FIG. 2 is a diagram showing details of the light source section of the excited species source in FIG. 1. 1... Base material, 6... Evaporation source, 8... Excited species, 8
1...Reaction tube, 82...Light source, 83...Bulb.

Claims (1)

【特許請求の範囲】 1 非磁性基材の少なくとも一部をその内部に配
置する真空室と、鉄または鉄を主成分とする強磁
性体の蒸気を発生する手段と、窒素と酸素を含む
混合ガスの励起された分子を発生する励起種発生
手段とを備え、前記非磁性基材上に、蒸気発生手
段からの金属蒸気と、励起種発生手段からの励起
分子とを照射し、薄膜型磁気記録媒体を製造する
装置に於て、前記励起種発生手段が前記混合ガス
を光化学的に活性化して励起分子を発生するもの
からなることを特徴とする薄膜型磁気記録媒体の
製造装置。 2 特許請求の範囲第1項において、前記光学的
励起種発生手段は、前記窒素と酸素を含む混合ガ
スが供給される反応管と、前記混合ガスを励起す
る光を発生する光源部と、前記反応管と光源部と
の間を区切る光透過性の仕切部材を備えているこ
とを特徴とする薄膜型磁気記録媒体の製造装置。 3 特許請求の範囲第2項において、前記励起種
発生手段の光源部は、低圧水銀ランプにより構成
されていることを特徴とする薄膜型磁気記録媒体
の製造装置。 4 特許請求の範囲第1項において、前記窒素酸
素混合ガスは、その酸素ガス濃度が約10%から約
30%の範囲であることを特徴とする薄膜型磁気記
録媒体の製造装置。
[Claims] 1. A vacuum chamber in which at least a portion of a non-magnetic base material is disposed, a means for generating vapor of iron or a ferromagnetic material mainly composed of iron, and a mixture containing nitrogen and oxygen. and an excited species generating means for generating excited molecules of gas, the non-magnetic base material is irradiated with metal vapor from the vapor generating means and excited molecules from the excited species generating means, and a thin film type magnetic 1. An apparatus for manufacturing a thin film magnetic recording medium, wherein the excited species generating means photochemically activates the mixed gas to generate excited molecules. 2. In claim 1, the optically excited species generating means includes a reaction tube to which the mixed gas containing nitrogen and oxygen is supplied, a light source unit that generates light that excites the mixed gas, and 1. An apparatus for manufacturing a thin film magnetic recording medium, comprising a light-transmissive partition member that partitions a reaction tube and a light source. 3. An apparatus for manufacturing a thin-film magnetic recording medium according to claim 2, wherein the light source section of the excited species generating means is constituted by a low-pressure mercury lamp. 4. In claim 1, the nitrogen-oxygen mixed gas has an oxygen gas concentration of about 10% to about 10%.
30% range.
JP19948787A 1987-08-10 1987-08-10 Apparatus for producing thin film type magnetic recording medium Granted JPS6443815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19948787A JPS6443815A (en) 1987-08-10 1987-08-10 Apparatus for producing thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19948787A JPS6443815A (en) 1987-08-10 1987-08-10 Apparatus for producing thin film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6443815A JPS6443815A (en) 1989-02-16
JPH043010B2 true JPH043010B2 (en) 1992-01-21

Family

ID=16408625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19948787A Granted JPS6443815A (en) 1987-08-10 1987-08-10 Apparatus for producing thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6443815A (en)

Also Published As

Publication number Publication date
JPS6443815A (en) 1989-02-16

Similar Documents

Publication Publication Date Title
JPS60221566A (en) Thin film forming device
JPS5845892B2 (en) Sputter deposition equipment
US6812164B2 (en) Method and apparatus for ionization film formation
JPS5812728B2 (en) Jikikirokubaitaino Seihou
CN1623008A (en) Method for formation of titanium nitride film
JPH043010B2 (en)
US4869835A (en) Ion source
JPS6124214A (en) Manufacture of co-o thin film type vertical magnetic recording medium
JPS62298027A (en) Production of thin film type magnetic recording medium
JPH0334619B2 (en)
JPH06136508A (en) Method for forming highly saturated magnetized iron nitride film and structure having the film
JPH02275798A (en) Apparatus and method for forming diamond membrane
JP2529220B2 (en) Method for producing sulfide phosphor film
JPS63251930A (en) Production of thin film type magnetic recording medium
JPS60231924A (en) Production of thin film type magnetic recording medium
JPS60246599A (en) Method and device for generating homogeneous large capacity plasma of high density and low electron temperature
JPS6362872A (en) Formation of thin film
Zschornack et al. ECRIS/EBIS Based Low-Energy Ion Implantation Technologies
JPS63251931A (en) Production of thin film type magnetic recording medium
JPH03253564A (en) Sputtering device
JPS60236113A (en) Magnetic recording material and its production
JPS5996261A (en) Thin film forming device
JPH0917597A (en) Device and method for generating plasma
JPH01139758A (en) Method and device for thin film vapor deposition
Fleck Formaldehyde on the silver (111) surface: Dissociation and polymerization induced by ultraviolet photons and low-energy electrons