JPS60231924A - Production of thin film type magnetic recording medium - Google Patents

Production of thin film type magnetic recording medium

Info

Publication number
JPS60231924A
JPS60231924A JP8672784A JP8672784A JPS60231924A JP S60231924 A JPS60231924 A JP S60231924A JP 8672784 A JP8672784 A JP 8672784A JP 8672784 A JP8672784 A JP 8672784A JP S60231924 A JPS60231924 A JP S60231924A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
iron
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8672784A
Other languages
Japanese (ja)
Other versions
JPH0334618B2 (en
Inventor
Tetsuo Tatsuno
龍野 哲男
Setsu Arikawa
有川 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8672784A priority Critical patent/JPS60231924A/en
Publication of JPS60231924A publication Critical patent/JPS60231924A/en
Publication of JPH0334618B2 publication Critical patent/JPH0334618B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which has the magnetic characteristic approximately equal to the magnetic characteristic of a magnetic recording medium formed by using iron as an essential material and by depositing diagonally cobalt thereon by evaporation and is highly resistant to corrosion even if a protective film is not formed thereon by ionizing a gaseous mixture composed of nitrogen and oxygen simultaneously with vapor deposition of iron on a non-magnetic base material. CONSTITUTION:Iron having 99.9% purity is used as a vapor source 1 and a 35mm. square glass substrate 2 is used as a non-magnetic base material. A magnetic film is formed thereon. More specifically, the atm. pressure in a vacuum vessel is maintained under a vacuum state of <=10<-6>Torr and electron rays are irradiated from an electron gun 5 to the source 1 to evaporate the source 1 so that the vapor of the iron generated therefrom is irradiated onto the substrate 2 at 80 deg. incident angle. A gaseous mixture composed of gaseous nitrogen and gaseous oxygen is introduced into an ion gun 3 of a Kaufmann type via a valve 4 and is ionized in the gun 3. The ionized gaseous mixture is irradiated onto the substrate 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄を主材料とした薄膜型磁気記録媒体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film magnetic recording medium mainly made of iron.

〔従来技術〕[Prior art]

いわゆる薄膜型磁気記録媒体は、高密度磁気記録媒体と
してその実用化が図られつ\ある。
So-called thin-film magnetic recording media are being put into practical use as high-density magnetic recording media.

従来、この種の高密度磁気記録媒体で最も優れたものは
、コバルトまたはコバルト合金等の強磁性材料を、非磁
性の基材の上に斜めから真空蒸着して磁性膜が作られる
が、こうして作られた磁性膜は、保磁力が10000e
あり、また角型比は、0.9以上ある。
Conventionally, in the best high-density magnetic recording media of this type, a magnetic film is created by diagonally vacuum-depositing a ferromagnetic material such as cobalt or a cobalt alloy onto a non-magnetic base material. The produced magnetic film has a coercive force of 10,000e.
The squareness ratio is 0.9 or more.

しかし、コバルト系薄膜型磁気記録媒体の実用について
、二つの大きな問題が存在する。第一に、コバルト系の
磁性膜は、それ自体に実用上充分な耐蝕性が無く、従来
では、磁性膜に保護膜を施して使用している。しかし、
同保護膜をもってしても耐蝕性は、充分でなく2例えば
濃度5%の塩水に浸漬して外観又は磁気特性に変化が認
められないのはせいぜい2日間程度である。この耐蝕性
については、同塩水中で1ケ月程度耐えられる程度の耐
蝕性が要望されているところである。
However, there are two major problems with the practical use of cobalt-based thin film magnetic recording media. First, the cobalt-based magnetic film itself does not have sufficient corrosion resistance for practical use, and conventionally, the magnetic film is used with a protective film applied thereto. but,
Even with the same protective film, the corrosion resistance is not sufficient; for example, after being immersed in salt water with a concentration of 5%, no change in appearance or magnetic properties is observed for about two days at most. Regarding this corrosion resistance, there is a demand for corrosion resistance that can withstand about one month in the same salt water.

第二にコバルトは資源が少なく高価なので資源が豊富で
価格も安い鉄等の材料の利用が望まれていたが、鉄を使
用したものでは、薄膜型磁気記録媒体で保磁力が100
00e以上、角型比0.9以上で、しかも優れた耐蝕性
を有する高密度磁気記録媒体は得られなかった。
Secondly, since cobalt is a scarce resource and is expensive, it has been desired to use materials such as iron, which is abundant in resources and inexpensive.
A high-density magnetic recording medium having a squareness ratio of 00e or more, a squareness ratio of 0.9 or more, and excellent corrosion resistance could not be obtained.

〔発明の目的〕[Purpose of the invention]

この発明は、薄膜型磁気記録媒体の上記のような要望を
満たすべくなされたもので、鉄を主材料とした優れた磁
気特性と耐蝕性とを有する磁気記録媒体の製造方法を提
供することを目的とする。
The present invention was made to meet the above-mentioned needs for thin-film magnetic recording media, and aims to provide a method for manufacturing a magnetic recording medium that is mainly made of iron and has excellent magnetic properties and corrosion resistance. purpose.

〔発明の構成〕[Structure of the invention]

この発明による薄膜型磁気記録媒体の製造方法は、非磁
性の基材上に鉄を蒸着すると同時に。
The method for manufacturing a thin film magnetic recording medium according to the present invention simultaneously evaporates iron onto a nonmagnetic base material.

窒素と酸素を含む混合ガスをイオン化し、これを上記基
材上に照射することによって開基村上に磁性膜を作製す
るものである。混合ガスのイオン化には、イオンガン或
いは高周波放電型。
A magnetic film is fabricated on the substrate by ionizing a mixed gas containing nitrogen and oxygen and irradiating it onto the base material. For ionization of mixed gas, use an ion gun or high frequency discharge type.

直流放電型、アーク放電型環、各種のイオンブレーティ
ングに使用される公知のイオン化手段を用いることがで
きる。
Known ionization means used for direct current discharge type, arc discharge type ring, and various types of ion brating can be used.

この場合に、上記混合ガス中の窒素ガスの濃度が高くな
ると、磁性膜の磁気特性において角型比が悪くなる傾向
があり、また逆に酸素ガスの濃度が高い場合は、磁性が
低下する傾向がある。従って実用的には、混合ガス中に
含まれる酸素ガスの濃度が10〜30%の範囲が適当で
あり。
In this case, when the concentration of nitrogen gas in the mixed gas increases, the squareness ratio tends to deteriorate in the magnetic properties of the magnetic film, and conversely, when the concentration of oxygen gas increases, the magnetism tends to decrease. There is. Therefore, practically, it is appropriate that the concentration of oxygen gas contained in the mixed gas is in the range of 10 to 30%.

特に20%前後の濃度で最も良好な結果が得られる。In particular, the best results are obtained at a concentration of around 20%.

〔実施例〕〔Example〕

次ぎに、この発明の実施例について説明すると、第1図
で示すように、純度99.9%の鉄を蒸発源1とし、非
磁性の基材として35鶴角のガラス製基板2を用い、こ
の上に磁性膜を作製した。
Next, an embodiment of the present invention will be described. As shown in FIG. 1, iron with a purity of 99.9% is used as the evaporation source 1, and a glass substrate 2 with a diameter of 35 mm is used as the non-magnetic base material. A magnetic film was formed on this.

即ち、真空槽内の気圧を1O−6Torr以下の真空状
態とし、電子銃5から上記蒸発源1に電子線を照射して
、同蒸発源1を蒸発させ、これから発生した鉄の蒸気を
80°の入射角で基板2の上に照射した。またこれと同
時に、バルブ4を介してカウフマン型のイオンガン3に
窒素ガスと酸素ガスを含む混合ガスを導入し、これを同
イオンガン3においてイオン化し、基板2上に照射した
。この時の真空槽内の真空度は、lXl0−’Torr
になり、また、混合ガスの導入量を1〜2sec/ m
in、基板2上のイオン電流密度を0.2111A/C
IAとした。この時の蒸発源1からの蒸発速度は、基板
2に隣接し、かつこれと同じ高さ番)設置したセンサー
により測定しながら、これと連動させた水晶振動式膜厚
計(XTM)の指示イ直が20人/SになるようにII
J御した。
That is, the atmospheric pressure in the vacuum chamber is set to a vacuum state of 10-6 Torr or less, and the electron beam is irradiated from the electron gun 5 to the evaporation source 1 to evaporate the evaporation source 1, and the iron vapor generated from it is heated at 80°. The light was irradiated onto the substrate 2 at an incident angle of . At the same time, a mixed gas containing nitrogen gas and oxygen gas was introduced into the Kauffman type ion gun 3 through the valve 4, and the ion gun 3 ionized this gas, and irradiated it onto the substrate 2. The degree of vacuum in the vacuum chamber at this time is lXl0-'Torr
In addition, the amount of introduced mixed gas is 1 to 2 sec/m
in, the ion current density on substrate 2 is 0.2111A/C
It was designated as IA. At this time, the evaporation rate from the evaporation source 1 is measured by a sensor installed adjacent to and at the same height as the substrate 2, while the quartz crystal film thickness meter (XTM) linked to the sensor indicates the evaporation rate. II so that the number of staff in charge will be 20/S.
I controlled J.

なお、混合ガスについては、酸素ガスと窒素ガスの総和
に対する酸素ガスの濃度を0.5゜10、20.50%
と、5段階に別けて実施した。
For mixed gases, the concentration of oxygen gas is 0.5°10%, 20.50% of the total of oxygen gas and nitrogen gas.
It was conducted in five stages.

次ぎにこうして作製された磁気記録媒体についてそれぞ
れ試料振動型磁力計によって磁性膜のM−H特性を測定
し、保磁力と角型比をめ。
Next, the M-H characteristics of the magnetic film of each of the magnetic recording media thus produced were measured using a sample vibrating magnetometer, and the coercive force and squareness ratio were determined.

さらに光干渉式膜厚計によって磁性膜の膜厚を測定した
。この結果を表1に示す。なお、磁性膜の膜厚は、何れ
の磁気記録媒体も1000〜1500人程度であった。
Further, the thickness of the magnetic film was measured using an optical interference type film thickness meter. The results are shown in Table 1. The thickness of the magnetic film was approximately 1000 to 1500 in all magnetic recording media.

次ぎに、これらの磁気記録媒体を濃度5%の塩水に3ケ
月間浸漬した後、外観及び磁気特性表 1 を調べたところ、浸漬前と比べてその磁性膜に変化は見
られなかった。
Next, after immersing these magnetic recording media in salt water with a concentration of 5% for 3 months, the appearance and magnetic properties (Table 1) were examined, and no change was observed in the magnetic film compared to before immersion.

この結果、上記磁気記録媒体の内、酸素ガス濃度が10
%のものでは、コバルト系の磁性膜とはソ゛同等の磁気
特性が得られ、特に空気に近い酸素ガス濃度である20
%の条件で作製したものでは、それ以上の磁気特性が得
られた。また。
As a result, the oxygen gas concentration in the magnetic recording medium was 10
%, magnetic properties equivalent to those of cobalt-based magnetic films can be obtained, especially when the oxygen gas concentration is close to that of air, 20%.
%, better magnetic properties were obtained. Also.

この磁性膜は、上記耐蝕試験において、窒化鉄と同程度
の優れた耐蝕性を有することが確認された。
This magnetic film was confirmed to have excellent corrosion resistance comparable to that of iron nitride in the above corrosion resistance test.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明によれば、比較的安価で安
定した供給が期待できる鉄を主材料として、コバルト系
の斜方蒸着による磁気記録媒体とは一′同等の磁気特性
を有し、保護膜を施さなくとも耐蝕性に優れた磁気記録
媒体を得ることができる。
As explained above, according to the present invention, the magnetic recording medium is made of iron, which is relatively inexpensive and can be expected to be supplied stably, as the main material, and has magnetic properties equivalent to that of a magnetic recording medium made by obliquely evaporating cobalt. A magnetic recording medium with excellent corrosion resistance can be obtained without applying a film.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明を実施する装置の一例を模式的に示し
た説明図である。 1−蒸発源(鉄) 2一基板(非磁性基材)特許出願人
 太陽誘電株式会社 代理人 弁理士 北條和由
The drawing is an explanatory diagram schematically showing an example of an apparatus for implementing the present invention. 1- Evaporation source (iron) 2- Substrate (non-magnetic base material) Patent applicant Taiyo Yuden Co., Ltd. Agent Patent attorney Kazuyoshi Hojo

Claims (1)

【特許請求の範囲】 1、非磁性の基材上に磁性材料を真空蒸着して薄膜型磁
気記録媒体を製造する方法において。 基材上に加熱蒸発させた鉄の蒸気を入射させると同時に
、窒素と酸素を含む混合ガスのイオンを、上記基材上に
照射して同基材上に磁性膜を作製するようにしたことを
特徴とする薄膜型磁気記録媒体の製造方法。 2、反応ガスが空気である特許請求の範囲第1項記載の
薄膜型磁気記録媒体の製造方法。
[Claims] 1. A method for manufacturing a thin-film magnetic recording medium by vacuum-depositing a magnetic material on a non-magnetic base material. A magnetic film is created on the base material by injecting heated evaporated iron vapor onto the base material and at the same time irradiating the base material with ions of a mixed gas containing nitrogen and oxygen. A method for manufacturing a thin film magnetic recording medium characterized by: 2. The method for manufacturing a thin film magnetic recording medium according to claim 1, wherein the reactive gas is air.
JP8672784A 1984-04-28 1984-04-28 Production of thin film type magnetic recording medium Granted JPS60231924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8672784A JPS60231924A (en) 1984-04-28 1984-04-28 Production of thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8672784A JPS60231924A (en) 1984-04-28 1984-04-28 Production of thin film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60231924A true JPS60231924A (en) 1985-11-18
JPH0334618B2 JPH0334618B2 (en) 1991-05-23

Family

ID=13894886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8672784A Granted JPS60231924A (en) 1984-04-28 1984-04-28 Production of thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60231924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298027A (en) * 1986-06-16 1987-12-25 Taiyo Yuden Co Ltd Production of thin film type magnetic recording medium
US5514477A (en) * 1992-09-11 1996-05-07 Hitachi, Ltd. Corrosion-resistant laminate which consists of a metal of a single mass number deposited on a substrate
US8872615B2 (en) 2010-05-28 2014-10-28 Institute Of Geological And Nuclear Sciences Limited Magnetic nanoclusters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298027A (en) * 1986-06-16 1987-12-25 Taiyo Yuden Co Ltd Production of thin film type magnetic recording medium
JPH054729B2 (en) * 1986-06-16 1993-01-20 Taiyo Yuden Kk
US5514477A (en) * 1992-09-11 1996-05-07 Hitachi, Ltd. Corrosion-resistant laminate which consists of a metal of a single mass number deposited on a substrate
US8872615B2 (en) 2010-05-28 2014-10-28 Institute Of Geological And Nuclear Sciences Limited Magnetic nanoclusters

Also Published As

Publication number Publication date
JPH0334618B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
US4975324A (en) Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
GB1599161A (en) Magnetic recording medium and method of making the same
US4002546A (en) Method for producing a magnetic recording medium
JPS60231924A (en) Production of thin film type magnetic recording medium
JPS6153770B2 (en)
JPS63152017A (en) Magnetic recording medium
JPS6124214A (en) Manufacture of co-o thin film type vertical magnetic recording medium
JPH0334619B2 (en)
JPS61242321A (en) Magnetic recording medium
JPS62298027A (en) Production of thin film type magnetic recording medium
Ishii et al. Deposition of ferromagnetic metal thin films by ion beam sputtering
JPS63251931A (en) Production of thin film type magnetic recording medium
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPS60125933A (en) Production of magnetic medium
JPS60236113A (en) Magnetic recording material and its production
JPS5984407A (en) Magnetic recording medium
JP2717611B2 (en) Magnetic recording medium and method of manufacturing the same
JPS62114118A (en) Magnetic recording material and its production
KR900002611B1 (en) Magnetic recording carrier
JPS6154039A (en) Manufacture of magnetic recording medium
JPH01220216A (en) Magnetic recording medium
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPS5916144A (en) Production for magnetic recording medium
JPS5989404A (en) Magnetic recording medium and manufacture thereof
JPS63104313A (en) Manufacture of gamma iron oxide thin film