JPS61242065A - Manufacture of complementary type transistor - Google Patents

Manufacture of complementary type transistor

Info

Publication number
JPS61242065A
JPS61242065A JP60084831A JP8483185A JPS61242065A JP S61242065 A JPS61242065 A JP S61242065A JP 60084831 A JP60084831 A JP 60084831A JP 8483185 A JP8483185 A JP 8483185A JP S61242065 A JPS61242065 A JP S61242065A
Authority
JP
Japan
Prior art keywords
region
collector
base
island
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60084831A
Other languages
Japanese (ja)
Inventor
Teruo Tabata
田端 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60084831A priority Critical patent/JPS61242065A/en
Priority to KR1019860002819A priority patent/KR900000818B1/en
Priority to CN86102691.8A priority patent/CN1004456B/en
Publication of JPS61242065A publication Critical patent/JPS61242065A/en
Priority to US07/119,668 priority patent/US4780425A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8228Complementary devices, e.g. complementary transistors
    • H01L21/82285Complementary vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor

Abstract

PURPOSE:To narrow base width, and to reduce the dispersion of base width by forming a vertical type PNP transistor by a collector region and a base region through ion implantation. CONSTITUTION:The ions of an impurity giving a P-type collector region 9 reaching a collector buried layer 6 is shaped. An N-type base region 10 is formed to the surface of the collector region 9 in the first island region 2, and a collector leading-out region 11 is shaped simultaneously into a second island region 3. A P-type emitter region 13 is formed to the surface of the base region 10 in the island region 2, and a P-type base region 14 is shaped to the surface of the island region 3. Accordingly, base width is narrowed, and the dispersion of base width can be reduced.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は相補型トランジスタの製造方法、特に特性の良
好な縦型PNPトランジスタを有する相補型トランジス
タの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing a complementary transistor, and particularly to a method for manufacturing a complementary transistor having a vertical PNP transistor with good characteristics.

(ロ)従来の技術 従来の相補型トランジスタの製造方法を第2図A乃至第
2図Eを参照して詳述する。
(B) Prior Art A conventional method for manufacturing complementary transistors will be described in detail with reference to FIGS. 2A to 2E.

先ず第2図Aに示す如く、P型の半導体基板69表面に
予定の第1および第2島領域と対応する部分に夫々N+
型の埋め込み層62(至)を拡散して形成し、埋め込み
層国(ト)を囲む様にP+型の上下分離領域(財)の下
拡散を行う。更に第1島領域の埋め込み層O2上にはP
+型のコレクタ埋め込み層(至)を重畳して拡散する。
First, as shown in FIG. 2A, N+ is applied to the surface of the P-type semiconductor substrate 69 at portions corresponding to the planned first and second island regions.
A type buried layer 62 (to) is formed by diffusion, and diffusion is performed under a P+ type upper and lower separation region (goods) so as to surround the buried layer country (g). Furthermore, P is formed on the buried layer O2 of the first island region.
A + type collector buried layer (to) is superimposed and diffused.

次に第2図Bに示す如く、基板C31)表面にN型のエ
ピタキシャル層06)ヲ成長させる。このとき埋め込み
層O2(ト)、コレクタ埋め込み層(至)および上下分
離領域(財)の下拡散は上下方向に拡散され、所定の巾
を有する埋め込み層(3祁紳レクタ埋め込み層(至)を
形成している。
Next, as shown in FIG. 2B, an N-type epitaxial layer 06) is grown on the surface of the substrate C31). At this time, the buried layer O2 (T), the collector buried layer (T), and the bottom diffusion of the upper and lower separation regions (T) are diffused in the vertical direction, and the buried layer (3) with a predetermined width is formed. is forming.

次に第2図Cに示す如く、エピタキシャル層(至)表面
より上下分離領域(ロ)の下拡散と第1の島領域07)
にコレクタ導出領域C1lを同時に拡散し、上下分離領
域(2)を連結させてエピタキシャル層(ト)”kPN
分離し第1および第2の島領域CMaw形成する。
Next, as shown in FIG. 2C, from the surface of the epitaxial layer (to), the upper and lower isolation regions (b) are diffused and the first island region 07) is formed.
The collector lead-out region C1l is simultaneously diffused into
The first and second island regions CMaw are separated.

またコレクタ導出領域OIは第1の島領域07)のPN
Pトランジスタのコレクタ埋め込み層(ハ)まで達し両
者で共同してエピタキシャル層(至)を完全に取す囲ん
でPNP )ランジスタのベース領域顛を形成する。
In addition, the collector derivation area OI is the PN of the first island area 07).
The base region of the PNP transistor is formed by reaching the collector buried layer (c) of the P transistor and completely enclosing the epitaxial layer (c) together.

次に第2図りに示す如く、エピタキシャル層(至)表面
よりボロンを選択拡散し、第1の島領域C37)のベー
ス領域(ト)表面にPNP)ランジスタのエミッタ領域
0υを形成し、第2の島領域(至)にはNPN)ランジ
スタのベース領域(42を同時に形成する。
Next, as shown in the second diagram, boron is selectively diffused from the surface of the epitaxial layer (to) to form an emitter region 0υ of the PNP transistor on the surface of the base region (T) of the first island region C37). At the same time, a base region (42) of an NPN transistor is formed in the island region (toward).

最後に第2図Eに示す如く、第1の島領域Gηのベース
領域(40表面にN+型のベースコンタクト領域(43
ヲ形成し、同時に第2の島領域(至)のベース領域(4
2表面にNPN )ランジスタのエミッタ領域(4滲と
エピタキシャル層間表面にコレクタコンタクト領域G!
りを形成する。
Finally, as shown in FIG. 2E, an N+ type base contact region (43) is formed on the base region (40) of the first island region Gη.
At the same time, the base region (4) of the second island region (to) is formed.
2 NPN on the surface) Emitter region of the transistor (4) Collector contact region on the surface between the epitaxial layer G!
form a ridge.

以上に詳述した従来の方法では縦型PNPトランジスタ
とNPNトランジスタとを同一チップ内に集積化で営る
。なお斯る縦型PNP )ランジスタの製造方法は例え
ば、特開昭59−172738号公報等に示されている
In the conventional method detailed above, a vertical PNP transistor and an NPN transistor are integrated in the same chip. A method for manufacturing such a vertical PNP transistor is disclosed, for example, in Japanese Patent Application Laid-Open No. 172738/1983.

(/→ 発明が解決しようとする問題点しかしながら従
来の相補型トランジスタの製造方法では、縦型PNP 
)ランジスタのベース領域(40がエピタキシャル層(
至)で形成されるので、均一ベースで且つベース巾を狭
くできない欠点があった。このため縦型PNP)ランジ
スタの利得帯域中種(f?)が高くできず、またエピタ
キシャル層(至)の膜厚のばらつきによりh□がばらつ
く欠点となっていた。
(/→ Problems to be solved by the invention However, in the conventional manufacturing method of complementary transistors, vertical PNP
) The base region of the transistor (40 is the epitaxial layer (
Since the base is formed with a uniform base and the width of the base cannot be narrowed. For this reason, the vertical type PNP) transistor cannot have a high gain band width (f?), and also has the disadvantage that h□ varies due to variations in the thickness of the epitaxial layer.

(ロ)問題点を解決するための手段 本発明は断点に鑑みてなされ、縦型PNP)ランジスタ
をイオン注入によるコレクタ領域(9)およヒヘース領
域α9で形成することにより縦型PNPトランジスタの
特性を改善し且つNPN )ランジスタの特性を改善す
る相補型トランジスタの製造方法を実現するものである
(b) Means for Solving the Problems The present invention has been made in view of the above points, and the vertical PNP transistor is formed by ion implantation using the collector region (9) and the heath region α9. The present invention provides a method for manufacturing a complementary transistor that improves the characteristics and improves the characteristics of an NPN transistor.

(ホ)作用 本発明に依れば縦型PNP )ランジスタを二重拡散型
に形成できるので縦型PNP )ランジスタの特性を大
巾に改善できるととも′IIcNPN)ランジスタのV
C,(、□?)も低減できるのである。
(e) Effects According to the present invention, the characteristics of the vertical PNP transistor can be greatly improved because the transistor can be formed into a double diffusion type.
C, (,□?) can also be reduced.

四 実施例 本発明に依る相補型トランジスタの製造方法を第1図人
乃至第1図Hな参照して詳述する。
4. Embodiment A method of manufacturing a complementary transistor according to the present invention will be described in detail with reference to FIGS.

本発明の第1の工程は、P型のシリコン半導体基板(1
1表面の予定の第1およびfs2の島領域+21(31
の底面となる部分にN 型の埋め込み層(41(51を
形成し、第1の島領域(2)の埋め込み層(4)上にP
+型のコレクタ領域 N型のエピタキシャル層(7)を積層することにある(
第1図人および第1図B参照)。
The first step of the present invention is a P-type silicon semiconductor substrate (1
1 surface planned first and fs2 island area +21 (31
An N-type buried layer (41 (51) is formed on the bottom surface of the
The purpose is to stack an N-type epitaxial layer (7) in the +-type collector region (
(See Figure 1 Person and Figure 1B).

本工程では第1図人に示す如く基板(1)表面に選択的
にアンチモンを拡散してN 型の埋め込み層’ +41
(51を第1および第2の島領域+21(31の底面と
なる部分に形成する。なお第1の島領域(21の埋め込
み層(4)上にはボロンを拡散して縦型PNPトランジ
スタのコレクタ埋め込み層(6)を形成し、同時に各埋
め込み層(41(51y囲む様に上下分離領域(8)の
下拡散も行う。
In this process, as shown in Figure 1, antimony is selectively diffused onto the surface of the substrate (1) to form an N-type buried layer'+41.
(51 is formed on the bottom surface of the first and second island regions +21 (31). Boron is diffused on the buried layer (4) of the first island region (21) to form a vertical PNP transistor. A collector buried layer (6) is formed, and at the same time, diffusion is also performed under the upper and lower isolation regions (8) so as to surround each buried layer (41 (51y)).

次に第1図Bに示す如く、基板(1)上にエピタキシャ
ル層(7)を周知のエピタキシャル技術によって約7μ
m厚に成長させ、この際に埋め込み層(41(5)コレ
クタ埋め込み層(6)および上下分離領域(8)の下拡
散を上下方向に拡散させ所定の巾の埋め込み層+41(
51およびPNPトランジスタのコレクタ埋め込み層(
6)を形成している。
Next, as shown in FIG. 1B, an epitaxial layer (7) of about 7 μm is formed on the substrate (1) by a well-known epitaxial technique.
m thickness, and at this time, the bottom diffusion of the buried layer (41(5)), the collector buried layer (6), and the vertical separation region (8) is diffused in the vertical direction to form a buried layer (41(5)) with a predetermined width.
51 and the collector buried layer of the PNP transistor (
6).

本発明の第2の工程は、第1の島領域(21表面からP
型を与える不純物をイオン注入し、コレクタ埋め込み層
(6)まで達するPiのコレクタ領域(9)を形成する
ことにある(第1図C参照)。
The second step of the present invention is to remove P from the first island region (21 surface).
The purpose is to form a Pi collector region (9) that reaches the collector buried layer (6) by ion-implanting impurities that provide a type (see FIG. 1C).

このイオン注入はボロンンドーズ量1013〜101′
crrL−”で加速電圧80〜200Ke■で行い、第
1の島領域(2)のコレクタ埋め込み層(6)上のエピ
タキシャル層(7)表面に不純物を選択的に注入した後
約2〜3μの深さドライブインさせて、コレクタ埋め込
み層(6)まで到達させる。
This ion implantation has a boron dose of 1013 to 101'
After selectively implanting impurities into the surface of the epitaxial layer (7) on the collector buried layer (6) of the first island region (2) by applying an accelerating voltage of 80 to 200 Ke, The depth is driven in to reach the collector buried layer (6).

なお本工程では第2の島領域(3)にはイオン注入を行
なわない。
Note that in this step, ion implantation is not performed in the second island region (3).

本工程で第1の島領域(2)に縦型PNP )ランジス
タのコレクタ領域(9)を拡散することにより、縦WP
NP)ランジスタのコレクタ領域(9)の不純物濃度を
高く設定できる。
In this step, by diffusing the collector region (9) of the vertical PNP transistor into the first island region (2), the vertical WP
The impurity concentration of the collector region (9) of the NP) transistor can be set high.

本発明の第3の工程は、第1の島領域(2)のコレクタ
領域(9)表面にN型のベース領域(IOを形成し且つ
第2の島領域(3)にコレクタ導出領域任Jを同時に形
成することにある(第1図り参照)。
The third step of the present invention is to form an N-type base region (IO) on the surface of the collector region (9) of the first island region (2), and to form a collector lead-out region J in the second island region (3). (See first diagram).

本工程では第1の島領域(2)のコレクタ領域(9)表
面と第2の島領域(3)表面の一部とに同時にリンケイ
オン注入する。このイオン注入はリンをドーズ量101
5〜101?ぼ−!で加速電圧60〜100KeVで行
い、深さ約1μにドライブインする。この結果第1の島
領域(2)のコレクタ領域(9)表面には縦型PNP 
)ランジスタを構成するN型ベース領域(1(lが形成
され、同時に第2の島領域(3)表面の一部にはNPN
 )ランジスタのコレクタ領域にN型のコレクタ導出領
域(111が形成される。
In this step, Rinkei ions are simultaneously implanted into the surface of the collector region (9) of the first island region (2) and a part of the surface of the second island region (3). This ion implantation uses phosphorus at a dose of 101
5-101? Bo-! It is performed at an accelerating voltage of 60 to 100 KeV, and the drive-in is performed to a depth of about 1 μ. As a result, vertical PNPs are formed on the surface of the collector region (9) of the first island region (2).
) is formed on the N-type base region (1 (l) constituting the transistor, and at the same time NPN is formed on a part of the surface of the second island region (3).
) An N-type collector lead-out region (111) is formed in the collector region of the transistor.

上述した第3の工程後、第1図Eに示す如く、エピタキ
シャル層(7)表面より上下分離領域(8)の1拡tl
PNP)ランジスタのコレクタ導出領域(121を同時
に拡散し、上下分離領域(8)を連結させてエピタキシ
ャル層(7)をPN分離して、第1の島領域(2)と第
2の島領域(3)とを電気的に分離する。またコレクタ
導出領域azはPNP)ランジスタのコレクタ埋め込み
層(6)まで達し、コレクタ導出領域σ2はコレクタ領
域(9)全周を囲んでいろ。
After the third step described above, as shown in FIG.
PNP) The collector lead-out region (121) of the transistor is simultaneously diffused, the upper and lower isolation regions (8) are connected, and the epitaxial layer (7) is separated into PN regions to form the first island region (2) and the second island region (2). 3).The collector lead-out region az should reach the collector buried layer (6) of the PNP transistor, and the collector lead-out region σ2 should surround the entire periphery of the collector region (9).

本発明の第4の工程は、第1の島領域(2)のベース領
域αα表面にPJのエミッタ領域αりを形成し且つ第2
の島領域(3)表面にP型のベース領域α4を形成する
ことにある(第1図C参照)。
The fourth step of the present invention is to form an emitter region α of PJ on the surface of the base region αα of the first island region (2), and to form a second
The purpose is to form a P-type base region α4 on the surface of the island region (3) (see FIG. 1C).

本工程でPNP )ランジスタは完成され、ベース領域
QQIとエミッタ領域0の二重拡散構造な採るので縦型
PNP )ランジスタのベース巾のばらつきが二重拡散
型のNPN)ランジスタとほぼ同等になる。なお本工程
でコレクタ導出領域α2表面に重畳してベース拡散して
コレクタコンタクト領域(151を形成しても良い。
In this step, the PNP transistor is completed, and since it adopts a double-diffused structure of the base region QQI and the emitter region 0, the variation in base width of the vertical PNP transistor is almost the same as that of the double-diffused NPN transistor. Note that in this step, the collector contact region (151) may be formed by base diffusion overlapping the surface of the collector lead-out region α2.

本発明の第5の工程は、第2の島領域(3)のベース領
域04表面にN+型のエミッタ領域α61を形成するこ
とにある(第1図C参照)。
The fifth step of the present invention is to form an N+ type emitter region α61 on the surface of the base region 04 of the second island region (3) (see FIG. 1C).

本工程ではNPN)ランジスタを形成するとともに、第
1の島領域(2)のベース領域00表面にベースコンタ
クト領域αηを形成し、第2の島領域(3)のコレクタ
導出領域α9表面にコレクタコンタクト領域0秒を形成
している。
In this step, an NPN) transistor is formed, and a base contact region αη is formed on the surface of the base region 00 of the first island region (2), and a collector contact region is formed on the surface of the collector lead-out region α9 of the second island region (3). A region of 0 seconds is formed.

本発明の最終工程は、周知の蒸着技術により蒸着アルミ
ニウムで各電極を形成することにある(第1図C参照)
The final step of the invention is to form each electrode with vapor-deposited aluminum by well-known vapor deposition techniques (see Figure 1C).
.

本工程ではエピタキシャル層(7)表面を被覆するシリ
コン酸化膜住9にコンタクト孔を形成し、第1の島領域
(2)に形成した縦をPNP)ランジスタのコレクタコ
ンタクト領域(151のベースコンタクト領域αηおよ
びエミッタ領域αりに夫々オーミック接触するコレクタ
電極鶴、1ベース電極c2Bおよびエミッタ電極のを形
成し、第2の島領域(3)に形成したNPN)ランジス
タのコレクタコンタクト領域αSベース領域L4および
エミッタ領域α0に夫々オーミック接触するコレクタ電
極(ハ)、ベース電極04)およびエミッタ電極(ハ)
を形成している。
In this step, a contact hole is formed in the silicon oxide film layer 9 covering the surface of the epitaxial layer (7), and the collector contact region (base contact region of 151) of the vertical PNP transistor formed in the first island region (2) is formed. A collector electrode, a first base electrode c2B, and an emitter electrode are formed in ohmic contact with αη and emitter region α, respectively, and the collector contact region αS base region L4 and Collector electrode (c), base electrode 04) and emitter electrode (c), each in ohmic contact with emitter region α0
is formed.

斯上した本発明方法に依れば、二重拡散型の縦型PNP
)ランジスタとNPN)ランジスタを同一チップ内に効
率良く集積化できるのである。
According to the method of the present invention described above, double-diffused vertical PNPs
) transistors and NPN) transistors can be efficiently integrated on the same chip.

(ト1 発明の効果 本発明に依れば縦型PNP )ランジスタを二重拡散型
の製造方法にできるので、従来の縦型PNPトランジス
タの均一ベース構造から拡散ベース構造にできる利点を
有する。この結果ベース巾はベース領域(1(lとエミ
ッタ領域旺3の拡散により制御され、大巾にベース巾を
狭くでき且つベース巾のばらつきを低減できる。これに
より高fT  の縦型PNP )ランジスタを同一チッ
プ内に容易に集積化できる。
(1) Effects of the Invention According to the present invention, a vertical PNP transistor can be manufactured using a double-diffusion type manufacturing method, so there is an advantage that the uniform base structure of the conventional vertical PNP transistor can be changed to a diffused base structure. As a result, the base width is controlled by the diffusion of the base region (l) and the emitter region (3), making it possible to significantly narrow the base width and reduce variations in the base width. Can be easily integrated into the same chip.

また本発明では二重拡散屋の縦型PNP )ランジスタ
とNPN )ランジスタとをお互いの工程を効率良く活
用することにより、極めて少ない工程数で実現できるの
である。即ち単独の工程は縦型PNP )ランジスタの
コレクタ拡散のみである。
In addition, in the present invention, the vertical type PNP transistor and the NPN transistor of the double diffuser can be realized with an extremely small number of steps by efficiently utilizing each other's processes. That is, the only single step is the collector diffusion of the vertical PNP transistor.

更に本発明では縦型PNP )ランジスタの特性な大巾
に改善するとともにNPN)ランジスタもコレクタ導出
領域(Ll)によりVcw Cs41 )を大巾に低減
できる利点を有する。
Furthermore, the present invention has the advantage that the characteristics of the vertical PNP transistor are greatly improved, and the NPN transistor also has the advantage of being able to greatly reduce Vcw Cs41 ) by the collector lead-out region (Ll).

更に本発明ではNPN)ランジスタのベース拡散および
エミッタ拡散をコントロー/l/″fることにより縦型
PNP )ランジスタとNPN)う/ジスタのベース巾
を独立して制御でき、両者のトランジスタのh□をコン
トロールできる。
Furthermore, in the present invention, by controlling the base diffusion and emitter diffusion of the NPN) transistor, the base widths of the vertical PNP) transistor and the NPN) transistor can be independently controlled. can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図人乃至第1図Hは本発明に依る相補型トランジス
タの製造方法を説明する断面図、第2図人乃至第2図E
は従来の相補型トランジスタの製造方法を説明する断面
図である。 主な図番の説明 (11は半導体基板、+21+3)は第1および第2の
島領域、14)i51は埋め込み層、(6)はコレクタ
埋め込み層、(7)はエピタキシャル膚、(8)は上下
分離領域、(9)は゛コレクタ領域、α〔はベース領域
、 (111はコレクタ導出領域、αJはエミッタ領域
、α41&tベース領域、αeはエミッタ領域である。
Figures 1 to 1H are cross-sectional views illustrating the method of manufacturing complementary transistors according to the present invention, and Figures 2 to 2E
FIG. 1 is a cross-sectional view illustrating a conventional method for manufacturing a complementary transistor. Explanation of main figure numbers (11 is semiconductor substrate, +21+3) is first and second island region, 14) i51 is buried layer, (6) is collector buried layer, (7) is epitaxial skin, (8) is The upper and lower separation regions, (9) are the collector region, α is the base region, (111 is the collector derivation region, αJ is the emitter region, α41&t base region, and αe is the emitter region.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板表面の第1および第2の島
領域底面に対応する部分に逆導電型の埋め込み層を形成
し且つ前記第1の島領域の埋め込み層に重畳して一導電
型のコレクタ埋め込み層を形成した後前記基板表面に逆
導電型のエピタキシャルを積層する工程、 前記第1の島領域表面から一導電型の不純物をイオン注
入し前記コレクタ埋め込み層まで達する様に拡散して一
導電型のトランジスタのコレクタ領域を形成する工程、 前記第1の島領域のコレクタ領域表面および前記第2の
島領域表面に逆導電型の不純物をイオン注入して拡散し
、一導電型トランジスタのベース領域および逆導電型ト
ランジスタのコレクタ導出領域を同時に形成する工程、 前記第1の島領域のベース領域表面および前記第2の島
領域表面に一導電型の不純物を拡散し、一導電型トラン
ジスタのエミッタ領域および逆導電量トランジスタのベ
ース領域を同時に形成する工程、 前記第2の島領域の前記ベース領域表面に逆導電型のエ
ミッタ領域を形成する工程とを具備することを特徴とす
る相補型トランジスタの製造方法。
(1) A buried layer of an opposite conductivity type is formed on the surface of a semiconductor substrate of one conductivity type in a portion corresponding to the bottom surfaces of the first and second island regions, and is superimposed on the buried layer of the first island region to form a buried layer of one conductivity type. After forming a type collector buried layer, stacking an epitaxial layer of the opposite conductivity type on the surface of the substrate, ion-implanting impurities of one conductivity type from the surface of the first island region and diffusing them so as to reach the collector buried layer. forming a collector region of a transistor of one conductivity type by ion-implanting and diffusing impurities of opposite conductivity type into the collector region surface of the first island region and the surface of the second island region; simultaneously forming a base region and a collector lead-out region of a transistor of opposite conductivity type; diffusing impurities of one conductivity type into the base region surface of the first island region and the surface of the second island region; A complementary type comprising the steps of: simultaneously forming an emitter region of the transistor and a base region of the opposite conductivity transistor; and forming an emitter region of opposite conductivity type on the surface of the base region of the second island region. Method of manufacturing transistors.
JP60084831A 1985-04-19 1985-04-19 Manufacture of complementary type transistor Expired - Lifetime JPS61242065A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60084831A JPS61242065A (en) 1985-04-19 1985-04-19 Manufacture of complementary type transistor
KR1019860002819A KR900000818B1 (en) 1985-04-19 1986-04-14 Complemental transistor manufacturing method
CN86102691.8A CN1004456B (en) 1985-04-19 1986-04-19 Semiconductor device and method of producing same
US07/119,668 US4780425A (en) 1985-04-19 1987-11-12 Method of making a bipolar transistor with double diffused isolation regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084831A JPS61242065A (en) 1985-04-19 1985-04-19 Manufacture of complementary type transistor

Publications (1)

Publication Number Publication Date
JPS61242065A true JPS61242065A (en) 1986-10-28

Family

ID=13841716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084831A Expired - Lifetime JPS61242065A (en) 1985-04-19 1985-04-19 Manufacture of complementary type transistor

Country Status (2)

Country Link
JP (1) JPS61242065A (en)
KR (1) KR900000818B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004183A (en) * 2017-07-03 2019-01-11 주식회사 케이이씨 Transient voltage suppressor and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212158A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS60194558A (en) * 1984-03-16 1985-10-03 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212158A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS60194558A (en) * 1984-03-16 1985-10-03 Hitachi Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004183A (en) * 2017-07-03 2019-01-11 주식회사 케이이씨 Transient voltage suppressor and manufacturing method thereof

Also Published As

Publication number Publication date
KR900000818B1 (en) 1990-02-17
KR860008619A (en) 1986-11-17

Similar Documents

Publication Publication Date Title
US4283236A (en) Method of fabricating lateral PNP transistors utilizing selective diffusion and counter doping
GB1058240A (en) Semiconductor device
JPS61242065A (en) Manufacture of complementary type transistor
GB1224802A (en) Semiconductor device and a method of manufacturing the same
JP2890509B2 (en) Method for manufacturing semiconductor device
JPS649742B2 (en)
JPH0684948A (en) Semiconductor device and manufacture thereof
JPH0451067B2 (en)
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0713969B2 (en) Vertical PNP transistor
JPS6347965A (en) Semiconductor integrated circuit
JPS62216357A (en) Manufacture of semiconductor integrated circuit
JPS63245957A (en) Lateral pnp transistor and manufacture thereof
JPH0499387A (en) Semiconductor integrated circuit
JPS6230372A (en) Manufacture of semiconductor integrated circuit
JPS62295456A (en) Vertical pnp transistor
JPS62214657A (en) Manufature of semiconductor integarated circuit device
JPH0834244B2 (en) Semiconductor integrated circuit device
JPS62214662A (en) Manufacture of vertical pnp transistor
JPH02304933A (en) Semiconductor device
JPH0439787B2 (en)
JPH1027763A (en) Manufacture of semiconductor junction
JPS6343357A (en) Semiconductor integrated circuit
JPH0548937B2 (en)
JPS6343360A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term