JPS649742B2 - - Google Patents

Info

Publication number
JPS649742B2
JPS649742B2 JP5526681A JP5526681A JPS649742B2 JP S649742 B2 JPS649742 B2 JP S649742B2 JP 5526681 A JP5526681 A JP 5526681A JP 5526681 A JP5526681 A JP 5526681A JP S649742 B2 JPS649742 B2 JP S649742B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
semiconductor substrate
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5526681A
Other languages
Japanese (ja)
Other versions
JPS57169273A (en
Inventor
Makio Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5526681A priority Critical patent/JPS57169273A/en
Publication of JPS57169273A publication Critical patent/JPS57169273A/en
Publication of JPS649742B2 publication Critical patent/JPS649742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Description

【発明の詳細な説明】 本発明はツエナー降伏電圧の経時変化の少ない
定電圧ダイオードを有する半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having a constant voltage diode whose Zener breakdown voltage changes little over time.

従来、半導体集積回路における定電圧ダイオー
ドを形成する方法として、例えば第1図の如くP
型半導体基板1にN型エピタキシヤル層2を成長
させ、選択拡散法によりP型絶縁分離層3を設け
た後、エピタキシヤル層2内にP型及びN型不純
物層を順次拡散して、トランジスタ構造のベース
領域5及びエミツタ領域6を各々形成し、前記ベ
ース領域5とエミツタ領域6が接することにより
形成される接合(以下、エミツタ接合と称す)に
より、定電圧ダイオードを構成していた。
Conventionally, as a method for forming a constant voltage diode in a semiconductor integrated circuit, for example, as shown in FIG.
After growing an N-type epitaxial layer 2 on a type semiconductor substrate 1 and providing a P-type insulating separation layer 3 by a selective diffusion method, P-type and N-type impurity layers are sequentially diffused into the epitaxial layer 2 to form a transistor. A constant voltage diode was constructed by forming a base region 5 and an emitter region 6 of the structure, and a junction (hereinafter referred to as an emitter junction) formed by contacting the base region 5 and the emitter region 6.

前記構成になる定電圧ダイオードの降伏電圧
は、特に高温下で著しい経時変化を示し、例えば
125℃の温度雰囲気において逆方向降伏電流を所
定時間、例えば3mAで30分間流した後、例えば
150℃の温度雰囲気中に放置する試験(以下H・
T・O・R試験と称す)により、短時間で数十か
ら数百ミリボルト変化するという不安定性を有し
ており、さらに前記不安定性は通常のエポキシ樹
脂でモールドする事により増加する事も確かめら
れた。例えば上記ベース領域の形成法として選択
拡散により980℃でP型不純物としてデポジツト
した後、1150℃で50分間水蒸気雰囲気中で拡散し
た(例えばツエナー電圧が6.8V)定電圧ダイオ
ードに於いて、前記H・T・O・R試験によりモ
ールド前において約50〜200mV、モールド後で
約200〜500mVの降伏電圧の変化を生じた。
The breakdown voltage of the voltage regulator diode having the above structure shows a significant change over time, especially at high temperatures, for example.
After passing a reverse breakdown current for a predetermined time, e.g., 3 mA, for 30 minutes in a temperature atmosphere of 125°C, e.g.
A test where the product is left in an atmosphere at a temperature of 150℃ (hereinafter referred to as H・
It was confirmed by the T・O・R test) that it has instability that changes from tens to hundreds of millivolts in a short period of time, and that this instability increases when molded with ordinary epoxy resin. It was done. For example, as a method for forming the base region, the H impurity is deposited as a P-type impurity at 980°C by selective diffusion, and then diffused at 1150°C for 50 minutes in a water vapor atmosphere (for example, the Zener voltage is 6.8V). - A change in breakdown voltage of approximately 50 to 200 mV before molding and approximately 200 to 500 mV after molding occurred in the T.O.R test.

本発明は、前記H・T・O・R試験による降伏
電圧の不安定性を生じる原因を調べた結果、定電
圧ダイオードにおける降伏現象を発生する部分
(以下、ツエナー降伏部と称す)が半導体基体表
面に近い程上記不安定性を増加するという事実、
及びツエナー降伏部の半導体基体表面を絶縁膜を
介して配線金属で覆う事により、前記不安定性が
減少するという事実を見出した事、及びツエナー
降伏がダイオードとしての実効的接合を形成する
半導体領域のうち、不純物濃度の低い領域での最
大濃度部で発生することに着目し、なされたもの
であり、前記H・T・O・R試験での不安定性を
なくし、ツエナー降伏電圧の経時変化の生じない
定電圧ダイオードを有する半導体装置を提供する
ことを目的とする。
As a result of investigating the causes of breakdown voltage instability through the H・T・O・R test, the present invention has discovered that a portion where a breakdown phenomenon occurs in a constant voltage diode (hereinafter referred to as a Zener breakdown portion) is located on the surface of a semiconductor substrate. The fact that the above instability increases as it approaches
and that the instability is reduced by covering the surface of the semiconductor substrate at the Zener breakdown region with a wiring metal via an insulating film, and that the Zener breakdown region of the semiconductor region forms an effective junction as a diode. This was done by focusing on the fact that the impurity occurs at the maximum concentration in the region with low impurity concentration, and eliminates the instability in the H・T・O・R test and suppresses the occurrence of changes in the Zener breakdown voltage over time. An object of the present invention is to provide a semiconductor device having no constant voltage diode.

上記目的を達成する為に、本発明の半導体装置
は、 第1導電型の半導体基体表面より形成され、該
半導体基体より不純物濃度の高い第2導電型第1
領域と、 前記第2導電型第1領域とは所定の間隔を有し
て、前記半導体基体表面より形成され、前記半導
体基体より不純物濃度の高い第1導電型第2領域
と、 前記第2導電型第1領域および前記第1導電型
第2領域に接して形成され、その不純物濃度が前
記第1導電型第2領域の濃度より低い領域であ
り、その不純物濃度最大部が前記半導体基体表面
からほぼ0.4μ以上の深さであつて、前記第1導電
型第2領域の側面に接するように形成された第2
導電型第3領域と、 前記第1導電型第2領域と前記第2導電型第3
領域とで形成されるPN接合部に対応する前記半
導体基体表面を、絶縁膜を介して完全に覆う配線
金属と を備える技術的手段を採用している。
In order to achieve the above object, the semiconductor device of the present invention comprises a semiconductor substrate of a first conductivity type, which is formed from a surface of a semiconductor substrate of a first conductivity type, and a semiconductor substrate of a second conductivity type having a higher impurity concentration than that of the semiconductor substrate.
a second conductivity type region formed from the surface of the semiconductor substrate and having a higher impurity concentration than the semiconductor substrate, with a predetermined interval between the second conductivity type first region and the second conductivity type first region; A region formed in contact with the first conductivity type region and the second region of the first conductivity type, the impurity concentration of which is lower than the concentration of the first conductivity type second region, and the maximum impurity concentration portion thereof is located from the surface of the semiconductor substrate. a second region having a depth of approximately 0.4μ or more and formed in contact with a side surface of the second region of the first conductivity type;
a third region of conductivity type; a second region of first conductivity type and a third region of second conductivity type;
A technical means is adopted that includes a wiring metal that completely covers the surface of the semiconductor substrate corresponding to the PN junction formed with the region with an insulating film interposed therebetween.

以下、本発明を図面に示す実施例に沿つて具体
的に説明する。第2図〜第4図は本発明の半導体
装置の製造方法を説明する断面図で、図示してな
い複数個のトランジスタ等の集積回路素子も同時
に形成する場合の一例である。まず第2図に示す
ように、P型シリコン半導体基板1にN型エピタ
キシヤル層2を成長させ、従来の方法と同様に選
択拡散法によりP型絶縁分離層3を設けた後、エ
ピタキシヤル層2内に集積回路素子に要求される
不純物濃度を持つたP型及びN型不純物を順次拡
散して、トランジスタ構造のベース領域と同時に
P型半導体領域5及びエミツタ領域と同時にN型
半導体領域6を形成する。尚、これらP型半導体
領域5及びN型半導体領域6はエピタキシヤル層
2内に拡散形成されるものであるから、当然にそ
の不純物濃度はエピタキシヤル層2の濃度より高
くなつており、しかもトランジスタ構造のベース
領域及びエミツタ領域と同時に形成されることか
ら一般に高濃度である。次に定電圧ダイオードと
して使用すべき領域内の基板表面の酸化膜4を、
第2図のようにP型半導体領域5及びN型半導体
領域6の全部又は一部を含んだ領域にわたつてホ
トエツチング技術により除去した後、P型半導体
領域5と同導電型のP型不純物、例えばボロンを
所定の加速電圧でイオン注入し、P型半導体領域
8を形成する。このP型半導体領域8はP型半導
体領域5及びN型半導体領域6に接し、しかもN
型半導体領域6に対してはその側面に接するよう
に形成される。しかる後、第3図のように例えば
化学気相成長法により表面保護膜7を形成し、例
えば1000℃で10分間窒素雰囲気中でアニールす
る。しかる後、従来と同様に電極形成を行うが、
第4図のようにN型半導体領域6とイオン注入に
より形成されたP型半導体領域8とで形成される
接合をN型半導体領域6に接する電極9の配線金
属で完全に覆う関係を成立させると共に、第4図
中の点線枠Aの部分を拡大した第5図の部分拡大
図で示すようにN型半導体領域6に接する電極9
が半導体基体表面を覆う絶縁膜4の上部に延在す
る電極延在部9aの長さlが電極形成後でほぼ
1μ以上となるように設定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments shown in the drawings. 2 to 4 are cross-sectional views illustrating the method of manufacturing a semiconductor device of the present invention, and are an example of a case where a plurality of integrated circuit elements such as transistors (not shown) are also formed at the same time. First, as shown in FIG. 2, an N-type epitaxial layer 2 is grown on a P-type silicon semiconductor substrate 1, a P-type insulating isolation layer 3 is provided by selective diffusion as in the conventional method, and then the epitaxial layer is grown. P-type and N-type impurities having an impurity concentration required for an integrated circuit element are sequentially diffused into the transistor structure to form a P-type semiconductor region 5 at the same time as the base region of the transistor structure, and an N-type semiconductor region 6 at the same time at the emitter region. Form. It should be noted that since these P-type semiconductor region 5 and N-type semiconductor region 6 are formed by diffusion in the epitaxial layer 2, their impurity concentration is naturally higher than that of the epitaxial layer 2. It is generally highly concentrated because it is formed simultaneously with the base and emitter regions of the structure. Next, the oxide film 4 on the substrate surface in the area to be used as a constant voltage diode is
As shown in FIG. 2, after removing all or part of the P-type semiconductor region 5 and the N-type semiconductor region 6 by photoetching, a P-type impurity of the same conductivity type as the P-type semiconductor region 5, For example, boron ions are implanted at a predetermined acceleration voltage to form the P-type semiconductor region 8. This P-type semiconductor region 8 is in contact with the P-type semiconductor region 5 and the N-type semiconductor region 6, and
It is formed so as to be in contact with the side surface of the type semiconductor region 6. Thereafter, as shown in FIG. 3, a surface protective film 7 is formed by, for example, chemical vapor deposition, and annealed at, for example, 1000° C. for 10 minutes in a nitrogen atmosphere. After that, electrode formation is performed in the same manner as before.
As shown in FIG. 4, a relationship is established in which the junction formed between the N-type semiconductor region 6 and the P-type semiconductor region 8 formed by ion implantation is completely covered by the wiring metal of the electrode 9 in contact with the N-type semiconductor region 6. At the same time, as shown in the partially enlarged view of FIG. 5, which is an enlarged view of the part indicated by the dotted line frame A in FIG.
The length l of the electrode extension portion 9a extending on the upper part of the insulating film 4 covering the semiconductor substrate surface is approximately equal to 1 after the electrode is formed.
Set it to be 1μ or more.

前記の如くイオン注入された不純物イオンは、
深さ方向については、イオン加速電圧に応じたイ
オンの平均侵入深さRp(投影飛程という)を中心
にガウス分布すると考えられている。第6図はそ
の投影飛程Rpとイオン加速電圧Eの関係を示す。
第7図は、第5図のように電極9の電極延在部9
aの長さlが約1μ以上ある場合(以下、オーバ
ーラツプ有と称す)の特性(a)と、N型半導体領域
6とイオン注入により形成したP型半導体領域8
により形成される接合上に電極9(つまり、電極
延在部)がない場合の特性(b)について、イオン加
速電圧Eと降伏電圧変化ΔVzの関係を示す。
The impurity ions implanted as described above are
In the depth direction, it is thought that there is a Gaussian distribution centered on the average penetration depth Rp of ions (referred to as projected range) depending on the ion accelerating voltage. FIG. 6 shows the relationship between the projected range Rp and the ion acceleration voltage E.
FIG. 7 shows the electrode extension portion 9 of the electrode 9 as shown in FIG.
Characteristic (a) when the length l of a is approximately 1 μ or more (hereinafter referred to as overlap), and the characteristics of the N-type semiconductor region 6 and the P-type semiconductor region 8 formed by ion implantation.
The relationship between the ion accelerating voltage E and the breakdown voltage change ΔVz is shown for the characteristic (b) when there is no electrode 9 (that is, an electrode extension part) on the junction formed by.

前記形成法になるダイオードとしての実効的接
合の降伏電圧は、一般にトランジスタのエミツタ
と同時に形成されるN型半導体領域6に比し、イ
オン注入により形成されるP型半導体領域8の不
純物濃度が1桁以上低いため、イオン注入により
形成されるP型半導体領域8中のP+濃度の最大
濃度の値によつて殆ど決まつてしまい、またツエ
ナー降伏部は最大濃度に相当する基板表面からの
深さ(投影飛程Rpに等しい)によつて殆ど決ま
つてしまうことが理解される。これにより、イオ
ン注入により形成されたダイオード接合の降伏現
象を生じる部位を注入イオンの加速電圧により制
御する事ができる。前記の方法により形成した定
電圧ダイオードをモールドした後のH・T・O・
R試験による降伏電圧変化ΔVzについて、加速
電圧E、電極のオーバーラツプの有・無をパラメ
ータにして示したのが第7図の特性a,bであ
る。この図から明らかなように、加速電圧Eを高
くする程ΔVzは小さく、また電極9のオーバー
ラツプ有の方がオーバーラツプ無に比べてΔVz
は小さくなり、経時変化の少ない定電圧ダイオー
ドを形成する事ができるということが分かる。第
7図の特性aに示されるように電極のオーバーラ
ツプ有で、しかもイオン注入加速電圧が少なくと
も150KeV以上であれば、P+濃度最大部が基板表
面からほぼ0.4μ以上の深さ位置となり、降伏電圧
の変化ΔVzを非常に小さくできることが認めら
れた。
The breakdown voltage of the effective junction as a diode using the above-mentioned formation method is generally determined when the impurity concentration of the P-type semiconductor region 8 formed by ion implantation is 1, compared to the N-type semiconductor region 6 formed at the same time as the emitter of the transistor. Because the P It is understood that it is mostly determined by the distance (equal to the projected range Rp). This makes it possible to control the region where a breakdown phenomenon occurs in the diode junction formed by ion implantation by the acceleration voltage of the implanted ions. H・T・O・ after molding the constant voltage diode formed by the above method.
Characteristics a and b in FIG. 7 show the breakdown voltage change ΔVz due to the R test using the acceleration voltage E and the presence or absence of electrode overlap as parameters. As is clear from this figure, the higher the accelerating voltage E, the smaller ΔVz becomes, and ΔVz with overlap of the electrodes 9 is better than without overlap.
It can be seen that it is possible to form a constant voltage diode with small changes over time. As shown in characteristic a in Figure 7, if the electrodes overlap and the ion implantation acceleration voltage is at least 150 KeV, the maximum P + concentration will be at a depth of approximately 0.4 μ or more from the substrate surface, leading to breakdown. It has been found that the voltage change ΔVz can be made very small.

その理由を考察すると、ダイオード接合の降伏
現象を生じる部分を内部に形成することにより降
伏時に発生するホツトキヤリアーが絶縁膜中に進
入して電荷をつくり、その電荷の為に降伏電圧が
変化する現象を阻止することができ、またダイオ
ード接合部に対応する半導体基体表面を絶縁膜を
介して配線金属で覆うことにより、モールド樹脂
より絶縁膜中へ進入する汚染物質を配線金属で阻
止でき、配線物質による降伏電圧の変化を阻止で
きるからである。
The reason for this is that by forming a part inside the diode junction that causes a breakdown phenomenon, hot carriers generated at breakdown enter the insulating film and create charge, which causes the breakdown voltage to change. In addition, by covering the surface of the semiconductor substrate corresponding to the diode junction with wiring metal through an insulating film, the wiring metal can prevent contaminants from entering the insulating film from the molding resin. This is because changes in breakdown voltage can be prevented.

さらに本実施例によると、降伏現象が生じるN
型半導体領域6と、P型半導体領域8との接合部
に対応する半導体基体表面にはPN接合が形成さ
れていない構成であるので、例えば半導体基体表
面にPN接合が形成された場合に、そのPN接合
における空乏層の広がりが、降伏現象が生じる接
合部における空乏層の幅に影響を与え、延いては
降伏電圧を変化させてしまうというような不具合
がなく、その分、降伏電圧の変化をより小さくす
ることができる。
Furthermore, according to this embodiment, N
Since the configuration is such that no PN junction is formed on the surface of the semiconductor substrate corresponding to the junction between the type semiconductor region 6 and the P-type semiconductor region 8, for example, when a PN junction is formed on the surface of the semiconductor substrate, The spread of the depletion layer in the PN junction does not affect the width of the depletion layer at the junction where the breakdown phenomenon occurs, which in turn changes the breakdown voltage. Can be made smaller.

又、N型半導体領域6とP型半導体領域8との
接合部から、それぞれ電極9,10につながる各
領域、すなわちP型半導体領域5,8、およびN
型半導体領域6は、不純物濃度が高濃度であるの
で、ダイオードの動作抵抗を小さくすることがで
き、ダイオードに流れる電流量が変化しても、降
伏電圧の変化を小さくすることができる。
Further, from the junction between the N-type semiconductor region 6 and the P-type semiconductor region 8, each region connected to the electrodes 9 and 10, that is, the P-type semiconductor regions 5 and 8, and the N
Since the type semiconductor region 6 has a high impurity concentration, the operating resistance of the diode can be reduced, and even if the amount of current flowing through the diode changes, the change in breakdown voltage can be reduced.

なお、以上の実施例ではNPNトランジスタを
含む半導体集積回路装置について述べてきたが、
本発明はこれとは全く逆極性のトランジスタを含
む半導体集積回路装置、MOSトランジスタを含
む半導体集積回路装置についても同様に実施でき
ることは勿論である。また、ブレーナ型の定電圧
ダイオードであれば広く一般に実施可能である。
Note that although the above embodiments have described semiconductor integrated circuit devices including NPN transistors,
It goes without saying that the present invention can be similarly applied to semiconductor integrated circuit devices including transistors of completely opposite polarity, and semiconductor integrated circuit devices including MOS transistors. Moreover, it can be widely implemented as long as it is a Brehner type constant voltage diode.

上述の如く本発明なる半導体装置によれば、前
記H・T・O・R試験による不安定性をなくし、
ツエナー降伏電圧の経時変化がほとんど生じるこ
となく、又、ダイオードに流れる電流が変化して
も降伏電圧の変化を小さくすることができ、信頼
性の高い定電圧ダイオードを有する半導体装置を
得ることができるという効果がある。
As described above, according to the semiconductor device of the present invention, the instability caused by the H・T・O・R test is eliminated,
There is almost no change in the Zener breakdown voltage over time, and even if the current flowing through the diode changes, the change in the breakdown voltage can be made small, making it possible to obtain a semiconductor device having a highly reliable constant voltage diode. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来から用いられている定電圧ダイオ
ードの断面図、第2図乃至第4図は夫々本発明半
導体装置の実施例における各製造工程中の断面
図、第5図は同半導体装置の拡大断面図、第6図
は、ボロンイオン注入加速電圧に対する投影飛程
の変化を示す特性図、第7図はボロンイオン注入
加速電圧及び電極オーバーラツプに対する定電圧
ダイオードの降伏電圧の変化を示す特性図であ
る。 1……P型半導体基板、2……半導体基体部分
に相当するN型エピタキシヤル層、3……P型絶
縁分離層、4……酸化膜、5……P型半導体領
域、6……N型半導体領域、7……酸化膜、8…
…イオン注入により形成したP型半導体領域、9
……N型半導体領域の電極、10……P型半導体
領域の電極。
FIG. 1 is a cross-sectional view of a conventionally used constant voltage diode, FIGS. 2 to 4 are cross-sectional views during each manufacturing process in an embodiment of the semiconductor device of the present invention, and FIG. 5 is a cross-sectional view of the same semiconductor device. An enlarged cross-sectional view, FIG. 6 is a characteristic diagram showing changes in projected range with respect to boron ion implantation accelerating voltage, and FIG. 7 is a characteristic diagram showing changes in breakdown voltage of a constant voltage diode with respect to boron ion implantation accelerating voltage and electrode overlap. It is. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... N-type epitaxial layer corresponding to a semiconductor base portion, 3... P-type insulating separation layer, 4... Oxide film, 5... P-type semiconductor region, 6... N type semiconductor region, 7... oxide film, 8...
...P-type semiconductor region formed by ion implantation, 9
. . . Electrode of N-type semiconductor region, 10 . . . Electrode of P-type semiconductor region.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基体表面より形成され、
該半導体基体より不純物濃度の高い第2導電型第
1領域と、 前記第2導電型第1領域とは所定の間隔を有し
て前記半導体基体表面より形成され、前記半導体
基体より不純物濃度の高い第1導電型第2領域
と、 前記第2導電型第1領域および前記第1導電型
第2領域に接して形成され、その不純物濃度が前
記第1導電型第2領域の濃度より低い領域であ
り、その不純物濃度最大部が前記半導体基体表面
からほぼ0.4μ以上の深さであつて、前記第1導電
型第2領域の側面に接するように形成された第2
導電型第3領域と、 前記第1導電型第2領域と前記第2導電型第3
領域とで形成されるPN接合部に対応する前記半
導体基体表面を、絶縁膜を介して完全に覆う配線
金属と を備えることを特徴とする半導体装置。
[Claims] 1. Formed from the surface of a semiconductor substrate of a first conductivity type,
a first region of a second conductivity type having a higher impurity concentration than the semiconductor substrate; and a first region of the second conductivity type formed from the surface of the semiconductor substrate with a predetermined interval and having a higher impurity concentration than the semiconductor substrate. a second region of a first conductivity type; a region formed in contact with the first region of the second conductivity type and the second region of the first conductivity type, the impurity concentration of which is lower than the concentration of the second region of the first conductivity type; a second region having a maximum impurity concentration at a depth of approximately 0.4μ or more from the surface of the semiconductor substrate and in contact with a side surface of the second region of the first conductivity type;
a third region of conductivity type; a second region of first conductivity type and a third region of second conductivity type;
1. A semiconductor device comprising: a wiring metal that completely covers a surface of the semiconductor substrate corresponding to a PN junction formed with a region with an insulating film interposed therebetween.
JP5526681A 1981-04-13 1981-04-13 Semiconductor device Granted JPS57169273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5526681A JPS57169273A (en) 1981-04-13 1981-04-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5526681A JPS57169273A (en) 1981-04-13 1981-04-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS57169273A JPS57169273A (en) 1982-10-18
JPS649742B2 true JPS649742B2 (en) 1989-02-20

Family

ID=12993796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5526681A Granted JPS57169273A (en) 1981-04-13 1981-04-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS57169273A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064481A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Semiconductor device
JPS60158676A (en) * 1984-01-28 1985-08-20 Rohm Co Ltd Constant-voltage diode
JPS60233864A (en) * 1984-05-02 1985-11-20 Nec Ic Microcomput Syst Ltd Structure of semiconductor device
US5276350A (en) * 1991-02-07 1994-01-04 National Semiconductor Corporation Low reverse junction breakdown voltage zener diode for electrostatic discharge protection of integrated circuits

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636171A (en) * 1979-08-31 1981-04-09 Hitachi Ltd Zener diode and manufacture thereof

Also Published As

Publication number Publication date
JPS57169273A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
JP2619872B2 (en) Lateral transistor and method of manufacturing semiconductor integrated circuit having lateral transistor
US3226613A (en) High voltage semiconductor device
US4051504A (en) Ion implanted zener diode
US3955269A (en) Fabricating high performance integrated bipolar and complementary field effect transistors
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US4379726A (en) Method of manufacturing semiconductor device utilizing outdiffusion and epitaxial deposition
US3909306A (en) MIS type semiconductor device having high operating voltage and manufacturing method
JPH05347383A (en) Manufacture of integrated circuit
JPH0481337B2 (en)
US4016596A (en) High performance integrated bipolar and complementary field effect transistors
US3414782A (en) Semiconductor structure particularly for performing unipolar transistor functions in integrated circuits
KR0171128B1 (en) A vertical bipolar transistor
US4635345A (en) Method of making an intergrated vertical NPN and vertical oxide fuse programmable memory cell
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
US5411898A (en) Method of manufacturing a complementary bipolar transistor
US4178190A (en) Method of making a bipolar transistor with high-low emitter impurity concentration
US4362574A (en) Integrated circuit and manufacturing method
KR940008566B1 (en) Manufacturing method of semiconductor device
US3725145A (en) Method for manufacturing semiconductor devices
US4912538A (en) Structured semiconductor body
US4983534A (en) Semiconductor device and method of manufacturing the same
JPS649742B2 (en)
US4701780A (en) Integrated verticle NPN and vertical oxide fuse programmable memory cell
KR930010119B1 (en) Complementary bipolar transistor
US4127864A (en) Semiconductor device