JPS6124042A - Magnetooptic storage element - Google Patents

Magnetooptic storage element

Info

Publication number
JPS6124042A
JPS6124042A JP14623484A JP14623484A JPS6124042A JP S6124042 A JPS6124042 A JP S6124042A JP 14623484 A JP14623484 A JP 14623484A JP 14623484 A JP14623484 A JP 14623484A JP S6124042 A JPS6124042 A JP S6124042A
Authority
JP
Japan
Prior art keywords
film
transparent dielectric
dielectric film
refractive index
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14623484A
Other languages
Japanese (ja)
Other versions
JPH0422291B2 (en
Inventor
Kenji Oota
賢司 太田
Yoshiteru Murakami
善照 村上
Junji Hirokane
順司 広兼
Hiroyuki Katayama
博之 片山
Akira Takahashi
明 高橋
Hideyoshi Yamaoka
山岡 秀嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14623484A priority Critical patent/JPS6124042A/en
Priority to CA000462506A priority patent/CA1224270A/en
Priority to US06/648,741 priority patent/US4610912A/en
Priority to EP84306341A priority patent/EP0139474B1/en
Priority to DE8484306341T priority patent/DE3481878D1/en
Publication of JPS6124042A publication Critical patent/JPS6124042A/en
Publication of JPH0422291B2 publication Critical patent/JPH0422291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10593Details for improving read-out properties, e.g. polarisation of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals

Abstract

PURPOSE:To assure thoroughly magnetooptic characteristics and to prevent the oxidation of a thin rare earth transition metallic alloy film by forming both the 1st transparent dielectric film and 2nd transparent dielectric film of silicone nitride films having different refractive indices. CONSTITUTION:An Si3N4 film 7 which is the 1st transparent dielectric film is fomed on a formed on a transparent substrate 1 and a thin GdTbFe alloy film 3 which is the thin rare earth transition metallic alloy film is formed thereon. An S3N4 film 8 which is the 2nd transparent dielectric film is formed thereon. An Al film 9 which is a reflecting film is formed on the film 8. The effect of increasing Kerr rotating angle is obtd. by the 1st transparent dielectric film having the large refractive index in the magnetooptic storage element made of the above-mentioned construction. On the other hand, the reflectivity can be increased by the 2nd transparent dielectric film having the small refractive index. The above-mentioned Si3N4 does not contain oxygen as the component thereof and therefore the danger that the thin rare earth transition metallic alloy film is oxidized is considerably decreased.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明はレーザ等の光を照射することにより情情の記録
・再生・消去等を行なう磁気光学記憶素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a magneto-optical memory element that records, reproduces, erases, etc., information by irradiating it with laser light or the like.

〈発明の技術的背景とその問題点〉 近年、情報の書換えが可能な光ディスクとして磁気光学
記憶素子の研究が活発、に行なわれている。
<Technical background of the invention and its problems> In recent years, research has been actively conducted on magneto-optical storage elements as optical disks on which information can be rewritten.

中でも記憶媒体として希土類遷移金属非晶質合金薄膜を
用いて構成したものは、記録ビットが粒界の影響を受け
ない点及び記録媒体の膜を大面積に亘って作成すること
が比較的容易である点から特に注目を集めている。
Among these, storage media constructed using rare earth transition metal amorphous alloy thin films have the advantage that recording bits are not affected by grain boundaries and that it is relatively easy to create a recording medium film over a large area. It has attracted particular attention for one reason.

しかし上記記録媒体として希土類遷移金属非晶質合金薄
膜を用いて磁気光学記憶素子を構成したものでは、一般
に光磁気効果(カー効果、ファラデー効果)が十分に得
られず、その為再生信号のS/Nが不十分なものであっ
た。
However, when a magneto-optical storage element is constructed using a rare earth transition metal amorphous alloy thin film as the above-mentioned recording medium, it is generally not possible to obtain sufficient magneto-optical effects (Kerr effect, Faraday effect). /N was insufficient.

とバに対する対応策として既に本発明者等は次の如き素
子構造の改良を試みた。
As a countermeasure to this problem, the inventors of the present invention have already attempted to improve the device structure as described below.

第3図は既に改良を試みた素子構造の磁気光学記憶素子
の一部側面断面図を示す。
FIG. 3 shows a partial side sectional view of a magneto-optical memory element whose structure has already been improved.

第8図において、夏はガラス、ポリカーボネート、アク
リル等の透明基板であり、該透明基板1上に第1の透明
誘電体膜である透明なSiO膜2(膜厚120nm)が
形成され、該SiO膜2上に希土類遷移金属膜であるG
dTbFe合金薄膜8(膜厚15nm−)が形成され、
該GdTbFe合金薄膜8上に第2の透明誘電体膜であ
る透明な5i02膜4(膜厚50nm)が形成され、該
Si’02 膜4上に反射膜であるCu膜5(膜厚50
nm)が形成支れている。以上の構造では見かけのカー
回転角が1.75°もの大きな値が得られた。
In FIG. 8, Natsu is a transparent substrate made of glass, polycarbonate, acrylic, etc. A transparent SiO film 2 (film thickness 120 nm), which is a first transparent dielectric film, is formed on the transparent substrate 1, and the SiO G, which is a rare earth transition metal film, is formed on film 2.
A dTbFe alloy thin film 8 (film thickness 15 nm) is formed,
A transparent 5i02 film 4 (50 nm thick), which is a second transparent dielectric film, is formed on the GdTbFe alloy thin film 8, and a Cu film 5 (50 nm thick), which is a reflective film, is formed on the Si'02 film 4.
nm) is supported. With the above structure, an apparent Kerr rotation angle as large as 1.75° was obtained.

以上の素子構造の採用によってカー回転角が著しく太さ
なものを得ることのできた理由を次に説明する。
The reason why it was possible to obtain a significantly thicker Kerr rotation angle by adopting the above element structure will be explained below.

第3図に示す如く透明基板!側からレーザ光6を希土類
遷移金属合金薄膜8に照射した場合、入射レーザ光が第
1の透明誘電体膜2の内部で反射が繰り返され、干渉し
た結果見かけ上のカー回転角が増大するものであり、こ
の際上記第1の透明誘電体膜2の屈折率が大きい程、カ
ー回転角の増大効果は大きい。
Transparent substrate as shown in Figure 3! When the rare earth transition metal alloy thin film 8 is irradiated with a laser beam 6 from the side, the incident laser beam is repeatedly reflected inside the first transparent dielectric film 2, and as a result of interference, the apparent Kerr rotation angle increases. In this case, the larger the refractive index of the first transparent dielectric film 2, the greater the effect of increasing the Kerr rotation angle.

又、第8図に示す如く希土類遷移金属合金薄膜8の背面
に反射膜5を配置したことで見かけ上のカー回転角を増
大させておシ、希土類遷移金属合金薄膜8と反射膜5と
の間に第2の透明誘電体膜4を介在させることで、見か
け上のカー回転角を更に増大させている。
Furthermore, as shown in FIG. 8, by arranging the reflective film 5 on the back surface of the rare earth transition metal alloy thin film 8, the apparent Kerr rotation angle is increased, and the difference between the rare earth transition metal alloy thin film 8 and the reflective film 5 is increased. By interposing the second transparent dielectric film 4 in between, the apparent Kerr rotation angle is further increased.

次にこの作用の原理について定性的に説明を行なう。Next, the principle of this action will be qualitatively explained.

上記第2の透明誘電体膜4と反射膜5との複合膜を一つ
の反射層Aとして考える。
A composite film of the second transparent dielectric film 4 and the reflective film 5 will be considered as one reflective layer A.

第8図に於て、透明基板1側から入射し、希土類遷移金
属合金薄膜3を通過し、上記反射層Aにて反射された後
上記希土類遷移金属合金薄膜8を再び通過した光と、透
明基板1側から入射し希土類遷移金属合金薄膜80表面
で反射された光とが合成されるが、この場合入射光が希
土類遷移金属合金薄膜3の表面で反射することにより生
起され必カー効果と、入射光が希土類遷移金属合金薄膜
8の内部を通過することにより生起されるファラデー効
果とが合わされることによシ、見かけ上のカー回転角が
増大するものである。
In FIG. 8, light that is incident from the transparent substrate 1 side, passes through the rare earth transition metal alloy thin film 3, is reflected by the reflective layer A, and then passes through the rare earth transition metal alloy thin film 8 again, and the transparent The light incident from the substrate 1 side and reflected on the surface of the rare earth-transition metal alloy thin film 80 is combined, but in this case, the incident light is caused by reflection on the surface of the rare-earth transition metal alloy thin film 3, resulting in an indispensable Kerr effect. When combined with the Faraday effect caused by the incident light passing through the inside of the rare earth transition metal alloy thin film 8, the apparent Kerr rotation angle increases.

上記構造の磁気光学記憶素子に於ては上記ファラデー効
果を如何にしてカー効果に加えるかが極めて重要になる
。ファラデー効果について謂えば記録媒体の層厚を厚く
すれば回転角を大きくできるが、入射レーザ光が記録媒
体に吸収される為、所期の目的を達成し得ない。よって
上記記録媒体の適切な層厚の値は概ね10〜50nmで
あり、その値は使用するレーザ光の波長や上記反射層の
屈折率等により決定される。上記反射層に対して求めら
れる条件は上記の説明から判るように反射率が高いこと
にある。言い替えると入射レーザ光を反射層内に入れな
いことであシ、光学的に見れば反射層(第2の透明誘電
体膜半反射膜)の等制約な屈折率が0に近いことが必要
である。この為には第2の透明誘電体膜の実数部の値が
小さく且つ虚数部の値が0で、更に反射膜の実数部の値
が小さいことが必要である。
In the magneto-optical memory element having the above structure, it is extremely important how to add the Faraday effect to the Kerr effect. Regarding the Faraday effect, the rotation angle can be increased by increasing the layer thickness of the recording medium, but since the incident laser beam is absorbed by the recording medium, the intended purpose cannot be achieved. Therefore, the appropriate layer thickness of the recording medium is approximately 10 to 50 nm, and the value is determined by the wavelength of the laser beam used, the refractive index of the reflective layer, etc. As can be seen from the above description, the requirement for the reflective layer is that it has a high reflectance. In other words, it is necessary to prevent the incident laser beam from entering the reflective layer, and from an optical point of view, it is necessary that the refractive index of the reflective layer (second transparent dielectric film semi-reflective film), which is a constraint, is close to 0. be. For this purpose, it is necessary that the value of the real part of the second transparent dielectric film is small and the value of the imaginary part is 0, and furthermore, the value of the real part of the reflective film is small.

以上の如く透明基板lと希土類遷移金属合金薄膜3との
間に介する第1の透明誘電体膜2、及び希土類遷移金属
合金薄膜3の背面の反射層Aの構成を付加することによ
ってカー回転角の増大の効果を得ることができる。
As described above, by adding the configuration of the first transparent dielectric film 2 interposed between the transparent substrate l and the rare earth transition metal alloy thin film 3 and the reflective layer A on the back surface of the rare earth transition metal alloy thin film 3, the Kerr rotation angle can be adjusted. The effect of increasing can be obtained.

しかし、上述の効果が得られる反面で、第1の透明誘電
体膜2としてSiO膜を選択し、第2の透明誘電体膜4
として5i02膜を選択した場合、希土類遷移金属合金
薄膜3が酸化されるという問題が発生した。本発明者は
この原因が上記SiO膜及び5i02膜の中に含有され
る酸素にあることを確認した。即ち上記SiO膜及び5
i02膜の成膜時、あるいは成膜後に内部の酸素成分が
分離等して希土類遷移金属合金薄膜8が酸化されるもの
である。しかるに、希土類遷移金属合金薄膜8は酸化さ
れることによって磁気記録媒体としての能力を著しく阻
害されるものであるから、上記酸化の問題は極めて重大
である。又、上記希土類遷移金属合金薄膜3の膜厚が薄
い場合は、僅かの酸化であっても影響が大きいので非常
な注意が必要である。
However, while the above-mentioned effects can be obtained, the SiO film is selected as the first transparent dielectric film 2, and the second transparent dielectric film 4
When the 5i02 film was selected as the 5i02 film, a problem occurred in that the rare earth transition metal alloy thin film 3 was oxidized. The inventor of the present invention has confirmed that the cause of this is the oxygen contained in the SiO film and the 5i02 film. That is, the above SiO film and 5
During or after the formation of the i02 film, the internal oxygen component is separated and the rare earth transition metal alloy thin film 8 is oxidized. However, since the rare earth transition metal alloy thin film 8 is oxidized, its ability as a magnetic recording medium is significantly inhibited, so the problem of oxidation is extremely serious. Furthermore, if the rare earth transition metal alloy thin film 3 is thin, even a slight oxidation will have a large effect, so extreme care must be taken.

〈発明の目的〉 本発明は以上の問題点を解消する為になされたものであ
り、磁気光学特性を充分忙確保し得ると共に希土類遷移
金属合金薄膜の酸化を防止した新規な磁気光学記憶素子
を提供することを目的とするものであり、この目的を達
成するため、本発明は透明基板上に第1の透明誘電体膜
、希土類遷移金属合金薄膜、第2の透明誘電体膜、反射
膜をこの順に被覆してなる磁気光学記憶素子−おいて、
上記の第1の透明誘電体膜及び第2の透明誘電体膜を共
に窒化シリコン膜で形成し、かつ上記の第1の透明誘電
体膜の屈折率が上記の第2の透明誘電体膜の屈折率より
大であるように構成商れている。
<Object of the Invention> The present invention has been made to solve the above problems, and provides a novel magneto-optical memory element that can ensure sufficient magneto-optical properties and prevents oxidation of the rare earth transition metal alloy thin film. In order to achieve this object, the present invention provides a first transparent dielectric film, a rare earth transition metal alloy thin film, a second transparent dielectric film, and a reflective film on a transparent substrate. In a magneto-optical memory element coated in this order,
Both the first transparent dielectric film and the second transparent dielectric film are formed of silicon nitride films, and the refractive index of the first transparent dielectric film is higher than that of the second transparent dielectric film. The composition is set so that it is greater than the refractive index.

〈発明の実施例〉 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
<Embodiment of the Invention> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る磁気光学記憶素子の一実施例の構
成を示す一部側面断面図である。
FIG. 1 is a partial side cross-sectional view showing the structure of an embodiment of a magneto-optical storage element according to the present invention.

同図において、1はガラス、ポリカーボネート。In the figure, 1 is glass and polycarbonate.

アクリル等の透明基板であり、該透明基板l上に第1の
透明誘電体膜である透明な窒化クリコン(SigN4)
膜7(膜厚90nm)を形成し、この5iBN4膜7上
に希土類遷移金属合金薄膜であるGdTbFe合金薄膜
3(膜厚85nm)を形成し、このGdTbFe合金薄
膜3上に第2の透明誘電体膜である透明な窒化シリコン
(SiaN4)膜8(膜厚40 nm)を形成し、この
S i3 N4膜8上に反射膜であるAt膜9(膜厚4
0nm以上)を形成している。  − 以上の構造の磁気光学記憶素子に於て、特に注目すべき
点は第1の透明誘電膜として高い屈折率を有するSi3
N4膜を用い、第2の透明誘電膜として低い屈折率のS
 i3 N4膜を用いた事である。
A transparent substrate made of acrylic or the like, on which a first transparent dielectric film (transparent nitride silicone (SigN4)) is coated.
A film 7 (film thickness: 90 nm) is formed, a GdTbFe alloy thin film 3 (film thickness: 85 nm), which is a rare earth transition metal alloy thin film, is formed on this 5iBN4 film 7, and a second transparent dielectric material is formed on this GdTbFe alloy thin film 3. A transparent silicon nitride (SiaN4) film 8 (film thickness 40 nm) is formed as a film, and an At film 9 (film thickness 40 nm) as a reflective film is formed on this Si3N4 film 8.
0 nm or more). - In the magneto-optical memory element with the above structure, what is particularly noteworthy is that Si3, which has a high refractive index, is used as the first transparent dielectric film.
N4 film is used, and S with a low refractive index is used as the second transparent dielectric film.
This is because an i3 N4 film was used.

この構造の肩利な点について以下説明する。The advantages of this structure will be explained below.

■ Si3N4膜 であり、又窒化物である為酸化物の膜に比較して緻密な
膜が形成できる。
(2) Since it is a Si3N4 film and a nitride, a denser film can be formed compared to an oxide film.

■ 第1の透明誘電体膜であるSi3N4膜を屈折率が
2.0程度となるように製膜し、一方、第2の透明誘電
体膜であるSi3N4膜を屈折率が1.9〜1.8程度
となるように製膜することによシ、相対的に第1の透明
誘電体膜の屈折率を。
■ The Si3N4 film, which is the first transparent dielectric film, is formed to have a refractive index of approximately 2.0, while the Si3N4 film, which is the second transparent dielectric film, is formed to have a refractive index of 1.9 to 1. By forming the film so that the relative refractive index of the first transparent dielectric film is about .8.

第2の透明誘電体膜の屈折率より大きくし、その結果、
前述した如く屈折率の大きい第1の透明誘電体膜によっ
てカー回転角の増大効果が得られ、一方、屈折率の小さ
い第2の透明誘電体膜によって反射率を高くすることが
できる。即ち上記屈折率の異なる5iBN4膜の組合せ
は極めて都合が良いことになる。尚、上記構造において
Si3N4膜7は90nmをピークとして±10%程度
の膜厚であれば良好であり、又、5iBN4膜8は40
nmをピークとした±110−程度の膜厚であれば良好
である。
The refractive index is made larger than that of the second transparent dielectric film, and as a result,
As described above, the effect of increasing the Kerr rotation angle can be obtained by the first transparent dielectric film having a high refractive index, while the reflectance can be increased by using the second transparent dielectric film having a low refractive index. That is, the above combination of 5iBN4 films having different refractive indexes is extremely convenient. In the above structure, the Si3N4 film 7 is good if it has a thickness of about ±10% with a peak thickness of 90 nm, and the 5iBN4 film 8 has a thickness of about 40 nm.
A film thickness of approximately ±110 nm with a peak of nm is suitable.

■ 上記Si3N4はその成分として酸“素を含有しな
いので希土類遷移金属合金薄膜が酸化される危険性を極
度に減少せしめ得る。
(2) Since the above-mentioned Si3N4 does not contain oxygen as a component, the risk of the rare earth transition metal alloy thin film being oxidized can be extremely reduced.

次に同一の窒化物の膜である5iBN4膜の屈折率を異
ならせて製膜する方法についてスパッタ法による作製方
法を例に挙げて説明する。
Next, a method of forming 5iBN4 films, which are films of the same nitride, with different refractive indexes will be described, taking as an example a method of manufacturing by sputtering.

スパッタリング法による5iBN4膜の作製方法におい
て、ターゲットには高純度のSiを使用し、ガスはAr
とN2の混合ガス、あるいはN2ガスのみを使用し、反
応性スパッタにより5iBN4膜を作製する。
In the method for manufacturing 5iBN4 film by sputtering method, high-purity Si is used as the target, and Ar is used as the gas.
A 5iBN4 film is fabricated by reactive sputtering using a mixed gas of N2 and N2 gas or only N2 gas.

種々のスパッタ条件で作製した5iBN4膜の依存して
おり、ガス圧が低い条件で製膜した場合には屈折率が大
きく、ガス圧が高い条件で製膜した場合には屈折率が低
くなる。したがってスパッタ条件により、目的の屈折率
を有する透明誘電体膜を得ることが出来る。
It depends on the 5iBN4 films produced under various sputtering conditions; when the film is formed under low gas pressure conditions, the refractive index is high, and when the film is formed under high gas pressure conditions, the refractive index is low. Therefore, depending on the sputtering conditions, a transparent dielectric film having a desired refractive index can be obtained.

なお、上記実施例においては窒化シリコン膜として5i
BN4膜を例にして説明したが、本発明はこれに限定さ
れるものではない。
Note that in the above embodiment, 5i was used as the silicon nitride film.
Although the BN4 film has been described as an example, the present invention is not limited thereto.

即ち、窒化シリコン膜は必ずしも5iBN4なる多結晶
膜でなくとも良く、例えば、SiをN2あるいはN2+
Ar  ガス中でスパッタリングしてできるSiの窒化
物であれば良い。
In other words, the silicon nitride film does not necessarily have to be a polycrystalline film of 5iBN4; for example, Si is replaced with N2 or N2+.
Any Si nitride formed by sputtering in Ar gas may be used.

また、上記実施例においてはSi基板による反応性スパ
ッタリングによって説明したが、本発明はこれに限定さ
れるものではなく、例えば蒸着でも良く、またSi3N
4のターゲットからスパッタリングしても良い。要は成
膜条件によって形成される膜の屈折率を変化することが
可能な成膜方法であれば、本発明に適用することが出来
る。
Furthermore, although the above embodiments have been explained using reactive sputtering using a Si substrate, the present invention is not limited thereto; for example, vapor deposition may be used, and Si3N
Sputtering may be performed from target No. 4. In short, any film forming method that can change the refractive index of the film formed depending on the film forming conditions can be applied to the present invention.

上記の如き第1及び第2の窒化シリコン膜における屈折
率の相違は主として作製される膜の密度及びまたは窒素
とシリコンの構成比の相違に起因しているものと推測さ
れる。
It is presumed that the difference in refractive index between the first and second silicon nitride films as described above is mainly due to the difference in the density of the produced films and/or the difference in the composition ratio of nitrogen and silicon.

〈発明の効果〉 以上のように本発明によれば、屈折率の異なる窒化シリ
コン膜を組合せて用いることにより記録媒体の耐蝕性及
び情報再生特性を共に良好に確保せしめることができる
ものである。
<Effects of the Invention> As described above, according to the present invention, by using a combination of silicon nitride films having different refractive indexes, it is possible to ensure good corrosion resistance and information reproduction characteristics of a recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

t’図は本発明に係る磁気光プ記憶素子の一実施例の構
成を示す一部側面断面図、第2図はスパッタ法によって
作製される膜の屈折率とガス圧の関係を示す特性図、第
3図は従来の磁気光学記憶素子の構成を示す一部側面断
面図である。 l・・・透明基板、  3・・・希土類遷移金属合金薄
膜、6・・・レーザ光、 7・・・第1の透明誘電体膜
(Si3N4膜)、 8・・・第2の透明誘電体膜(S
i3N4膜)、 9・・・反射膜(A4膜)。
Figure t' is a partial side sectional view showing the configuration of an embodiment of the magnetic optical memory element according to the present invention, and Figure 2 is a characteristic diagram showing the relationship between the refractive index and gas pressure of a film produced by sputtering. , FIG. 3 is a partial side sectional view showing the structure of a conventional magneto-optical memory element. l...Transparent substrate, 3...Rare earth transition metal alloy thin film, 6...Laser light, 7...First transparent dielectric film (Si3N4 film), 8...Second transparent dielectric Membrane (S
i3N4 film), 9... Reflective film (A4 film).

Claims (1)

【特許請求の範囲】 1、透明基板上に第1の透明誘電体膜、希土類遷移金属
合金薄膜、第2の透明誘電体膜、反射膜をこの順に被覆
してなる磁気光学記憶素子において、 前記第1の透明誘電体膜及び第2の透明誘電体膜を、共
に窒化シリコン膜で形成し、且つ前記第1の透明誘電体
膜の屈折率が前記第2の透明誘電体膜の屈折率より大で
あるように構成したことを特徴とする磁気光学記憶素子
。 2、上記第1及び第2の透明誘電体膜はスパッタリング
により作製され、該作製条件の差により大なる屈折率を
有する第1の透明誘電体膜及び小なる屈折率を有する第
2の透明誘電体膜の構造を有して成ることを特徴とする
特許請求の範囲第1項記載の磁気光学記憶素子。
[Scope of Claims] 1. A magneto-optical memory element comprising a transparent substrate coated with a first transparent dielectric film, a rare earth transition metal alloy thin film, a second transparent dielectric film, and a reflective film in this order, comprising: Both the first transparent dielectric film and the second transparent dielectric film are formed of silicon nitride films, and the refractive index of the first transparent dielectric film is lower than the refractive index of the second transparent dielectric film. A magneto-optical memory element characterized in that it is configured to have a large size. 2. The first and second transparent dielectric films are produced by sputtering, and due to the difference in production conditions, the first transparent dielectric film has a large refractive index and the second transparent dielectric film has a small refractive index. The magneto-optical memory element according to claim 1, characterized in that it has a body membrane structure.
JP14623484A 1983-09-16 1984-07-13 Magnetooptic storage element Granted JPS6124042A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14623484A JPS6124042A (en) 1984-07-13 1984-07-13 Magnetooptic storage element
CA000462506A CA1224270A (en) 1983-09-16 1984-09-05 Magneto-optic memory element
US06/648,741 US4610912A (en) 1983-09-16 1984-09-10 Magneto-optic memory element
EP84306341A EP0139474B1 (en) 1983-09-16 1984-09-17 Magneto-optic memory element
DE8484306341T DE3481878D1 (en) 1983-09-16 1984-09-17 MAGNETOOPTIC STORAGE ELEMENT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14623484A JPS6124042A (en) 1984-07-13 1984-07-13 Magnetooptic storage element

Publications (2)

Publication Number Publication Date
JPS6124042A true JPS6124042A (en) 1986-02-01
JPH0422291B2 JPH0422291B2 (en) 1992-04-16

Family

ID=15403136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14623484A Granted JPS6124042A (en) 1983-09-16 1984-07-13 Magnetooptic storage element

Country Status (1)

Country Link
JP (1) JPS6124042A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226660A (en) * 1985-07-26 1987-02-04 Mitsubishi Electric Corp Production of magnetooptic storage element
JPS62121945A (en) * 1985-11-22 1987-06-03 Mitsubishi Electric Corp Production of magnetooptic memory element
JPS62226452A (en) * 1986-03-27 1987-10-05 Nec Corp Photomagnetic recording medium
JPS62285255A (en) * 1986-06-04 1987-12-11 Konica Corp Magneto-optical recording medium
JPS63285738A (en) * 1987-05-19 1988-11-22 Canon Inc Magneto-optical recording medium
JPH0258746A (en) * 1988-08-24 1990-02-27 Hitachi Maxell Ltd Magneto-optical recording medium and production thereof
JPH076421A (en) * 1993-06-14 1995-01-10 Nec Corp Magneto-optical recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226660A (en) * 1985-07-26 1987-02-04 Mitsubishi Electric Corp Production of magnetooptic storage element
JPS62121945A (en) * 1985-11-22 1987-06-03 Mitsubishi Electric Corp Production of magnetooptic memory element
JPS62226452A (en) * 1986-03-27 1987-10-05 Nec Corp Photomagnetic recording medium
JPS62285255A (en) * 1986-06-04 1987-12-11 Konica Corp Magneto-optical recording medium
JPS63285738A (en) * 1987-05-19 1988-11-22 Canon Inc Magneto-optical recording medium
JPH0258746A (en) * 1988-08-24 1990-02-27 Hitachi Maxell Ltd Magneto-optical recording medium and production thereof
JPH076421A (en) * 1993-06-14 1995-01-10 Nec Corp Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH0422291B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US4610912A (en) Magneto-optic memory element
EP0368194B1 (en) Magneto-optical recording medium
JPS61194664A (en) Magnetooptic storage element
JPS6124042A (en) Magnetooptic storage element
JPH0332144B2 (en)
JPS63285738A (en) Magneto-optical recording medium
JPS6063747A (en) Magnetooptical storage element
JPS6117236A (en) Magnetooptic storage element
EP0560625B1 (en) A magneto-optic memory medium and a method for producing the same
JPH02265051A (en) Optical recording medium
JPH01173455A (en) Magneto-optical recording medium
JPS60247844A (en) Magnetooptic storage element
KR100209585B1 (en) Magneto-optical disk
JPH02226531A (en) Structure of optical disk
JP2754658B2 (en) Magneto-optical recording medium
JPS63311642A (en) Optical memory element
JPH02261822A (en) Optical recording medium and preparation thereof
JPH04318346A (en) Magneto-optical recording medium
JPH0792935B2 (en) Magneto-optical recording medium
JPS63124250A (en) Optical magnetic recording disk
JPH0414647A (en) Magneto-optical recording medium
JPH04134653A (en) Magneto-optical recording medium
JPH0636368A (en) Magneto-optical recording medium
JPH01292649A (en) Optical information recording medium and production thereof
JPH01138639A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term