JPH0258746A - Magneto-optical recording medium and production thereof - Google Patents
Magneto-optical recording medium and production thereofInfo
- Publication number
- JPH0258746A JPH0258746A JP20821788A JP20821788A JPH0258746A JP H0258746 A JPH0258746 A JP H0258746A JP 20821788 A JP20821788 A JP 20821788A JP 20821788 A JP20821788 A JP 20821788A JP H0258746 A JPH0258746 A JP H0258746A
- Authority
- JP
- Japan
- Prior art keywords
- magneto
- optical recording
- enhancement layer
- recording medium
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010410 layer Substances 0.000 claims abstract description 90
- 239000011241 protective layer Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 55
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 238000004544 sputter deposition Methods 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 13
- 229910052786 argon Inorganic materials 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 239000003989 dielectric material Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 229910052755 nonmetal Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004859 Copal Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光磁気記録媒体およびその製造方法ニ係り、
特に、エンハンス層および保護層の組成と、所望の組成
のエンハンス層および保護層を効率的に形成する方法と
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium and a method for manufacturing the same;
In particular, the present invention relates to compositions of enhancement layers and protection layers, and methods for efficiently forming enhancement layers and protection layers with desired compositions.
従来より、基板の信号面に、エンハンス層と光磁気記録
層と保護層とを順次積層して成る光磁気記録媒体が知ら
れている。2. Description of the Related Art Conventionally, magneto-optical recording media are known in which an enhancement layer, a magneto-optical recording layer, and a protective layer are sequentially laminated on a signal surface of a substrate.
前記エンハンス層は、光磁気記録層からの反射光を繰り
返し反射させ、見かけ上のカー回転角を大きくしてCN
値の改善を図るものであって、例えば、窒化シリコン(
SiN)、窒化アルミニウム(AIN)、硫化亜鉛(Z
nS)、酸化シリコン(Sin)、酸化アルミニウム(
A 1.20 :l)、炭化シリコン(SiC)などの
誘電体にて形成される。また、このエンハンス層には、
基板側からの透湿を防止するという機能もある。一方、
保護層は、光磁気記録層の表面を硬化して異物の衝合に
よる光磁気記録層の損傷を防止すると共に、光磁気記録
層への透湿を防止するために設けられる。The enhancement layer repeatedly reflects the reflected light from the magneto-optical recording layer, increases the apparent Kerr rotation angle, and improves the CN.
For example, silicon nitride (
SiN), aluminum nitride (AIN), zinc sulfide (Z
nS), silicon oxide (Sin), aluminum oxide (
A 1.20:l), and is formed of a dielectric material such as silicon carbide (SiC). In addition, this enhanced layer includes
It also has the function of preventing moisture permeation from the substrate side. on the other hand,
The protective layer is provided to harden the surface of the magneto-optical recording layer to prevent damage to the magneto-optical recording layer due to collisions with foreign objects, and to prevent moisture from permeating into the magneto-optical recording layer.
かように、エンハンス層と保護層とは透湿防止の点で機
能が共通するから、成膜装置の小型化、ターゲラ1−の
種類の減少、およびターゲットの交換に要する工数の省
力化等を図るため、従来より、保護層をエンハンス層と
同一の材料にて形成することが行われている。In this way, the enhancement layer and the protective layer have the same function in terms of preventing moisture permeation, so it is possible to reduce the size of the film forming equipment, reduce the number of types of Targetera 1-, and save the man-hours required for replacing targets. To achieve this goal, the protective layer has conventionally been formed of the same material as the enhancement layer.
ところで、前記したエンハンス層材料および保護層材料
のうち、酸化物系の化合物はそれに含まれる酸素が光磁
気記録層を劣化させる虞れがあることから、非酸化物系
の化合物を用いることがより好ましいとされている。ま
た、非酸化物系の薄膜をスパッタリングにて形成する場
合、導入ガスとして純アルゴンガスを用い、真空槽内の
ガス圧を高く設定すると、成膜された薄膜の屈折率が大
きくなり過ぎ、却って記録/再生特性が劣化する。By the way, among the above-mentioned enhancement layer materials and protective layer materials, it is preferable to use non-oxide compounds because the oxygen contained in oxide compounds may deteriorate the magneto-optical recording layer. It is considered preferable. In addition, when forming a non-oxide thin film by sputtering, if pure argon gas is used as the introduced gas and the gas pressure in the vacuum chamber is set high, the refractive index of the formed thin film will become too large. Recording/playback characteristics deteriorate.
このため、従来より非酸化物系のエンハンス層、例えば
窒化物のエンハンス層をスパッタリングするに当っては
、スパッタガスとして窒素ガスが10%程度添加された
アルゴンガスを用い、真空槽内のガス圧を比較的低く設
定するといった方法が採られている。保護層については
、機能上屈折率を調整する必要はないが、前記した生産
性向上の見地から、エンハンス層と同様の方法で形成さ
れている。For this reason, conventionally when sputtering a non-oxide based enhancement layer, such as a nitride enhancement layer, argon gas to which about 10% nitrogen gas is added is used as the sputtering gas, and the gas pressure in the vacuum chamber is A method is used to set the value relatively low. Although it is not necessary to adjust the refractive index of the protective layer functionally, it is formed in the same manner as the enhancement layer from the viewpoint of improving productivity as described above.
然るに、前記のような方法で形成された全く同一組成の
エンハンス層および保護層を有する光磁気記録媒体は、
高温高温環境下に放置すると、短時間のうちにエンハン
ス層および保護層にクラックを生じ、耐環境性の点で実
用性に問題があるということが判明した。However, a magneto-optical recording medium having an enhancement layer and a protective layer having exactly the same composition formed by the method described above is
It was found that when left in a high-temperature environment, the enhancement layer and protective layer cracked within a short period of time, causing problems in practicality in terms of environmental resistance.
本発明は、前記した従来技術の欠点を解決し、高温高湿
環境下における耐久性を改善することを目的とするもの
である。The present invention aims to solve the above-mentioned drawbacks of the prior art and improve durability under high temperature and high humidity environments.
本発明は、前記の目的を達成するため、非酸化物系の化
合物を主成分とする物質にて形成された保護層に含まれ
る酸化物の含有率を、同じく非酸化物系の化合物を主成
分とする物質にて形成されたエンハンス層に含まれる酸
化物の含有率よりも高くしたことを特徴とするものであ
る。In order to achieve the above object, the present invention reduces the content of oxides contained in a protective layer formed of a substance mainly composed of non-oxide compounds. It is characterized in that the content of oxides is higher than the content of oxides contained in the enhancement layer formed of the constituent substances.
また、エンハンス層を形成する際のスパッタ条件と保護
層を形成する際のスパッタ条件を、真空槽内に導入され
るガスの種類と真空槽内のガス圧のうち少なくともいず
れが一方について変更するようにしたことを製造上の特
徴とするものである。In addition, the sputtering conditions for forming the enhancement layer and the sputtering conditions for forming the protective layer are changed for at least one of the type of gas introduced into the vacuum chamber and the gas pressure within the vacuum chamber. The manufacturing feature is that the
酸化物の含有率が高い非酸化物系の化合物を主成分とす
る薄膜は、酸化物の含有率が低い非酸化物系の化合物を
主成分とする薄膜に比べて延性および熱膨張率が大きく
なる。延性および熱膨張率の大きな保護層を光磁気記録
層を介して延性および熱膨張率の小さいエンハンス層に
積層すると、基板上に積層された積層体の平均の延性お
よび熱膨張率が」二昇する。よって、エンハンス層の光
学的性質を劣化することなく、高温高湿環境下における
エンハンス層および保護層のクラックを防止することが
でき、光磁気記録媒体の耐久性が改善される。A thin film whose main component is a non-oxide compound with a high oxide content has higher ductility and coefficient of thermal expansion than a thin film whose main component is a non-oxide compound with a low oxide content. Become. When a protective layer with high ductility and coefficient of thermal expansion is laminated on an enhancement layer with low ductility and coefficient of thermal expansion via a magneto-optical recording layer, the average ductility and coefficient of thermal expansion of the laminate stacked on the substrate will increase by 2. do. Therefore, it is possible to prevent the enhancement layer and the protective layer from cracking in a high temperature and high humidity environment without deteriorating the optical properties of the enhancement layer, and the durability of the magneto-optical recording medium is improved.
また、前記エンハンス層および保護層の成膜に当っては
、真空槽内を所定の高真空度まで真空引きしたのち、不
活性ガスなどのスパッタガスを導入して行うが、いかに
高度に真空引きしても真空槽内の空気を完全に排気する
ことは事実上不可能であり、また、スパッタガスボンベ
中に混入した微量の酸素がスパッタガスの導入とともに
真空槽内に導入されることもあり、さらには、樹脂製の
基板を用いた場合には、基板中から空気が放出されるこ
ともある。In addition, when forming the enhancement layer and the protective layer, the inside of the vacuum chamber is evacuated to a predetermined high degree of vacuum, and then a sputtering gas such as an inert gas is introduced. However, it is virtually impossible to completely exhaust the air in the vacuum chamber, and a small amount of oxygen mixed in the sputtering gas cylinder may be introduced into the vacuum chamber when the sputtering gas is introduced. Furthermore, when a resin substrate is used, air may be released from the substrate.
このように、真空槽内には微量の酸素が存在すると考え
られるが、真空層内のガス圧が高いほど、また、不活性
ガスに混入される混合ガスの含有率が高いほど、スパッ
タ粒子ひいては成膜された薄膜中に取り込まれる酸素の
割合が高くなる。よって、エンハンス層を形成する際の
スパッタ条件と保護層を形成する際のスパッタ条件を適
宜調整することによって、酸化物の含有率の高い保護層
と酸化物の含有率の低いエンハンス層とを形成すること
ができる。In this way, it is thought that a small amount of oxygen exists in the vacuum chamber, but the higher the gas pressure in the vacuum layer and the higher the content of the mixed gas mixed in the inert gas, the more the sputtered particles and The proportion of oxygen taken into the formed thin film increases. Therefore, by appropriately adjusting the sputtering conditions when forming the enhancement layer and the sputtering conditions when forming the protective layer, it is possible to form a protective layer with a high oxide content and an enhancement layer with a low oxide content. can do.
第1図に示すように、本発明に係る光磁気記録媒体は、
基板1の信号パターン2の形成面にエンハンス層3と光
磁気記録層4と保護層5とを順次積層して成る。As shown in FIG. 1, the magneto-optical recording medium according to the present invention is
An enhancement layer 3, a magneto-optical recording layer 4, and a protective layer 5 are sequentially laminated on the surface of the substrate 1 on which the signal pattern 2 is formed.
基板1は、例えばガラスなどの透明セラミックスや、ポ
リカーボネート(PC)、ポリメチルメタクリレート(
PMMA) 、ポリメチルペンテン、エポキシ等の透明
な樹脂材料によって形成される。The substrate 1 is made of, for example, transparent ceramics such as glass, polycarbonate (PC), polymethyl methacrylate (
It is formed from a transparent resin material such as PMMA), polymethylpentene, or epoxy.
該基板1の片面には、トラッキング信号に対応する案内
溝やアドレス信号に対応するプリピットなどの信号パタ
ーン2が形成されている。なお、この基板1の平面形状
は、例えばディスク状またはカード状など、必要に応じ
て任意の形状に形成することができる。A signal pattern 2 such as a guide groove corresponding to a tracking signal and a prepit corresponding to an address signal is formed on one side of the substrate 1. Note that the planar shape of the substrate 1 can be formed into any shape as required, such as a disk shape or a card shape.
信号パターン2の形成手段としては、前記基板1の材質
によって適宜の方法が適用される。As a means for forming the signal pattern 2, an appropriate method is applied depending on the material of the substrate 1.
例えば、基板1がPCやPMMA、それにポリメチルペ
ンテンなどの熱可塑性樹脂にて形成される場合には、射
出成形用金型内に溶融した基板材料を射出して基板1と
信号パターン2とを一体に成形する所謂インジェクショ
ン法が適する。また、この基板材料に関しては、射出成
形用金型内に溶融した基板材料を射出したのちに圧力を
加える、所謂コンプレッション法あるいはインジェクシ
ョ一
ンーコンブレツション法といった形成手段を適用するこ
ともできる。さらに、基板1がガラスなどのセラミック
スやエポキシなどの熱硬化性樹脂にて形成される場合に
は、所望の信号パターンの反転パターンが形成されたス
タンパ(金型)と基板1との間で光硬化性樹脂を展伸し
、スタンパの反転パターンを基板1に転写する所謂2P
法(Phot。For example, when the substrate 1 is made of PC, PMMA, or a thermoplastic resin such as polymethylpentene, the substrate 1 and the signal pattern 2 are formed by injecting the molten substrate material into an injection mold. A so-called injection method of integrally molding is suitable. Regarding this substrate material, it is also possible to apply a forming method such as the so-called compression method or injection-combination method, in which pressure is applied after injecting the molten substrate material into an injection mold. Further, when the substrate 1 is made of ceramics such as glass or thermosetting resin such as epoxy, light is generated between the substrate 1 and a stamper (mold) on which an inverted pattern of the desired signal pattern is formed. So-called 2P, in which the curable resin is spread and the inverted pattern of the stamper is transferred to the substrate 1.
Law (Photo.
polymerization ;光硬化性樹脂法)が
適する。また、エポキシなどの熱硬化性樹脂に関しては
、金型内に溶融状態にある基板材料を静注して基板1と
信号パターン2とを一体に成形する所謂注型法を適用す
ることもできる。Polymerization (photocurable resin method) is suitable. Furthermore, with regard to thermosetting resin such as epoxy, a so-called casting method may be applied in which the substrate 1 and the signal pattern 2 are integrally molded by intravenously injecting the substrate material in a molten state into a mold.
エンハンス層3は、金属元素の窒化物、金属元素の炭化
物、金属元素のフッ化物、金属元素の硫化物、金属元素
の水素化物、または非金属元素のの窒化物、非金属元素
の炭化物、非金属元素のフッ化物、非金属元素の硫化物
、非金属元素の水素化物など、酸化物系誘電体を除く誘
電体を主成分とする物質にて形成される。前記化合物を
つくる金属元素としては、任意の金属元素を用いること
ができるが、特に、アルミニウム、コバルト、クロム、
鉄、ゲルマニウム、ハフニウム、インジウム、マグネシ
ウム、モリブデン、ニオブ、スズ、タンタル、チタン、
タングステン、亜鉛、ジルコニウムから選択されたもの
が好適である。また、前記化合物をつくる非金属元素と
しては、ホウ素、シリコンから選択されたものが特に好
適である。The enhancement layer 3 is made of a nitride of a metal element, a carbide of a metal element, a fluoride of a metal element, a sulfide of a metal element, a hydride of a metal element, a nitride of a non-metal element, a carbide of a non-metal element, a non-metal element. It is formed of a substance whose main component is a dielectric other than an oxide-based dielectric, such as a fluoride of a metal element, a sulfide of a non-metal element, or a hydride of a non-metal element. Any metal element can be used as the metal element for forming the compound, but aluminum, cobalt, chromium,
Iron, germanium, hafnium, indium, magnesium, molybdenum, niobium, tin, tantalum, titanium,
Preference is given to those selected from tungsten, zinc and zirconium. Furthermore, as the nonmetallic element for forming the compound, one selected from boron and silicon is particularly suitable.
前記エンハンス層3は、屈折率を所望の値、すなわちエ
ンハンスメント効果を奏し、かつ記録膜4に照射される
記録/再生用光の光量を減少しないために必要な値に調
整するため、X線光電子分光分析による酸化物の含有率
が10%〜20%に調整されている。The enhancement layer 3 is provided with X-ray photoelectrons in order to adjust the refractive index to a desired value, that is, a value necessary for producing an enhancement effect and not reducing the amount of recording/reproducing light irradiated onto the recording film 4. The content of oxides determined by spectroscopic analysis is adjusted to 10% to 20%.
記録層4は、例えばテルビウムと鉄とコバルトを主成分
とする非晶質合金など、公知に属する任意の光磁気記録
材料をもって形成することができる。The recording layer 4 can be formed of any known magneto-optical recording material, such as an amorphous alloy whose main components are terbium, iron, and cobalt.
保護層5は、前記エンハンス層3を形成する化合物と同
種の化合物をもって形成されるが、延性および熱膨張率
をエンハンス層3より大きくするため、X線光電子分光
分析による酸化物の含有率が15%〜40%に調整され
ている。The protective layer 5 is formed of the same kind of compound as the compound forming the enhancement layer 3, but in order to make the ductility and coefficient of thermal expansion larger than that of the enhancement layer 3, the oxide content is 15% as determined by X-ray photoelectron spectroscopy. % to 40%.
前記実施例の光磁気記録媒体は、エンハンス層3を酸化
物の含有率が低い物質にて形成し、その屈折率を所望の
値に調整したので、エンハンスメント効果が高い。また
、保護層5を酸化物の含有率が高い物質にて形成し、そ
の延性および熱膨張率をエンハンス層3よりも大きくし
たので、基板上に積層された積層体の平均の延性および
熱膨張率がエンハンス層自体よりも大きくなり、高温高
温環境下におけるエンハンス層および保護層のクラック
を防止することができる。The magneto-optical recording medium of the above embodiment has a high enhancement effect because the enhancement layer 3 is formed of a material with a low oxide content and its refractive index is adjusted to a desired value. In addition, since the protective layer 5 is formed of a material with a high oxide content and its ductility and coefficient of thermal expansion are made larger than those of the enhancement layer 3, the average ductility and thermal expansion of the laminate stacked on the substrate are This makes it possible to prevent the enhancement layer and the protective layer from cracking in high-temperature environments.
また、エンハンス層材料および保護層材料として、酸化
物系以外の化合物を主成分とする物質を用いたので、記
録層4がエンハンス層3および保護層5に含まれる酸素
によって侵されるということがほとんどなく、また、防
湿性が高いことから、記録層の保護効果が高い。In addition, since substances containing compounds other than oxides as the main component were used as the enhancement layer material and the protection layer material, it is unlikely that the recording layer 4 would be attacked by the oxygen contained in the enhancement layer 3 and the protection layer 5. Moreover, since it has high moisture resistance, it has a high protective effect on the recording layer.
次に、本発明に係る光磁気記録媒体の製造方法を第2図
の流れ図に従って説明する。Next, a method for manufacturing a magneto-optical recording medium according to the present invention will be explained according to the flowchart shown in FIG.
まず、ステップS−1において、スパッタリング装置の
真空槽内に信号パターンが形成された基板を収納し、真
空槽を所定の真空度まで真空引きする。このときの真空
度は、薄膜に要求される純度と作業時間とを考慮して決
定される。First, in step S-1, a substrate on which a signal pattern has been formed is placed in a vacuum chamber of a sputtering apparatus, and the vacuum chamber is evacuated to a predetermined degree of vacuum. The degree of vacuum at this time is determined in consideration of the purity required for the thin film and the working time.
次いで、ステップS−2において、基板上に酸化物の含
有率が低く所望の屈折率を有するエンハンス層が形成さ
れるように、真空槽内に導入されるガスの種類およびガ
ス圧を調整し、ステップS3においてエンハンス層のス
パッタリングを行う。Next, in step S-2, the type and gas pressure of the gas introduced into the vacuum chamber are adjusted so that an enhancement layer with a low oxide content and a desired refractive index is formed on the substrate, In step S3, an enhancement layer is sputtered.
次いで、ステップS−4において、エンハンス層上に所
望の記録層が形成されるように、真空槽内に導入される
ガスの種類およびガス圧を調整し、ステップS−5にお
いて記録層のスパッタリングを行う。Next, in step S-4, the type and gas pressure of the gas introduced into the vacuum chamber are adjusted so that a desired recording layer is formed on the enhancement layer, and in step S-5, the recording layer is sputtered. conduct.
さらに、ステップS−6において、記録層上に酸化物の
含有率が高く延性および熱膨張率の高い保護層が形成さ
れるように、真空槽内に導入されるガスの種類およびガ
ス圧を調整し、ステップS7において保護層のスパッタ
リングを行う。Furthermore, in step S-6, the type and gas pressure of the gas introduced into the vacuum chamber are adjusted so that a protective layer with a high oxide content, high ductility, and high coefficient of thermal expansion is formed on the recording layer. Then, in step S7, a protective layer is sputtered.
前記実施例の光磁気記録媒体の製造方法は、各層をスパ
ッタリングする毎に、真空槽内に導入するガスの種類と
ガス圧とを調整するようにしたので、所望の物性を備え
たエンハンス層および保護層を容易に形成することがで
きる。In the method for manufacturing the magneto-optical recording medium of the above embodiment, the type of gas introduced into the vacuum chamber and the gas pressure are adjusted each time each layer is sputtered, so that the enhanced layer and A protective layer can be easily formed.
以下、より具体的な実施例と従来技術に係る比較例とを
掲げ、本発明の効果に言及する。Hereinafter, the effects of the present invention will be described with reference to more specific examples and comparative examples related to the prior art.
〈第1実施例〉
樹脂製基板が収納された真空槽を3X10−5(Pa)
まで真空引きした。<First example> A vacuum chamber containing a resin substrate was heated to 3X10-5 (Pa).
I vacuumed it up.
次いで、真空槽内に10%の窒素ガスが混入されたアル
ゴンガスを導入して真空槽内のガス圧を0.2 (Pa
)に平衡させ、前記基板の信号面に窒化シリコン系のエ
ンハンス層を850人〜900Xの厚さにスパッタリン
グした。Next, argon gas mixed with 10% nitrogen gas was introduced into the vacuum chamber to reduce the gas pressure in the vacuum chamber to 0.2 (Pa
), and a silicon nitride-based enhancement layer was sputtered on the signal surface of the substrate to a thickness of 850× to 900×.
次いで、真空槽内のガスを一旦排気したのち、純アルゴ
ンガスを導入して真空槽内のガス圧を0.2 (Pa)
に平衡させ、前記エンハンス層上にテルビウム−鉄−コ
パル1−系の記録層を約1000Xの厚さにスパッタリ
ングした。Next, after exhausting the gas in the vacuum chamber, pure argon gas is introduced to reduce the gas pressure in the vacuum chamber to 0.2 (Pa).
A terbium-iron-copal 1-based recording layer was sputtered on the enhancement layer to a thickness of about 1000×.
さらに、真空槽内のガスを再度排気したのち、純アルゴ
ンガスを導入して真空槽内のガス圧を1、.0(Pa)
に平衡させ、前記記録層上に窒化シリコン系の保護層を
約1000人の厚さにスパッタリングした。Furthermore, after exhausting the gas in the vacuum chamber again, pure argon gas is introduced to increase the gas pressure in the vacuum chamber to 1. 0 (Pa)
A silicon nitride-based protective layer was sputtered on the recording layer to a thickness of about 1000 nm.
〈第2実施例〉
第1実施例と同一の方法で樹脂基板の信号面にエンハン
ス層および記録層を順次積層したのち、真空槽内のガス
を排気し、真空槽内に純窒素ガスを導入して真空槽内の
ガス圧を0.2 (Pa)に平衡させ、前記記録層上に
窒化シリコン系の保護層を約1000人の厚さにスパッ
タリングした。<Second Example> After sequentially laminating an enhancement layer and a recording layer on the signal surface of a resin substrate using the same method as in the first example, the gas in the vacuum chamber was evacuated, and pure nitrogen gas was introduced into the vacuum chamber. The gas pressure in the vacuum chamber was then equilibrated to 0.2 (Pa), and a silicon nitride-based protective layer was sputtered on the recording layer to a thickness of about 1000 nm.
〈第3実施例〉
第1実施例と同一の方法で樹脂基板の信号面にエンハン
ス層および記録層を順次積層したのち、真空槽内のガス
を排気し、真空槽内にアルゴンガスと窒素ガスとが50
%ずつ混合されたガスを導入して真空槽内のガス圧を0
.5 (Pa)に平衡させ、前記記録層上に窒化シリコ
ン系の保護層を約1000人の厚さにスパッタリングし
た。<Third Example> After sequentially laminating an enhancement layer and a recording layer on the signal surface of a resin substrate using the same method as in the first example, the gas in the vacuum chamber was evacuated, and argon gas and nitrogen gas were added to the vacuum chamber. Toga 50
The gas pressure in the vacuum chamber is reduced to 0 by introducing the mixed gas in % increments.
.. 5 (Pa), and a silicon nitride-based protective layer was sputtered on the recording layer to a thickness of about 1000 nm.
〈比較例〉
エンハンス層および保護層を形成する際、共に10%の
窒素ガスが混入されたアルゴンガスを真空槽内に導入し
、真空槽内のガス圧を0.2 (Pa)に平衡させてス
パッタリングを行った。<Comparative example> When forming the enhancement layer and the protective layer, argon gas mixed with 10% nitrogen gas was introduced into the vacuum chamber, and the gas pressure in the vacuum chamber was equilibrated to 0.2 (Pa). sputtering was performed.
導入ガスの種類および真空槽内のガス圧を除く他の条件
については、前記第1ないし第3実施例の場合と同じで
ある。Other conditions except for the type of introduced gas and the gas pressure in the vacuum chamber are the same as in the first to third embodiments.
前記各実施例および比較例の光磁気記録媒体を気温60
°C1相対湿度90%の環境下に放置したところ、比較
例の光磁気記録媒体は20時間経過時にエンハンス層お
よび保護層の一部にクランクが発生し、100時間経過
時にはエンハンス層および保護層の全体にクラックがひ
ろがったのに対し、本発明に係る光磁気記録媒体は、2
000時間経過後もクラックの発生が認められなかった
。The magneto-optical recording media of each of the above Examples and Comparative Examples were heated to 60°C.
When left in an environment with a relative humidity of 90% at °C, the magneto-optical recording medium of the comparative example developed cracks in part of the enhancement layer and the protective layer after 20 hours, and after 100 hours, the enhancement layer and the protective layer did not crack. While the cracks spread throughout the entire area, the magneto-optical recording medium according to the present invention had 2 cracks.
No cracks were observed even after 1,000 hours had passed.
なお、前記実施例においては、窒化シリコンのみを例に
とって説明したが、他の金属または非金属の硫化物、炭
化物、水素化物等についても同様の効果がある。In the above embodiments, only silicon nitride was used as an example, but similar effects can be obtained with other metals or nonmetals such as sulfides, carbides, and hydrides.
以上説明したように、本発明の光磁気記録媒体は、エン
ハンス層および保護層に含まれる酸化物の含有率を適宜
調整したので、エンハンス層の光学的性質を劣化するこ
となく、高温高湿環境下における光磁気記録媒体の耐久
性を改善することができる。As explained above, since the magneto-optical recording medium of the present invention has the content of oxides contained in the enhancement layer and the protective layer appropriately adjusted, it can withstand high temperature and high humidity environments without deteriorating the optical properties of the enhancement layer. The durability of the underlying magneto-optical recording medium can be improved.
また、本発明の光磁気記録媒体の製造方法は、エンハン
ス層および保護層の成膜に当って、真空槽内に導入され
る導入ガスの種類および真空槽内のガス圧を適宜変更す
るようにしたので、酸化物の含有率が低く所望の屈折率
を有するエンハンス層と酸化物の含有率が高く延性およ
び熱膨張率の大きい保護層とを形成することができる。Furthermore, the method for manufacturing a magneto-optical recording medium of the present invention includes changing the type of gas introduced into the vacuum chamber and the gas pressure within the vacuum chamber as appropriate when forming the enhancement layer and the protective layer. Therefore, an enhancement layer having a low oxide content and a desired refractive index and a protective layer having a high oxide content and high ductility and coefficient of thermal expansion can be formed.
第1図は本発明に係る光磁気記録媒体の要部断面図、第
2図は本発明に係る光磁気記録媒体の製造を説明する流
れ図である。
+−:基板、2:信号パターン、3:エンハンス第
図
基粗
信若/づ一ン
エンハ二人層
り酊テ詔姻槽
珠護1FIG. 1 is a sectional view of a main part of a magneto-optical recording medium according to the present invention, and FIG. 2 is a flowchart illustrating the manufacturing of the magneto-optical recording medium according to the present invention. +-: Board, 2: Signal pattern, 3: Enhancement chart basic information/Duinenhanha two-layer drunkenness imperial marriage tank Jugo 1
Claims (8)
する誘電体にて形成されたエンハンス層と光磁気記録層
と前記エンハンス層と同種の化合物にて形成された保護
層とを順次積層して成る光磁気記録媒体において、前記
保護層に含まれる酸化物の含有率を前記エンハンス層に
含まれる酸化物の含有率よりも高くしたことを特徴とす
る光磁気記録媒体。(1) On the signal surface of the substrate, an enhancement layer formed of a dielectric material mainly composed of a non-oxide compound, a magneto-optical recording layer, and a protective layer formed of the same type of compound as the enhancement layer. What is claimed is: 1. A magneto-optical recording medium comprising sequentially laminated layers, characterized in that the content of oxides contained in the protective layer is higher than the content of oxides contained in the enhancement layer.
ンハンス層および保護層を、窒化シリコンを主成分とす
る化合物にて形成したことを特徴とする光磁気記録媒体
。(2) The magneto-optical recording medium according to claim 1, wherein the enhancement layer and the protective layer are formed of a compound containing silicon nitride as a main component.
板を樹脂材料にて形成したことを特徴とする光磁気記録
媒体。(3) A magneto-optical recording medium according to claim 1, wherein the substrate is made of a resin material.
護層を、前記エンハンス層よりも延性および熱膨張率の
高い薄膜にて形成したことを特徴とする光磁気記録媒体
。(4) The magneto-optical recording medium according to claim 1, wherein the protective layer is formed of a thin film having higher ductility and coefficient of thermal expansion than the enhancement layer.
保護層とを順次スパッタ成膜する光磁気記録媒体の製造
方法において、前記エンハンス層を形成する際のスパッ
タ条件と前記保護層を形成する際のスパッタ条件を、真
空槽内に導入されるガスの種類と真空槽内のガス圧のう
ち少なくともいずれか一方について変更するようにした
ことを特徴とする光磁気記録媒体の製造方法。(5) In a method for manufacturing a magneto-optical recording medium in which an enhancement layer, a magneto-optical recording layer and a protective layer are sequentially deposited on the signal surface of a substrate by sputtering, the sputtering conditions for forming the enhancement layer and the protective layer are 1. A method for manufacturing a magneto-optical recording medium, characterized in that sputtering conditions during formation are changed with respect to at least one of the type of gas introduced into the vacuum chamber and the gas pressure within the vacuum chamber.
て、前記エンハンス層を形成する際には、窒素ガスが1
0%混合されたアルゴンガスを導入して真空槽内のガス
圧を0.2(Pa)に調整し、前記保護層を形成する際
には、純アルゴンガスを導入して真空槽内のガス圧を1
.0(Pa)に調整したことを特徴とする光磁気記録媒
体の製造方法。(6) In the method for manufacturing a magneto-optical recording medium according to claim 5, when forming the enhancement layer, nitrogen gas is
0% mixed argon gas is introduced to adjust the gas pressure in the vacuum chamber to 0.2 (Pa), and when forming the protective layer, pure argon gas is introduced to adjust the gas pressure in the vacuum chamber to 0.2 (Pa). Pressure 1
.. 1. A method for manufacturing a magneto-optical recording medium, characterized in that the pressure is adjusted to 0 (Pa).
て、前記エンハンス層を形成する際には、窒素ガスが1
0%混合されたアルゴンガスを導入して真空槽内のガス
圧を0.2(Pa)に調整し、前記保護層を形成する際
には、純窒素ガスを導入して真空槽内のガス圧を0.2
(Pa)に調整したことを特徴とする光磁気記録媒体の
製造方法。(7) In the method for manufacturing a magneto-optical recording medium according to claim 5, when forming the enhancement layer, nitrogen gas is
0% mixed argon gas is introduced to adjust the gas pressure in the vacuum chamber to 0.2 (Pa), and when forming the protective layer, pure nitrogen gas is introduced to adjust the gas pressure in the vacuum chamber to 0.2 (Pa). pressure 0.2
(Pa).
て、前記エンハンス層を形成する際には、窒素ガスが1
0%混合されたアルゴンガスを導入して真空槽内のガス
圧を0.2(Pa)に調整し、前記保護層を形成する際
には、アルゴンガスと窒素ガスとが50%ずつ混合され
たガスを導入して真空槽内のガス圧を0.5(Pa)に
調整したことを特徴とする光磁気記録媒体の製造方法。(8) In the method for manufacturing a magneto-optical recording medium according to claim 5, when forming the enhancement layer, nitrogen gas is
When forming the protective layer by introducing 0% mixed argon gas and adjusting the gas pressure in the vacuum chamber to 0.2 (Pa), argon gas and nitrogen gas are mixed at 50% each. 1. A method for manufacturing a magneto-optical recording medium, characterized in that the gas pressure in the vacuum chamber is adjusted to 0.5 (Pa) by introducing a gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63208217A JP2735575B2 (en) | 1988-08-24 | 1988-08-24 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63208217A JP2735575B2 (en) | 1988-08-24 | 1988-08-24 | Magneto-optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0258746A true JPH0258746A (en) | 1990-02-27 |
JP2735575B2 JP2735575B2 (en) | 1998-04-02 |
Family
ID=16552615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63208217A Expired - Fee Related JP2735575B2 (en) | 1988-08-24 | 1988-08-24 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2735575B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6124042A (en) * | 1984-07-13 | 1986-02-01 | Sharp Corp | Magnetooptic storage element |
JPS62114141A (en) * | 1985-11-14 | 1987-05-25 | Sharp Corp | Magnetooptic memory element |
-
1988
- 1988-08-24 JP JP63208217A patent/JP2735575B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6124042A (en) * | 1984-07-13 | 1986-02-01 | Sharp Corp | Magnetooptic storage element |
JPS62114141A (en) * | 1985-11-14 | 1987-05-25 | Sharp Corp | Magnetooptic memory element |
Also Published As
Publication number | Publication date |
---|---|
JP2735575B2 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0684601A1 (en) | Optical recording medium | |
JP2551403B2 (en) | Magneto-optical recording element | |
JPH0258746A (en) | Magneto-optical recording medium and production thereof | |
KR900003688B1 (en) | Optical memory device and process for fabricating thereof | |
EP0352748B1 (en) | Magneto-optical recording medium and method of manufacturing the same | |
JPS63171453A (en) | Magneto-optical recording medium | |
JP2655587B2 (en) | Magneto-optical recording medium and method of manufacturing the same | |
US5308688A (en) | Oxidation resistant diamond composite and method of forming the same | |
EP0388852A2 (en) | Magneto-optical recording medium and process for production of the same | |
JPS63195846A (en) | Magneto-optical recording medium | |
JPH02128346A (en) | Magneto-optical disk | |
JP2974510B2 (en) | Magneto-optical recording element and method of manufacturing the same | |
JPS62170050A (en) | Photomagnetic disk | |
JPH01138635A (en) | Optical recording medium and production thereof | |
JPS62117156A (en) | Photomagnetic recording medium | |
US6077585A (en) | Optical recording medium and method of preparing same | |
JP3272737B2 (en) | Optical recording medium | |
JPH07197244A (en) | Al alloy sputtering target and magneto-optical recording medium | |
JP2001118286A (en) | Optical recording medium and its manufacturing method | |
JPH01205738A (en) | Phase change type optical recording medium | |
JPH03286438A (en) | Magneto-optical recording medium and production thereof | |
JPS6120243A (en) | Optical information recording medium | |
JPS62298954A (en) | Magneto-optical disk | |
JPH10188352A (en) | Information recording medium | |
JPH04137237A (en) | Magneto-optical recording medium and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |